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1  | INTRODUC TION

The sex‐limited chromosome—the sex chromosome unique to 
one sex (i.e., the Y chromosome in organisms with male heterog‐
amety, such as mammals and Drosophila, and the W chromosome 

in organisms with female heterogamety, such as birds)—differs from 
other nuclear DNA in that it is uniparentally inherited and does not 
recombine. This has several consequences that make it unusual with 
respect to function, evolution and use in population genetic analyses 
(Bachtrog, 2013; Ellegren, 2011; Jobling & Tyler‐Smith, 2003; Lahn, 
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Abstract
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolu‐
tionary histories and offer a very useful contrast to studies based on maternally in‐
herited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based 
on comparison of male and female sequence coverage to identify 4.7 Mb from the 
grey wolf (Canis lupis) Y chromosome, probably representing most of the male‐spe‐
cific, nonampliconic sequence from the euchromatic part of the chromosome. We 
characterized this sequence and then identified ≈1,500 Y‐linked single nucleotide 
polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish 
wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. 
We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that 
clustered in four major haplogroups. All four haplogroups were represented in sam‐
ples of Finnish wolves, showing that haplogroup lineages were not partitioned on a 
continental scale. However, regional population structure was indicated because in‐
dividual haplotypes were never shared between geographically distant areas, and 
genetically similar haplotypes were only found within the same geographical region. 
The deepest split between grey wolf haplogroups was estimated to have occurred 
125,000 years ago, which is considerably older than recent estimates of the time of 
divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y 
chromosome haplotypes supports multiple domestication events, or wolf paternal 
introgression, starting 29,000 years ago. We also addressed the disputed origin of a 
recently founded population of Scandinavian wolves and observed that founding as 
well as most recent immigrant haplotypes were present in the neighbouring Finnish 
population, but not in sequenced wolves from elsewhere in the world, or in dogs.
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Pearson, & Jegalian, 2001). The mammalian Y chromosome evolved 
from an ancestral pair of autosomes in which arrest of recombina‐
tion leading to independent X and Y chromosome lineages was ini‐
tiated 180 (Cortez et al., 2014) to 240–320 million years ago (Lahn 
& Page, 1999; Ross et al., 2005; Sandstedt & Tucker, 2004). Several 
subsequent steps of recombination cessation in different lineages 
further delimited the Y chromosome (Lahn & Page, 1999; Ross et 
al., 2005; Sandstedt & Tucker, 2004), a process potentially driven by 
sexually antagonistic alleles and mediated by Y chromosome inver‐
sions (Charlesworth, 2017; Charlesworth, Charlesworth, & Marais, 
2005; Ponnikas, Sigeman, Abbott, & Hansson, 2018). In addition, a 
combination of different forms of rearrangements, such as transpo‐
sition, retrotransposition, deletion and duplication, has meant that 
the Y chromosome today bears little resemblance to its ancestral 
homologue, the X chromosome.

In the absence of recombination, Y chromosomes become 
highly degenerate over time (Charlesworth, 1978; Charlesworth & 
Charlesworth, 2000; Nei, 1970; Rice, 1994) and accumulate a rich 
repertoire of repetitive sequences, including large heterochromatic 
structures. Degeneration and rearrangements imply that Y chromo‐
some evolution is highly dynamic; indeed, the structure and gene 
content of the Y chromosome differ significantly among mamma‐
lian lineages (Chang, Yang, Retzel, & Liu, 2013; Cortez et al., 2014; 
Hughes et al., 2012,2010; Li et al., 2013; Skinner et al., 2016; Soh et 
al., 2014). In most lineages, only a few genes have survived Y chro‐
mosome degeneration (Lahn & Page, 1997; Skaletsky et al., 2003). 
Preservation of such genes could be driven by selection in males to 
maintain two copies of dosage‐sensitive genes (Bellott et al., 2014; 
Cortez et al., 2014; Lahn & Page, 1997). Alternatively, the acquisition 
of male‐specific function (e.g., in testis development and spermato‐
genesis) would set the stage for adaptive evolution and introduce 
strong selective constraint against degeneration of Y‐linked genes 
(Lahn & Page, 1997; Skaletsky et al., 2003). An interesting feature of 
genes of the latter category noted in several mammals is that they 
often reside within ampliconic structures harbouring multiple gene 
copies (Bhowmick, Satta, & Takahata, 2007; Rozen et al., 2003; Soh 
et al., 2014).

Because the Y chromosome does not recombine, except for the 
pseudoautosomal region, it is clonally inherited as a single haplotype 
from father to son. This means that male lineages can be traced back 
in time (Semino et al., 2000; Underhill et al., 2000), offering a very 
useful contrast to phylogenetic or population genetic patterns pro‐
vided by analyses of maternally inherited mtDNA, and of autosomes 
(Poznik et al., 2013; Underhill & Kivisild, 2007). There are many ex‐
amples of sex‐specific demographic histories related to, for example, 
mating system, domestication, dispersal and introgression, and such 
differences between sexes can only be revealed by analyses of both 
paternally and maternally inherited genetic markers (Jones & Searle, 
2015; Lippold et al., 2014).

Although potentially powerful, population genetic and phy‐
logenetic inferences from Y chromosome haplotypes have only 
been made for a very limited number of organisms, notably hu‐
mans (Karafet et al., 2008; Karmin et al., 2015; Poznik et al., 2016; 

Underhill et al., 2000; for a recent review see Jobling & Tyler‐Smith, 
2017), but also in some domestic animals including dogs (Brown, 
Darwent, Wictum, & Sacks, 2015; Ding et al., 2012; Oetjens, Martin, 
Veeramah, & Kidd, 2018; Sacks et al., 2013). One reason for this 
is that many genome assemblies lack sequence data from the sex‐
limited chromosome because an individual of the homogametic 
sex was used for genome sequencing (to increase coverage of the 
X chromosome). When an individual of the heterogametic sex has 
been used, sequence data from the sex‐limited chromosome may be 
limited due to low coverage (of a haploid chromosome), or to the 
very high repeat content that is characteristic of nonrecombining 
chromosomes. Moreover, because linkage maps cannot be produced 
for nonrecombining chromosomes, Y chromosome assembly cannot 
be assisted by ordering or orientation of scaffolds based on genetic 
data (Tomaszkiewicz, Medvedev, & Makova, 2017). Painstaking bac‐
terial artificial clone (BAC) sequencing and single‐haplotype itera‐
tive mapping were used for assembling the human (Skaletsky et al., 
2003), chimpanzee (Hughes et al., 2010), rhesus monkey (Hughes 
et al., 2012), mouse (Soh et al., 2014), and dog and cat Y chromo‐
some (Li et al., 2013), but is impractical for widespread use across 
organisms. However, recently developed bioinformatic approaches 
based on comparisons of male and/or female sequence coverage, or 
k‐mers distribution, can identify scaffolds from the sex‐limited chro‐
mosome in essentially any species (Carvalho & Clark, 2013; Chen, 
Bellott, Page, & Clark, 2012; Hall et al., 2013; Smeds et al., 2015; 
Tomaszkiewicz et al., 2016).

The grey wolf (Canis lupis) is an iconic carnivore species with a 
complex history of diverse types of relationships with humans. With 
the rise of agriculture, wolves started to pose a threat to human set‐
tlements when free ‐range livestock formed easy targets for preda‐
tion (Leonard, Vilà, & Wayne, 2005). Fostered by symbolic evil roles 
in religion and, later, in stories and tales, strong antipathy toward 
wolves developed. Extermination of wolves escalated over time 
in both Europe and North America, and was in modern times sup‐
ported by bounty programmes and facilitated by the use of poison 
and more efficient weapons. As a result of eradication campaigns, 
wolves have disappeared from many parts of the world where they 
once were common. In other parts they are considered endangered, 
with several small populations suffering from inbreeding and poten‐
tially inbreeding depression (Åkesson et al., 2016; Aspi, Roininen, 
Ruokonen, Kojola, & Vilà, 2006; Gómez‐Sánchez et al., 2018; Kardos 
et al., 2018; Liberg et al., 2005; Pilot et al., 2013; Randi et al., 2000; 
Sastre et al., 2011; Vilà, Walker et al., 2003). In Scandinavia, wolves 
went extinct in the 1960s but, somewhat surprisingly, again started 
to breed in southern parts of the Scandinavian peninsula in the 
1980s, >1,000 km from the nearest regular occurrence in Finland 
and Russia. A special relationship between wolves and humans owes 
to the fact that dogs were domesticated from wolves, a process that 
has been given considerable attention by geneticists (Freedman et 
al., 2014; Leonard et al., 2002; Pang et al., 2009; Savolainen, Zhang, 
Luo, Lundeberg, & Leitner, 2002; Skoglund, Ersmark, Palkopoulou, 
& Dalen, 2015; Thalmann et al., 2013; Vilà et al., 1997; vonHoldt et 
al., 2010).
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Here we used a computational approach to identify and char‐
acterize 4.7 Mb of sequence from the wolf Y chromosome. Based 
on genomic resequencing data from 145 male wolves we identified 
Y chromosome haplotypes and studied their phylogenetic relation‐
ship. Finally, we use Y chromosome haplotypes to study the disputed 
origin of an endangered Scandinavian wolf population.

2  | MATERIAL AND METHODS

2.1 | Mapping of reads and the identification of Y‐
specific scaffolds based on coverage

Raw reads from 10 male and 10 female wolves (Kardos et al., 2018, 
for accession numbers, see Supporting Information Table S1) were 
mapped onto a male wolf genome assembly (Gopalakrishnan et al., 
2017, downloaded from https://sid.erda.dk/wsgi-bin/ls.py?share_
xml:id=f1ppDgUPQG), using bwa version 0.7.13 (Li & Durbin, 2009). 
The reads were sorted with samtools version 1.5 (Li et al., 2009) and 
merged and deduplicated with picard version 2.10.3 (http://broadinsti‐
tute.github.io/picard/). Y chromosome‐specific scaffolds were identi‐
fied following the procedure of Smeds et al. (2015). In short, perfectly 
mapping reads (i.e., reads that mapped without any mismatches) were 
extracted, and the mean and median coverage per scaffold were cal‐
culated with bedtools version 2.25.0 (Quinlan & Hall, 2010) for males 
and females separately. Combining data for all 10 individuals of each 
sex gave a mean coverage of 257× for males (median 271×) and 238× 
(251×) for females; note that this will mostly reflect the coverage of 
autosomal sequence, which constitutes the majority of the genome. 
We then selected scaffolds with a median male coverage of >50× and 
a female‐to‐male median coverage ratio of 0 (meaning female me‐
dian coverage = 0). These scaffolds were considered to represent se‐
quences from the Y chromosome (see Supporting Information Figure 
S1 for examples). Relaxed settings did not add much sequence; for 
example, using >20× male coverage and a female‐to‐male coverage 
ratio of 0.05 only added 1% more data, <50 kb.

Five scaffolds that did not pass the strictly set thresholds de‐
scribed above were still considered to originate from the Y chro‐
mosome from the observation that they contained genes (or part 
of genes) known to be Y‐linked in dogs. Importantly, three of these 
scaffolds (scaffold_5293, scaffold_5774 and scaffold_7290) had 
very high male coverage (>1,000×, suggesting they are part of re‐
petitive structures in which several similar repeat copies have been 
collapsed in the assembly), but failed identification due to nonzero 
female coverage (1–2×). The latter could result from similar (repeat) 
sequences also present elsewhere in the genome. A fourth scaf‐
fold (scaffold_3306) had zero female coverage, but only 6× perfect 
male coverage. Many additional male reads mapped to this scaffold 
but with mismatches, indicating errors in the assembled scaffold. 
The fifth scaffold (scaffold_242), which also turned out to be the 
largest putatively Y‐linked scaffold, consisted of an ~425‐kb‐long 
region that met the threshold for Y‐linkage, followed by a 1.74‐Mb‐
long segment with equal male and female coverage (Supporting 
Information Figure S1). The latter sequence aligned to the dog 

pseudo‐autosomal region (PAR) and this scaffold hence included 
the border between the PAR and the male‐specific region on the Y 
chromosome (MSY) region. For further analysis, we only kept the 
425‐kb MSY region of this scaffold. The Y scaffolds were aligned to 
a previously published dog Y assembly (Li et al., 2013) using nucmer 
from the mummer package (version 3.9.4). The ‐maxmatch parame‐
ter was used to output all possible anchors between the two, not 
just unique anchors. Anchors longer than 500 bp with at least 99% 
identity were visualized with circos version 0.69‐6 (Krzywinski et 
al., 2009). Scaffolds were manually ordered to match the dog Y as‐
sembly, which is based on BACs and hence is continuous.

The sequences were repeat masked using repeatmasker version 
4.0.6 (Smit, Hubley, & Green, RepeatMasker Open‐4.0. 2013–2015 
http://www.repeatmasker.org) with “canidae” as species.

2.2 | Gene discovery and annotation

We downloaded paired‐end transcriptome data from a male dog 
(SRA Accession numbers SRS072744–SRS072749; Hoeppner et 
al., 2014) and mapped them to the wolf assembly using hisat2 (Kim, 
Langmead, & Salzberg, 2015). After extracting reads mapping to Y‐linked 
scaffolds, we ran cufflinks (Trapnell et al., 2010) separately for each 
tissue. We also used annotated, Y‐linked genes from dog (GenBank 
accession KP081776.1) and blasted them onto the scaffolds. We 
then manually inspected all loci in igv (Thorvaldsdottir, Robinson, & 
Mesirov, 2013) and corrected the annotation provided by cufflinks 
if needed, such as when duplications were evident from genomic 
coverage. We also used blast results from dog Y‐linked genes to 
combine parts of transcripts present on different scaffolds.

2.3 | Using read coverage to estimate copy 
number of multicopy gene families

Per‐base coverage of all coding sequences was extracted for each 
individual using bedtools genomecoveragebed. We calculated the 
mean and median coverage for each gene, and also noted the mode, 
namely the most abundant coverage for each gene. All these values 
were normalized relative to the coverage of all known single‐copy 
genes. This should give mean and median numbers close to one for 
single‐copy genes, close to two for genes with two copies, and so on.

2.4 | Sequencing

We sequenced 75 male wolves from Finland following the same pro‐
tocol as described by Kardos et al. (2018). Briefly, DNA was prepared 
from frozen tissue samples and sequenced on an Illumina HiSeqX de‐
vice, using a pair‐end approach with 150‐bp read length and 350‐bp 
insert size, aiming for >30× mean autosomal coverage per individual.

2.5 | Variant detection

The following refers to male samples only. We downloaded whole‐
genome Illumina paired‐end sequence data from 53 grey wolves 

://sid.erda.dk/wsgi-bin/ls.py?share_xml:id=f1ppDgUPQG
://sid.erda.dk/wsgi-bin/ls.py?share_xml:id=f1ppDgUPQG
://broadinstitute.github.io/picard/
://broadinstitute.github.io/picard/
://www.repeatmasker.org
info:ddbj-embl-genbank/KP081776.1
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from Scandinavia (mostly Sweden plus some from Norway), 11 from 
China, one each from Korea, India and Italy, and three from the United 
States. We also downloaded data from two eastern wolves (Canis 
lycaon, also known as eastern timberland or Algonquin wolves), two 
red wolves (Canis rufus), four coyotes (Canis latrans) and 24 dogs (one 
dingo, 10 pure breeds and 13 marked as “indigenous”) (see Supporting 
Information Table S2 for accession numbers). As this study focused on 
grey wolves, the inclusion of a set of dogs merely served as a reference 
to previously identified Y chromosome haplotypes in canids. All these 
sequences, together with the 75 newly sequenced Finnish wolves, 
were mapped to the wolf genome assembly with bwa, in the same 
manner as above. The use of the whole assembly at this step, rather 
than Y‐linked scaffolds only, was motivated by the fact that reads from 
elsewhere in the genome (e.g., from related sequences on the X chro‐
mosome) could falsely map to the Y chromosome in the absence of 
their true target sequence. Reads mapping to Y‐linked scaffolds were 
deduplicated as above and realigned using gatk version 3.8 (McKenna 
et al., 2010). Finnish samples were base calibrated with bqsr according 
to the “GATK Best Practices” (Van der Auwera et al., 2013).

Variants were first called in each sample separately with GATK's 
haplotypecaller. Then joint genotyping was performed merging all 
samples using GATK's genotypegvcfs. Because we lack a proper Y chro‐
mosome reference single nucleotide polymorphism (SNP) set, variant 
quality score recalibration (VQSR) could not be performed. Instead, 
SNPs were hard filtered with variantfiltration using the settings ‐‐
filterExpression “QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum 
< ‐12.5 || ReadPosRankSum < ‐8.0”, following Alternative Protocol 
2 in the “GATK Best Practices” (Van der Auwera et al., 2013). We 
used both diploid and haploid SNP calling, which at first glance may 
seem unnecessary for a haploid chromosome. However, given the 
repetitive nature of the Y chromosome with multiple copies of sim‐
ilar sequences potentially collapsing in the assembly, identification 
of heterozygous “SNPs” provided a means for detection of col‐
lapsed duplicates. We noted that the distribution of distances be‐
tween adjacent heterozygous calls was heavily skewed towards zero 
(Supporting Information Figure S2), consistent with collapsed regions 
manifesting as a strong clustering of (seemingly) heterozygous sites. 
We used a 95% cut‐off from this distribution and removed those re‐
gions located between pairs of adjacent heterozygous sites closer to 
each other than this cut‐off (181 bp). We also removed 90 bp (half 
of 181) flanking sequence around each separate cluster. The few 
heterozygous sites that failed to be filtered with this method were 
excluded. Another option would have been to filter based on cov‐
erage, for example, removing all sites that had higher than twice the 
expected coverage. However, we noted that sequence coverage var‐
ied substantially over the Y chromosome, indicating that this method 
would have removed a high proportion of nonduplicated sites while 
keeping many low‐coverage regions with heterozygous sites. We 
also removed all repeats, insertions and deletions called by GATK, as 
well as gaps in the reference and coding sequence. Single genotypes 
were additionally filtered based on genotype quality and callability, 
so that any call with GQ < 30 or not reported as callable in GATKs 
callableloci for a specific individual was set to N.

Two of the North American wolves (Yellowstone) were father 
and son (Fan et al., 2016). In the initial variant calling they differed at 
a single site, which upon manual inspection was found to be prob‐
ably due to a genotyping error. For the remaining analyses, one of 
these individuals was removed.

We also called variants in 10 female wolves from Kardos et al. 
(2018), following the above procedure and criteria (for accession 
numbers see Supporting Information Table S3). This was used as 
an extra control to avoid repetitive, ambiguous or misassembled 
regions. None of the variant sites detected in males was called in 
females, strengthening the inference that all selected scaffolds were 
on the Y chromosome.

2.6 | Imputation of missing data

We imputed missing calls using the method described by Barbieri et 
al. (2016), and adapted from Lippold et al. (2014). In short, a miss‐
ing call was imputed if the three genetically most similar individu‐
als, based on pairwise distances, all had the same genotype. If they 
disagreed, or if any of them also failed to be called, the site was dis‐
carded. In total, 1% of the individual genotypes were imputed.

2.7 | Haplotype analysis

A median‐joining haplotype network based on 1,177 variable 
sites genotyped in all 176 individuals was constructed and plotted 
with popart (Leigh, Bryant, & Nakagawa, 2015). To relate our se‐
quences to existing dog Y chromosome haplotype nomenclature, 
we downloaded Y haplotype fragments from Ding et al. (2012) 
and Natanaelsson et al. (2006) (accession numbers: DQ973626.1–
DQ973805.1 and HQ389365–HQ389435) and used blast to find 
their location in the wolf genome assembly. We found the positions 
for all variable sites (given in data set 2 of Ding et al., 2012) except 
one, which fell into an assembly gap. We could then match our indi‐
viduals with the given haplotypes H1–H31. The haplogroups defined 
by Ding et al were later slightly reorganized by Shannon et al. (2015); 
we use the latter for assigning the haplotypes into haplogroups.

2.8 | Estimating the divergence time

We used beast version 1.8.4 (Drummond, Suchard, Xie, & 
Rambaut, 2012) for phylogenetic tree reconstruction and estima‐
tion of coalescent times. Only one individual per haplotype was 
used, reducing the number of individuals substantially due to the 
high level of haplotype sharing in the Scandinavian and Finnish 
samples. We removed the potentially hybridizing eastern and red 
wolves, and used only one coyote as an outgroup (an individual 
from California determined to be a pure coyote in vonHoldt et al., 
2016). The GTR+I+G model was chosen as the best‐fitting model 
based on jmodeltest (Darriba, Taboada, Doallo, & Posada, 2012), 
and we used a strict clock and set the chain length to 100,000,000 
steps, logging parameters every 10,000 steps. We ran five inde‐
pendent runs that were combined with logcombiner. A maximum 

info:ddbj-embl-genbank/DQ973626.1
info:ddbj-embl-genbank/DQ973805.1
info:ddbj-embl-genbank/HQ389365
info:ddbj-embl-genbank/HQ389435
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clade credibility (MCC) tree was generated using a 10% burn‐in 
with beast's TreeAnnotator and drawn with figtree (http://tree.bio.
ed.ac.uk/software/figtree/).

In the absence of calibration points based on, for example, fossil 
records, mutation rate estimates are necessary for estimating di‐
vergence times. The mutation rate in wolves or dogs has not been 
directly estimated. Several authors have used 1 × 10−8 per site and 
generation referring to Lindblad‐Toh et al. (2005). However, that 
study merely used this rate as a predefined parameter in coalescent 
simulations without justification. Three recent studies have esti‐
mated the genomic mutation rate using ancient samples (one wolf 
and two dogs) as calibration points. The resulting estimates were 
0.4 × 10−8 (Skoglund et al., 2015), 0.3–0.45 × 10−8 (Frantz et al., 
2016) and 0.56 × 10−8 (Botigué et al., 2017). These studies based 
their calculations on a generation time set to 3 years. However, it 
has been suggested that the generation time of wolves is 4.2–5 years 
(e.g. Mech, Barber‐Meyer, & Erb, 2016; vonHoldt et al., 2008). Using 
4.5 years as generation time increases the cited mutation rate es‐
timates to an interval of 0.45–0.84 × 10−8. If we set the rate to 
0.6 × 10−8 and assume a male‐to‐female mutation rate ratio of 2.0 
(Wilson Sayres, Venditti, Pagel, & Makova, 2011), a male (Y chromo‐
some) mutation rate of 0.8 × 10−8 is obtained, which we use in this 
study. We acknowledge that many assumptions are needed to arrive 
at this estimate, and that it should be seen as an approximation.

Additionally, we used the rho statistic (Jobling, Hollox, Hurles, 
Kivisild, & Tyler‐Smith, 2014) to estimate divergence times based 
on averaging the counts from each tip to the root. The counts were 
taken from the network in Figure 3a.

2.9 | Inferring haplogroup in an ancient wolf sample

We downloaded whole genome data from an ancient wolf excavated 
in Taimyr, Russia (Skoglund et al., 2015), accession number ERR868147 
and mapped the reads in the same way as above. However, because 
coverage was less than 1× it was not possible to genotype it together 
with the other samples. Instead, we only considered sites already 
identified as variable in our set of wolves and dogs, and called the 
Taimyr wolf at those sites covered by at least one read. We are aware 
of the inexactness of this method, especially considering the high 
amount of errors in ancient DNA sequences, but the focus on sites 
and alleles known to segregate in wolf populations should reduce 
the risk of erroneous calls. Furthermore, we were only interested in 
placing the ancient sample in relation to the modern samples based 
on diagnostic SNPs from the different haplogroups. The variant sites 
covered by the Taimyr wolf were used for drawing a maximum parsi‐
mony tree in seaview v4.5 (Gouy, Guindon, & Gascuel, 2010).

3  | RESULTS

3.1 | Identification of wolf Y chromosome scaffolds

By comparing genomic coverage from resequencing data of multi‐
ple males and females we identified 120 Y‐linked scaffolds in a wolf 

short‐read genome assembly (Gopalakrishnan et al., 2017), summing 
to 4.68 Mb (Supporting Information Table S4). One of the scaffolds 
additionally contained 1.75 Mb of the known PAR. Synteny between 
the identified wolf Y chromosome scaffolds and a BAC‐derived dog 
Y chromosome assembly (Li et al., 2013) is shown in Figure 1. Our 
approach identified more Y‐linked sequence in total than the dog 
assembly, but an ampliconic region assembled in the latter was com‐
pletely collapsed in the short‐read assembly.

The Y chromosome scaffolds were repeat‐rich with 55.9% of the 
nongap bases masked, compared to 39.8% in the full assembly. The 
most abundant repeat types were long interspersed nuclear elements 
(36.6%) and short interspersed nuclear elements (11.1%). There was 
a marked difference between the repeat landscapes of wolf Y chro‐
mosome and autosomal sequences (Supporting Information Figure 
S3). Most notably, the Y chromosome showed a pronounced rela‐
tively recent (corresponding to ≈10% sequence divergence) activity 
of LINE insertions, not seen in autosomes.

3.2 | Gene annotation

We found 22 genes on the wolf Y chromosome (Table 1), includ‐
ing all 18 genes previously reported as Y‐linked in dogs (Li et al., 
2013). Due to the fragmented nature of assembled Y chromo‐
some sequences, some exons or parts of exons were not covered 
in the assembly. The multicopy genes TSPY, SRY and CUL4BY (see 
below) were found to be completely collapsed, with each of them 
assembled into a single copy. Similarly, the duplicated BCORY gene 
(BCORY1 and BCORY2) was partly collapsed and we found three 
new exons, not reported before, comprising the 5′ untranslated 
region and the start of the coding sequence. Genomic coverage 
suggested that this part was single copy and hence only present in 
either BCORY1 or BCORY2.

New Y chromosome genes not present in the dog Y chromo‐
some assembly included TMSB4Y, which is Y‐linked in primates but 
previously thought to be lost in Laurasiatheria (Cortez et al., 2014). 
It also included a canine orthologue of EIF2S3Y, in dogs previously 
only detected in RNA sequencing (Cortez et al., 2014; Li et al., 2013). 
We found two genes that to our knowledge have not been reported 
as Y‐linked in other mammals. One was AP1S2 (AP‐1 complex sub‐
unit sigma‐2) present on the X chromosome in many mammals, in‐
cluding dog; we refer to the wolf Y chromosome copy as AP1S2Y. 
Transcriptome data show that it is broadly expressed across tissues 
in dogs, although the level of expression in different tissues has not 
been quantified (Supporting Information Table S5). A blast search 
with AP1S2Y identified a predicted gene (NCBI accession number 
XM_008683968) in polar bear (Ursus maritimus), with Y‐linkage sup‐
ported by male/female coverage differences in this species (Bidon, 
Schreck, Hailer, Nilsson, & Janke, 2015). This suggests that AP1S2Y 
has been retained on the Y chromosome of several species within 
Carnivora. The other new gene was WWC3, which is X‐linked in dog 
and other mammals. The Y chromosome copy (here referred to as 
WWC3Y) was split over three different scaffolds, with several exons 
missing in between.

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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3.3 | Copy number variation of Y‐linked genes

We estimated copy number based on normalized coverage for 
each Y‐linked gene (Figure 2a). TSPY was present in ~100 cop‐
ies, SRY in three and UBE1Y in two. Coverage in OFD1 suggested 
that it was duplicated, but manual inspection revealed female 
coverage, and blasting of the X‐linked copy of OFD1 from dog 
suggested that the X‐ and Y‐linked copies were collapsed in the 
assembly. BCORY2 and CUL4BY were both ambiguous, with some 
exons apparently presenting as single‐copy whereas others were 
amplified. This divided both genes into one single‐copy and one 

multicopy part, with the amplified region of CUL4BY represented 
by ≈10 copies.

Variation in coverage among individuals for some of the mul‐
ticopy genes (Figure 2a) could indicate that there is copy‐number 
variation in wolf populations, but may also simply reflect technical 
limitations of copy‐number estimation related to stochastic variation 
in sequence coverage. To reduce the noise in estimation from sin‐
gle individuals, we grouped wolves by the four main Y chromosome 
haplogroups to be described below, and treated dogs as a separate 
group. This suggested that there was indeed copy‐number variation 
for TSPY, with dogs having the fewest and wolves from haplogroup 

F I G U R E  1   All‐to‐all nucmer alignments >500 bp between wolf Y chromosome scaffolds from Gopalakrishnan et al. (2017) identified 
in this study (right, in blue) and a dog Y chromosome bacterial artificial clone (BAC) assembly (left, in grey, from Li et al., 2013). Forward 
alignments are drawn in blue, reverse alignments in red. Wolf scaffolds with alignment anchors and/or genes are ordered according to 
the dog assembly. These are followed by scaffolds with unknown position (lighter blue) in descending order. New genes found in wolf are 
marked in red. The ampliconic region in the dog assembly is shown in lighter grey. Note that some wolf genes span more than one scaffold 
and that CUL4BY spans two nonadjacent scaffolds according to the alignment [Colour figure can be viewed at wileyonlinelibrary.com]
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HG0 the largest number of copies (Figure 2b). It also indicated that 
the number of CUL4BY gene copies varied among haplogroups.

3.4 | Wolf Y chromosome haplotypes

We called single nucleotide variants in the identified Y chromosome 
sequences from a sample of 144 resequenced male wolves. These 
included 75 Finnish wolves newly sequenced for the purpose of this 
study, and publicly available data from 53 wolves from Scandinavia 
and 16 wolves from elsewhere in the world. We also included avail‐
able sequences from two red wolves, two eastern wolves, 24 dogs 
including one dingo, and four coyotes. Because of the high fraction 
of repetitive sequence and many collapsed duplicate regions in the 
Y chromosome scaffolds, we performed extensive filtering to de‐
crease the risk of calling false variants (see Section 22). After filter‐
ing, ~600 kb of single‐copy, high‐quality Y chromosome sequence 
remained, in which we were able to call 1,524 SNPs. We consider 
this to represent a conservative assessment of the amount of Y chro‐
mosome polymorphism present in the sample. After imputation, we 

then limited the data set to 1,177 variable sites genotyped in all 176 
individuals.

We found 53 distinct Y chromosome haplotypes, 26 of which 
were seen in grey wolves (Supporting Information Table S2). A me‐
dian‐joining network revealed that grey wolves spread out over 
four larger clusters of haplotypes (Figure 3a). The network was 
well resolved without reticulations. Three of the four clusters cor‐
responded to the previously defined dog haplogroups HG1–3/HG6, 
HG9 and HG23, whereas the fourth cluster was unique to wolves 
and was previously referred to as H27 by Ding et al. (2012), or simply 
“Asian wolves” by Oetjens et al. (2018); as shown below, it is also 
seen in European wolves. As other studies have used H27 to denote 
a different, dog‐specific haplotype (Oetjens et al., 2018; Shannon 
et al., 2015), we renamed this haplogroup HG0 to avoid confusion 
(cf. de Groot et al., 2015). The number of diagnostic mutations for 
each haplogroup was 84 for HG0, 62 for HG23, 59 for HG9 and 46 
for HG1–3/HG6 (see Supporting Information Table S6 for list of all 
diagnostic mutations). HG1–3/HG6 has previously been defined as 
two or even three separate haplogroups, but because these were so 
similar to each other compared to the three other haplogroups (HG6 
had only four and HG1–3 two private mutations, respectively), we 
found it appropriate to refer to them as a single haplogroup. In this 
context we note that the definition of haplogroups among Y chro‐
mosome lineages is somewhat arbitrary and is always sensitive to 
the degree of resolution given by the number of individuals anal‐
ysed, and their origin.

There was no clear geographical structure among the analysed 
grey wolf samples at a global scale (Figure 3b); European wolves 
were found in all four haplogroups and Asian wolves in three. That 
extensive Y chromosome diversity is present even on small geo‐
graphical scales was evident from the finding of haplotypes from all 
four major haplogroups in the sample of Finnish wolves. At the same 
time, there were some instances of regional signatures of population 
structure in the form of phylogenetically very similar haplotypes de‐
tected in the same geographical area (Supporting Information Table 
S7). Examples of this included Finnish wolves within H23, Chinese 
wolves within HG0 and North American wolves within HG1–3/
HG6. Because genome sequence data from only three male North 
American wolves were available, two of which were father–son (Fan 
et al., 2016), we cannot make strong phylogeographical conclusions 
for the New World. A recent study has suggested that all extant grey 
wolf lineages in the New World derive from a single colonization 
event of North America when a land bridge connected Eurasia and 
North America >23,000 years ago (Koblmüller et al., 2016; but see, 
e.g., Wayne, Lehman, Allard, & Honeycutt, 1992).

The four coyotes split into two deep branches, with the two 
eastern wolves clustering with coyotes from one of the branches 
and the two red wolves with coyotes from the other (Figure 3a). The 
relatively limited set of dogs included in the study mapped to two 
haplogroups, in two different clades within each group.

We used beast for phylogenetic reconstruction and dating of 
lineage splitting, including estimation of the time to the most re‐
cent common ancestor (TMRCA) of all grey wolf Y chromosome 

TA B L E  1   Genes identified on wolf Y chromosome scaffolds. The 
position of genes within is each scaffold is indicated

Gene
Location in assembly (scaffold ID and position in 
scaffold)

AP1S2Y scaffold_2775: 9–36 kb

BCORY1a  scaffold_2091: 134–169 kb; scaffold_3549: 8–16 kb

BCORY2a  scaffold_2578: 8–37 kb

CUL4BYa  scaffold_7290: 0.5–0.7 kb; scaffold_5293: 1.1–1.3 kb; 
scaffold_3306: 25–26 kb; scaffold_5774: 1.1–1.2 kb; 
scaffold_2411: 120–82 kb

CYorf15 scaffold_2091: 62–102 kb

DDX3Y scaffold_242: 200–224 kb; scaffold_6535: 0–1,3 kb

EIF1AY scaffold_2073: 84–104 kb

EIF2S3Y scaffold_1620: 196–229 kb

HSFYa  scaffold_2073: 140–178 kb

KDM5D scaffold_2073: 1–45 kb

OFD1 scaffold_2992: 38–14 kb

DYNGa  scaffold_2411: 21–65 kb

RBMYLa  scaffold_2091: 16–29 kb

SRY scaffold_4057: 2–3 kb

TETYa  scaffold_242: 426–419 kb

TMSB4Y scaffold_3047: 10–13 kb

TSPY scaffold_2802: 55–58 kb

UBE1Y scaffold_2578: 66–84 kb

USP9Y scaffold_242: 69–187 kb

UTY scaffold_242: 245–400 kb; scaffold_8081: 0.4–0.5 kb

WWC3Y scaffold_1620: 150–4 kb; scaffold_3205: 22–34 kb; 
scaffold_3892: 10–6 kb

ZFY scaffold_1620: 253–312 kb

aSpecific to testis in transcriptome sequencing of blood, brain, heart, 
liver, lung, muscle and testis (Hoeppner et al., 2014). 
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haplotypes and using a coyote as outgroup. Critical to dating, we 
used a male mutation rate of 0.8 × 10−8 per site and generation, and 
assumed a generation time of 4.5 years (see Section 22). All wolf 
Y chromosome sequences coalesce 125,000 years ago (95% high‐
est posterior density interval [HPDI] 103,000–126,000 years ago), 
representing the split between haplogroup HG0 and other lineages 
(Figure 4). HG23 diverged from HG1–3/HG6 and HG9 87,000 years 
ago (HPDI 74,000–92,000), and the two latter groups diverged 
71,000 years ago (HPDI 62,000–78,000). Adding more outgroups 
(coyotes, red wolf, eastern wolf) did not significantly affect esti‐
mated coalescence times or changed the phylogeny (Supporting 
Information Figure S4). Estimates of divergence times using rho 
statistics gave very similar datings, with a TMRCA of all wolf hap‐
lotypes of 111,000 years ago (HPDI 94,000–123,000). The split be‐
tween grey wolf and coyote lineages was estimated to have occurred 
200,000 years ago (HPDI 188,000–223,000).

The age of dog patrilines is dependent on the number of domes‐
tication events. Assuming three such events in the haplogroups/
subhaplogroups in which dog haplotypes were found (each group 
potentially representing a domestication event), the most recent 
splits between dog and wolf haplotypes in those groups were 29,000 
(HPDI 23,000–32,000; haplogroup HG1–3), 26,000 (HPDI 17,000–
26,000; HG6) and 24,000 (HPDI 13,000‐–21,000; HG23) years ago. 

We conservatively assumed one domestication event within HG23 
because the single ingroup Italian wolf lineage could potentially be 
the result of an old wolf–dog hybridization event.

We also considered a 35,000‐year‐old wolf sample from Taimyr, 
Russia (Skoglund et al., 2015). Due to very low sequencing coverage we 
could only obtain variant calls from 267 of the variant sites. Of these, the 
Taimyr wolf matched 20 out of 25 (80%) variants unique to HG0, while 
it matched none of the variants unique to either HG1–3/HG6, HG9 or 
HG23. The Taimyr wolf thus appears to belong to haplogroup HG0. 
A maximum parsimony tree based on the 267 sites and including the 
Taimyr wolf supports this inference (Supporting Information Figure S5).

3.5 | Degree of Y chromosome diversity in Finnish 
grey wolves

Because our sampling scheme was strongly biased towards wolves 
from northern Europe, with the Scandinavian population recently 
passing through a sharp bottleneck followed by intensive inbreed‐
ing (see further below), we cannot obtain a representative estimate 
of global nucleotide diversity of wolf Y chromosomes. However, 
given that the Finnish population harboured haplotypes from all four 
major haplogroups, the degree of diversity in this population would 
provide some indication of wolf Y chromosome variability. Using one 

F I G U R E  2   Normalized male read 
coverage in wolf Y chromosome coding 
sequences (as a proxy for gene copy 
number). Boxes with whiskers (outside 
the upper and lower quartiles) show 
the range of individual coverage within 
each gene. Note that the y‐axes have 
two different scales. The red dashed line 
corresponds to one copy. (a) All genes. 
(b) Multicopy genes with wolves grouped 
into haplogroups. All dogs are combined 
into one group irrespective of their 
haplogroup [Colour figure can be viewed 
at wileyonlinelibrary.com]
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F I G U R E  3   Median joining network of Y chromosome haplotypes in dogs, wolves and coyotes. (a) All 176 samples in which the size of 
circles corresponds to the number of identical samples. Grey wolves are coloured according to country of origin. Haplotype labels are given 
for grey wolf haplotypes. (b) Only one individual per grey wolf haplotype, coloured according to their geographical origin. No haplotype 
was shared between grey wolves from different geographical regions. Bars indicate the number of substitutions per branch. Note that the 
networks were not rooted [Colour figure can be viewed at wileyonlinelibrary.com]
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individual from each haplotype found in this population, the mean 
pairwise Y chromosome sequence difference between Finnish wolves 
was 0.00028, that is, on average one variable site per 3,569 bp.

3.6 | Origin of the Scandinavian wolf population

It has been assumed that the contemporary Scandinavian wolf popula‐
tion was founded by a single male and female in the early 1980s, fol‐
lowed by another male arriving in 1991 (Wabakken, Sand, Liberg, & 
Bjärvall, 2001; see Section 44). More recently, immigrants have been 
detected (Seddon, Sundqvist, Björnerfeldt, & Ellegren, 2006), some of 
which have reproduced (Åkesson et al., 2016). The temporal occurrence 
of different Y chromosome haplotypes in Scandinavia was consistent 
with this scenario. Haplotype H0a.1 was present in the Scandinavian 
population from 1984 and onwards, and haplotype H0a.2 from 1993 
and onwards (Figure 5). These were the only haplotypes detected in 
the breeding population until 2008 when new immigrants started to 
reproduce. Seven immigrants from 2002–2013 showed four different 
haplotypes, none of them being haplotype H0a.1 or H0a.2. Immigrants 
probably originate from Finland and/or Russia.

Importantly, both haplotype H0a.1 and haplotype H0a.2 were 
also detected in the Finnish wolf population. The same was true for 
three out of the four haplotypes displayed by recent immigrants. 
None of the wolf Y chromosome haplotypes seen in Scandinavia, 
neither those of the founders nor those of recent immigrants, were 
detected in the Italian wolves or among Asian and American wolves. 
They were also not detected among the analysed dogs. These data 
are consistent with the hypothesis that the Scandinavian wolf pop‐
ulation originates from immigrants from a geographically close 
population. However, in the absence of a large number of genome 
sequences from, for example, other parts of Europe, we cannot ex‐
clude other potential scenarios.

4  | DISCUSSION

We used a strategy for identification of wolf Y chromosome se‐
quences based on comparison of male and female coverage in 
whole‐genome resequencing reads mapped to a wolf genome 
assembly. This resulted in the assignment of 4.68 Mb from 120 

F I G U R E  4   Phylogenetic tree of canid Y chromosome haplotypes reconstructed in beast. The time scale is based on a male mutation 
rate of 0.8 × 10−8 and a generation time of 4.5 years. Wolves are presented with their country of origin. Numbers in parentheses denote 
the number of samples with identical haplotypes. The 95% highest density posterior intervals are shown as blue horizontal bars. For dating 
of domestication events, one event was assumed in each of the two basal lineages within haplogroup HG1–3/HG6, and one within HG23 
[Colour figure can be viewed at wileyonlinelibrary.com]
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scaffolds originating from the Y chromosome and almost doubled 
the amount of available canine Y chromosome sequence; previously, 
Li et al. (2013) assembled ≈2.5 Mb of Y‐linked sequence using dog 
BAC sequencing.

The canine Y chromosome has an estimated size of ≈20 Mb (Li et 
al., 2013). The p arm, which represents about half the chromosome, 
constitutes the heterochromatic nucleolus organizer region (NOR). 
On the q arm, the PAR is 6.6 Mb while the rest is divided into a sin‐
gle‐copy and an ampliconic segment respectively (Li et al., 2013). 
With nearly 5 Mb of male‐specific sequence now available, most of 
the euchromatic part of the Y chromosome should have been iden‐
tified. The main differences between the sequence contained within 
the Y‐linked scaffolds identified herein and the dog Y chromosome 
assembly of Li et al. (2013) are that we significantly extended the 
portion of unique sequence and that the dog assembly revealed the 
structure of the ampliconic region, which was largely collapsed in the 
short‐read‐derived wolf scaffolds.

4.1 | Geographical structure of wolf populations

Sequencing of population samples rather than genotyping of SNPs 
ascertained in a small panel of individuals was a major advantage 
of this work. Specifically, whole‐genome resequencing of 75 male 
Finnish wolves augmented with available male sequence data from 
69 grey wolves sampled elsewhere, 24 dogs and eight other canids 
allowed us to reconstruct the phylogenetic relationships among wolf 
Y chromosome lineages. The evolutionary history of grey wolves 
has been considered complex and previous work has revealed 

conflicting evidence concerning population differentiation and ge‐
ographical structure. One confounding factor is that hybridization 
between canid species is common (Gottelli et al., 1994; Hailer & 
Leonard, 2008; Wayne, 1993), including hybridization between grey 
wolves and dogs (Fan et al., 2016; Godinho et al., 2011; Pilot et al., 
2018; Pires et al., 2017; Randi et al., 2000). In particular, hybridi‐
zation events between coyotes, grey wolves and potentially other 
ancestral canid species/lineages in North America have muddled 
the taxonomic status of several extant wolf ecotypes in the New 
World (Hohenlohe et al., 2017; vonHoldt et al., 2016, 2011; Wayne 
& Jenks, 1991; Wheeldon, Rutledge, Patterson, White, & Wilson, 
2013). Although not a focus of this study, our Y chromosome data 
confirmed admixture among North American canids (vonHoldt et 
al., 2016; but see Hohenlohe et al., 2017) and were consistent with 
paternal coyote (or other ancestral canid) introgression into red wolf 
and eastern wolf populations (Figure 3a). The analysed coyotes were 
represented by two very divergent haplotype lineages, which were 
as divergent from each other as they were from grey wolf lineages.

Initial mtDNA analyses indicated limited worldwide phylogeo‐
graphical structure in grey wolves (Ersmark et al., 2016; Vilà et al., 
1999; Wayne et al., 1992), a somewhat unexpected observation for a 
mammalian species even when considering the significant dispersal 
capacity of wolves (Kojola et al., 2006; Linnell, Brøseth, Solberg, & 
Brainerd, 2005). More extensive sampling and, in particular, use of 
nuclear markers have subsequently provided evidence for subpop‐
ulation structure on geographical and/or environmental scales (Aspi 
et al., 2006; Carmichael, Nagy, Larter, & Strobeck, 2002; Ersmark 
et al., 2016; Musiani et al., 2007; Pilot et al., 2010,2006; Schweizer, 

F I G U R E  5  Detection of the different Y chromosome haplotypes in Scandinavia (red). Haplotypes present in Finland are marked in blue in 
the phylogenetic tree from Figure 4 shown to the right [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


2184  |     SMEDS et al.

Robinson et al., 2016a; Schweizer, vonHoldt et al., 2016b; vonHoldt 
et al., 2011; Zhang et al., 2014). An analysis of genome sequences 
from some 20 wolves sampled across the world recently demon‐
strated that the divergence between New World and Old World 
wolves constituted the earliest branching event among wolf pop‐
ulations (Fan et al., 2016). It also separated European from Middle 
Eastern wolves, and lowland from highland Asian wolves.

Interestingly, our Y chromosome data provided a mixed pattern 
of genetic structure. The main haplogroups were not partitioned on 
a continental scale, similar to the situation for mtDNA lineages (Vilà 
et al., 1999). In fact, all four Y chromosome haplogroups were rep‐
resented among wolves from a relatively small geographical area in 
Finland. Moreover, three of the four haplogroups were present in the 
relatively limited sample (12 individuals) of Chinese wolves. In con‐
trast, the lack of sharing of individual haplotypes between geograph‐
ically distant areas indicated population structure on a regional scale. 
This was best illustrated by the extensive sampling of Finnish wolves. 
None of the 12 haplotypes detected in Finland were found in sam‐
ples representing other parts of the world, except in neighbouring 
Sweden. However, they were frequently resampled in Finland. This 
resembles the situation seen in a comparison of microsatellite‐based 
Y chromosome haplotypes in Italian and Russian wolves (Sastre et al., 
2011). Population structure was also indicated because genetically 
similar haplotypes were only found within the same geographical re‐
gion. We will discuss these results further below.

4.2 | Divergence times

There has been considerable discrepancy among the results from 
previous attempts to estimate the divergence times of wolves and 
wolf populations. Vilà et al. (1999) estimated that wolf mtDNA lin‐
eages coalesced 290,000 years ago. Later studies using mtDNA 
from both extant and ancient samples have shortened this estimate 
(Koblmüller et al., 2016; Matsumura, Inoshima, & Ishiguro, 2014; 
Skoglund et al., 2015; Thalmann et al., 2013), but the precise dat‐
ings have varied depending on, among other things, the samples in‐
cluded in the analyses. For example, Skoglund et al. (2015) dated the 
most basal split of wolf mtDNA lineages to close to 80,000 years 
ago but excluded outgroup Chinese wolf samples from the analysis. 
Moreover, most of these results derive from a commonly used cali‐
bration point of 1–2 million years for the split between grey wolves 
and coyotes, a divergence time that recently has been questioned in 
favour of a much more recent split between the two species (Fan et 
al., 2016; vonHoldt et al., 2016).

Recent work has used genome sequence data and the gen‐
eralized phylogenetic coalescent sampler method (G‐PhoCS, a 
Bayesian demography inference method) to estimate the diver‐
gence time of wolf populations (Fan et al., 2016; Freedman et al., 
2014; vonHoldt et al., 2016). This has suggested much more re‐
cent splits than indicated by mtDNA analyses, with wolf popula‐
tions diverging 11,000–13,000 years ago in Fan et al. (2016) and 
11,700–15,100 years ago in Freedman et al. (2014). We estimated 
the TMRCA of wolf Y chromosome lineages to 125,000 years ago 

(95% HPDI, 103,000–126,000), considerably older than these re‐
cent estimates of the divergence of wolf populations. Estimates 
of coalescent and divergence times are critically dependent on 
the mutation rate applied and there are several sources of uncer‐
tainty behind the Y chromosome mutation rate of 0.8 × 10−8 that 
we used—see Section 22, and Jobling and Tyler‐Smith (2017) for 
a general discussion. These include uncertainty about the overall 
genomic mutation rate in wolves and the extent of the male muta‐
tion bias. Mutation rate heterogeneity related to base composition 
(notably CpG mutability) and sequence neutrality are other factors 
that can bias divergence time estimation. Moreover, time estimates 
are clearly also dependent on the generation time used. If we apply 
a generation time of 3 years and a mutation rate of 1 × 10−8 (as 
used by Fan et al., 2016), the basal split between HG0 and other 
wolf Y chromosome lineages is estimated to 50,000 years ago, still 
considerably longer ago than the previous estimates.

The relatively old age of wolf Y chromosome lineages in relation 
to the timing of population divergence is not necessarily surprising 
because estimating coalescence times of individual loci is not the 
same as estimating the time of population divergence (Rosenberg 
& Feldman, 2002). Segregation of ancestral variation at the time 
of population divergence implies that coalescence times of extant 
lineages is the sum of the time to population divergence and the 
TMRCA of lineages segregating at the time of population diver‐
gence. There is one population divergence time but there is a unique 
coalescence time for any locus and any given set of individuals anal‐
ysed (see Section 44 of G‐PhoCS in this context by Gronau, Hubisz, 
Gulko, Danko, & Siepel, 2011). Patrilines represent just one realiza‐
tion of the evolutionary process, similar to the situation at a particu‐
lar autosomal locus. As a single segregating unit, the Y chromosome 
is sensitive to stochasticity in lineage sorting.

Demographic analyses have suggested a relatively recent bottle‐
neck of wolves approximately 10,000–20,000 years ago (Fan et al., 
2016; Freedman et al., 2014; but see Gopalakrishnan et al., 2017, for 
the timing), with at least a three‐fold reduction in the effective popula‐
tion size. This should have promoted genetic differentiation in connec‐
tion with wolf populations diverging at about the same time, thereby 
contributing to signatures of global and regional population structure 
seen in genomic data. However, it does not exclude late Pleistocene/
early Holocene survival of ancient Y chromosome or mtDNA lineages. 
This is related to the finding of a 35,000‐year‐old grey wolf from 
Taimyr assigned to HG0, showing that the lineage leading to present‐
day HG0 haplotypes existed long before the Last Glacial Maximum. 
The observation that the Taimyr wolf Y chromosome haplotype rep‐
resented the deepest split within HG0 was not unexpected given the 
age of the Taimyr sample and the estimation of the TMRCA of present‐
day HG0 haplotypes to about 10,000 years ago.

4.3 | Relationship to other canine Y 
chromosome studies

A few previous studies have characterized canid Y chromosome hap‐
lotypes by sequence analysis or genotyping of SNP arrays (Ding et 
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al., 2012; Natanaelsson et al., 2006; Sacks et al., 2013; Shannon et 
al., 2015). These studies were mostly designed to study dog domes‐
tication with a limited number of wolf samples included. With 144 
analysed wolf genomes, our sample vastly exceeds what have been 
used in previous genomic work of wolves in general and of Y chro‐
mosomes in particular. On the other hand, with genome sequence 
data from a large population sample (Finland) augmented with avail‐
able data from mostly a limited number of wolves from different 
parts of the world, we do not have a fully representative data set 
from the whole distribution range of wolves.

The study that is most relevant to the present work is that of 
Oetjens et al. (2018), who mapped reads from 13 wolf genomes, 
and many dog genomes, to the 2.5‐Mb Y chromosome sequence 
identified by Li et al. (2013). At the haplogroup level, the topology 
of the Y chromosome phylogenies in the two studies is identical. 
However, Oetjens et al. (2018) found that a Great Lake wolf sampled 
in Minnesota was a distant outgroup to all four major haplogroups 
of grey wolves. This sample was also included in our study, named 
“Eastern wolf,” and had a haplotype identical to another eastern wolf 
from Algonquin Provincial Park, Canada. This haplotype clearly as‐
signed our “Eastern wolf” to one of the two coyote lineages that was 
not sampled by Oetjens et al. (2018).

Oetjens et al. (2018) obtained much older time estimates for 
the split of Y chromosome lineages, with the basal divergence be‐
tween HG0 and other haplogroups placed at 767,000 years ago 
(HPDI 303,000–1,392,000), compared to 125,000 years ago in our 
study. This difference seems primarily to be due to the calibration 
of their estimates by assuming a TMRCA of wolves and coyotes of 
1.5 million years. From this they obtained a mutation rate estimate 
of 2.5–3.1 × 10−10 per year, which corresponds to 1.1–1.4 × 10−9 per 
generation assuming a generation time of 4.5 years. The latter an 
order of magnitude lower than the rate we applied (0.8 × 10−8) and 
also much lower than those used in other recent genomic studies (e.g., 
Fan et al., 2016; Freedman et al., 2014; but see Skoglund et al., 2015).

Several studies have also used a limited set of microsatellites, 
mainly four markers that we previously described (Sundqvist, 
Ellegren, Olivier, & Vilà, 2001), to define Y chromosome haplotypes 
in wolves and, mostly, dogs (Benson, Patterson, & Wheeldon, 2012; 
Brown et al., 2015; Fabbri et al., 2014; Randi et al., 2014; Sacks et 
al., 2013; Vilà, Walker et al., 2003; Wheeldon et al., 2013; Wilson, 
Rutledge, Wheeldon, Patterson, & White, 2012). These microsatel‐
lite‐derived haplotypes have not been anchored to sequence‐based 
canine Y chromosome haplotypes, and it is therefore difficult to 
compare studies using the two different approaches. An important 
topic for future research will be to establish the relationship be‐
tween canid Y chromosome haplotypes defined by microsatellites 
and SNPs (cf. de Groot et al., 2015).

4.4 | The origin of the Scandinavian grey 
wolf population

Following a long period of population decline due to human persecu‐
tion, grey wolves became functionally extinct on the Scandinavian 

peninsula in the late 1960s (e.g., Linnell et al., 2005). In the early 
1980s, grey wolves again started to reproduce in Scandinavia, initi‐
ating a steady settlement with an increasing population size reach‐
ing several hundred individuals in the last few decades (Åkesson 
et al., 2016; Wabakken et al., 2001). Genetic data have confirmed 
that the population was founded by a single pair, followed by the 
arrival of another male in 1991 (Vilà, Sundqvist et al., 2003). In the 
absence of further successful immigration until 2005, the popula‐
tion has become highly inbred with inbreeding coefficients of some 
individuals estimated from pedigree records of up to 0.5 (Åkesson et 
al., 2016; Bensch et al., 2006; Liberg et al., 2005). There is extensive 
linkage disequilibrium in the population (Hagenblad, Olsson, Parker, 
Ostrander, & Ellegren, 2009) and huge tracts of runs of homozygo‐
sity forming large genomic regions of identity‐by‐descent are seen in 
many individuals (Kardos et al., 2018).

The fact that the recolonization event somewhat unexpectedly 
took place in southern Sweden, >1,000 km from the nearest regu‐
lar breeding grounds in northern Finland, fuelled a public debate on 
the origin of the contemporary population (Linnell et al., 2005). This 
has remained an issue over the years despite genetic evidence in fa‐
vour of an origin by immigrants from the east (Flagstad et al., 2003). 
The controversy has included alternative scenarios such as illegal 
reintroduction of wild or captive wolves, and dog ancestry (Linnell 
et al., 2005). As late as 2015, the Norwegian parliament called for 
new investigations concerning the origin of the Scandinavian wolf 
population, including potential hybridization with dogs (https://
www.stortinget.no/no/Saker-og-publikasjoner/Vedtak/Vedtak/
Sak/?p=65090). In addition, there is strong controversy regarding 
management of the Scandinavian wolf population, in particular con‐
cerning culling (Immonen & Husby, 2016). Following approval of li‐
censed hunting by the Swedish Environmental Protection Agency, 
objections have been made by the European Commission to the 
Swedish government that such hunting would be an infringement of 
The Habitats Directive (Darpö, 2016; Epstein, 2016).

Our results are important for the question of the origin of the 
Scandinavian wolf population in at least two respects. First, the 
haplotypes of the two founding males in the early 1980s and 1991 
(H0a.1 and H0a.2) were both present in the contemporary Finnish 
population, but were not detected in wolves from elsewhere in the 
world or in dogs. Similarly, most haplotypes of recent immigrants 
to Scandinavia were also present in the Finnish population, but not 
seen in other wolves or in dogs. This provides strong support that 
the patrilines of the Scandinavian wolf population originated from 
a geographically close wolf population, and that the same applies to 
recent immigrants.

Second, and in relation to potential hybridization with dogs, we 
note that both founder haplotypes were from haplogroup HG0. 
None of the 24 dogs that we included belonged to this haplogroup. 
More importantly, haplogroup HG0 appears to be wolf‐specific as 
previous work based on other Y chromosome marker sets has failed 
to detect dogs with haplotypes from this group, despite >1,000 dogs 
from numerous breeds being genotyped (Shannon et al., 2015). This 
provides strong evidence against the recent paternal contribution of 

://www.stortinget.no/no/Saker-og-publikasjoner/Vedtak/Vedtak/Sak/?p=65090
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dogs to the Scandinavian wolf population. It does not exclude the 
possibility that hybridization with dogs occurred in the past, but in 
that case there appear to be no surviving dog paternal lineages left. 
Wolf–dog hybridization is typically asymmetrical in the direction of 
male dog × female wolf, although rare instances of the opposite have 
been reported (Hindrikson, Mannil, Ozolins, Krzywinski, & Saarma, 
2012; Muñoz‐Fuentes, Darimont, Paquet, & Leonard, 2010).

4.5 | Dog domestication

This study was not designed to address dog domestication, but the Y 
chromosome haplotype tree provides some information pertinent to 
this question. First, dogs were found in two of the major haplogroups 
(HG1–3/HG6 and HG23) and in three clusters if dividing the large 
HG1–3/HG6 haplogroup into HG1–3 and HG6. This is consistent 
with several independent domestication events (Frantz et al., 2016), 
or at least several instances of wolf paternal introgression into dog 
populations. Second, datings of the most recent split between wolf 
and dog haplotypes within each haplogroup/cluster (29,000, 26,000 
and 24,000 years ago, respectively) support an Late Palaeolithic 
origin of domestic dogs. This is in line with genomic data suggesting 
that dogs were domesticated before the rise of agriculture (Botigué 
et al., 2017; Freedman et al., 2014; Skoglund et al., 2015). However, it 
is important to emphasize that only a limited number of wolf genome 
sequences were available from some parts of the world. Moreover, 
the sample of dogs analysed may not represent the full range of ge‐
netic diversity present among dogs.

4.6 | Y chromosome genes and copy 
number variation

All four new genes (AP1S2Y, EIF2S3Y, TMSB4Y and WWC3Y) that we 
identified on the wolf Y chromosome are gametologous copies of X‐
linked genes. They are expressed in testis in dogs but none of them 
shows testis‐specific expression. As such, they may be considered 
to represent the group of dosage‐sensitive genes that have survived 
Y chromosome degeneration by selection for maintenance of gene 
dose of functionally equivalent gametologues in males and females 
(Bellott et al., 2014). However, AP1S2Y is not Y‐linked in most other 
mammals and thus does not belong to a core set of genes broadly 
retained on the Y chromosome in different mammalian lineages dur‐
ing sex chromosome evolution.

Sequence coverage confirmed the presence of several multi‐
copy genes on the wolf Y chromosome (cf. Li et al., 2013). Our data 
showed that TSPY is present in numerous copies, in the order of 100, 
with indications of copy number variation within wolf populations. 
Resolution was not sufficient for precise estimation of copy num‐
ber at the individual level but when we partitioned wolves based on 
Y chromosome haplogroups and treated dogs as a separate group, 
the latter clearly had fewer copies (median = 45) than all wolves 
(haplogroup medians of 110, 73, 92 and 93). Using quantitative PCR 
(qPCR), Li et al. (2013) estimated TSPY copy number in three dogs to 
25–35. Partitioned analysis of CUL4BY also suggested there being 

copy‐number variation, in this case visible between wolf haplogroups. 
Frequent structural variation including copy‐number variation ap‐
pears to be a hallmark of the ampliconic region of the mammalian Y 
chromosome (Oetjens, Shen, Emery, Zou, & Kidd, 2016; Repping et 
al., 2006), and may potentially have functional implications.

The male‐determining SRY gene is present in multiple copies in 
some mammalian lineages, notably in many rodent species (Nagamine 
et al., 1994) but also in Carnivora (Pearks Wilkerson et al., 2008), 
Perissodactyla (Han et al., 2017) and Lagomorpha (Geraldes & 
Ferrand, 2006). Our data suggested that there are three SRY copies 
in wolves and dogs, and clearly not more than this. In contrast, qPCR 
data from three dogs suggested them as having seven copies (Li et al., 
2013). Moreover, our coverage data suggested that UBE1Y is present 
in two copies while Li et al. (2013) identified it as a single‐copy gene 
with qPCR. These discrepancies call for further work and may illus‐
trate the technical challenges associated with copy‐number determi‐
nation based on sequence coverage or with qPCR. Alternatively, the 
differences might be due copy‐number variation within these genes.
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