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Endometrial cancer (EC) is a common gynecologic malignancy often diagnosed at early
stage. In spite of a huge advance in our understanding of EC biology, therapeutic modali-
ties do not have significantly changed over the past 40 years. A restricted number of genes
have been reported to be mutated in EC, mediating cell proliferation and invasiveness.
However, besides these alterations, few other groups and ourselves recently identified
the activation of the unfolded protein response (UPR) and GRP78 increase following endo-
plasmic reticulum (ER) stress as mechanisms favoring growth and invasion of EC cells.
Here, a concise update on currently available data in the field is presented, analyzing the
crosstalk between the UPR and the main signaling pathways regulating EC cell proliferation
and survival. It is evident that this is a rapidly expanding and promising issue. However,
more data are very likely to yield a better understanding on the mechanisms through which
EC cells can survive the low oxygen and glucose tumor microenvironment. In this perspec-
tive, the UPR and, particularly, GRP78 might constitute a novel target for the treatment of
EC in combination with traditional adjuvant therapy.
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INTRODUCTION
Endometrial cancer (EC) is the most frequent form of malig-
nant tumor of the female reproductive tract, and overall the
endometrium is the fourth most common cancer site, accounting
for 6% of all women cancers (1, 2). EC is classified in type I and
II (3). Type I tumors are low-grade estrogen-related endometrioid
carcinomas (EEC) that usually develop in perimenopausal women.
In contrast, type II tumors are aggressive non-endometrioid car-
cinomas (NEEC) (mainly serous and clear cell carcinomas) that
develop in older women regardless to estrogen stimulation. The
most frequent type of EC is endometrioid carcinoma, which
accounts for more than 80% of all cases. It is often preceded by
a precancerous condition, known as atypical endometrial hyper-
plasia (AEH) and it may progress, over time, to EC in 5–25% of
patients (4). In addition, AEH is associated with a coexisting EC
in approximately 20% of patients (5). Well recognized risk factors
for endometrial carcinoma include polycystic ovarian syndrome,
tamoxifen therapy, unopposed estrogen therapy, a history of nulli-
parity or infertility, irregular menstrual cycles, hypertension, obe-
sity, and diabetes mellitus (6,7). It has been shown that usually EEC
(type I) carcinomas display microsatellite instability and alter-
ations in the PTEN, K-RAS, PIK3CA, and CTNNB1 (beta-catenin)
genes, whereas NEEC are characterized preferentially by muta-
tions of p53, STK15, p16, E-cadherin, and c-erb-B2 genes (8–10).
These molecular alterations promote cell proliferation and inva-
siveness. However, other emerging factors, such as the unfolded
protein response (UPR) activation following endoplasmic retic-
ulum (ER) stress and GRP78 (also known as BiP or HSPA5)
overexpression and/or localization, have been recently described
to affect not only EC cells growth and invasiveness but also their
ability to survive both the hostile tumor microenvironment and
the aggression of chemotherapeutic agents. Here, we report our

data of UPR activation and GRP78 in EC, and will focus on the
current literature about the role of ER stress in EEC.

ER STRESS AND UPR ACTIVATION
The ER is a complex and multifunctional organelle. It is the
intracellular compartment of cargo protein folding. In order to
accomplish its protein folding functions, the ER has high concen-
trations of chaperone proteins, which facilitate correct folding of
nascent proteins. Many of these chaperones are Ca2

+-dependent,
and in fact the ER contains high concentrations of Ca2

+ and
plays an important role in intracellular Ca2

+ homeostasis. The
oxidizing environment that exists in the ER lumen is required
for the formation of disulfide bonds during protein synthesis
(11). Folded proteins will be then exported out of the ER along
the secretory pathway, whereas misfolded proteins will eventually
be disposed of by an endoplasmic reticulum-associated protein
degradation pathway (ERAD). A wide variety of cellular stress
stimuli can disrupt ER function. A number of these are tightly
related to cancer and tumor development. They include changes
to the redox environment, Ca2

+ depletion, expression of mutant
proteins, hypoxia, and/or glucose deprivation (12). As a conse-
quence, the protein folding capacity is disrupted, leading to the
accumulation of unfolded and misfolded proteins within the ER
and, thus, to ER stress. When ER stress occurs, cells attempt to
adjust the protein folding capacity to meet the new protein load or
to counteract protein misfolding events through activation of sig-
nal transduction pathways collectively known as UPR (13). Three
major classes of ER stress signal transducer are known, protein
kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK),
inositol-requiring protein-1 (IRE1), and activating transcription
factor-6 (ATF6). They are able, with their endoluminal domain,
to sense the state of protein folding. Activation of these stress
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transducers results in an attempt to alleviate ER stress essentially
by attenuating the general translation process, up-regulating the
transcription of genes encoding for ER chaperones and folding
enzymes, and enhancing the degradation of malfolded proteins
by the ERAD machinery (14). Depending on the persistence
and severity of ER stress, the UPR can ultimately result in cell
death through the activation of apoptotic pathways specifically
mediated by the ER, as well as coupling with the mitochondrial
pathways (14, 15).

GRP78
Regulation of the UPR is mediated by members of the ER chap-
erone family. GRP78 is the more abundant ER chaperone and,
besides its key role in the protein folding process, plays also a
preeminent role in the regulation of the UPR (16). In absence of
stress signals, indeed, PERK, IRE1, and ATF6 are maintained in an
inactive state by physical interaction of their endoluminal domain
with GRP78. When ER stress occurs, GRP78 dissociates from these
sensor molecules, promoting their activation and subsequently
coupling with accumulating misfolded proteins. As a result of
UPR activation, GRP78 is upregulated in the attempt to increase
the folding capacity of the ER (Figure 1). Thus, GRP78 repre-
sents both a regulator and a target of the UPR and is associated
with pro-survival responses. GRP78 has been reported, indeed,
to interact with components of ER related pro-apoptotic path-
ways. For example, GRP78 can bind and block caspase-12 and
caspase-7 activation or pro-apoptotic proteins Bik and Bax pre-
venting cytochrome c release from mitochondria and ultimately
inhibiting apoptosis (17, 18). GRP78 expression has been reported
to be increased in a number of human cancers, including breast
(19, 20), lung (21, 22), prostate (23, 24), ovarian (25), gastric
(26), hepatocellular (27, 28), esophageal (29), renal (30), endome-
trial (31, 32), melanoma (33), glioma (34), and fibrosarcoma (35)

(Table 1). Furthermore, GRP78 overexpression in these cancers
has been found to be strongly associated with increased malig-
nancy, chemoresistance, and poor patient outcome. Furthermore,
knockdown of GRP78 sensitizes tumor cells to drug treatment
(18). Additionally, recent studies have identified GRP78 in com-
partments other than the ER, such as the cell surface, where it can
interact with different molecular partners and mediate the trans-
duction of additional cell growth and survival signals in different
cancer cells (15, 36, 37) (Figure 1). It has been recently reported,
indeed, that GRP78 present on prostate cancer cells can bind
the prostate-specific antigen/activated a2-macroglobulin complex
causing the activation of ERK1/2 (extracellular-signal-regulated
kinase 1/2), p38 MAPK (mitogen-activated protein kinase), and
PI3K (phosphoinositide 3-kinase) signaling pathways and pro-
moting cell survival by the Akt and NF-κB (nuclear factor κB)
signaling cascade (38). Furthermore, GRP78 has been reported to
form a complex with Cripto, a multifunctional cell-surface protein
that plays a key role in vertebrate embryogenesis and human tumor
progression, enhancing tumor growth via inhibition of TGF-β
(transforming growth factor-β) signaling (39). The localization of
GRP78 mainly on the surface of tumor cells enables specific tumor
targeting. The treatment of A375 melanoma cells and 1-LN and
DU145 prostate cancer cells with polyclonal antibodies directed
against the C-terminus of GRP78 has already been described to
induce apoptosis via p53 upregulation, suppression of Ras/MAPK
and PI3K/Akt signaling pathways, and inhibition of NF-κB1 and
NF-κB2 activation (40).

UPR ACTIVATION AND GRP78 IN ENDOMETRIAL CANCER
We have recently reported for the first time that ER stress
is activated in EC, as demonstrated by increased expression
levels of ATF6, GRP78, and CHOP/GADD153 in EEC tissues
(31). These data have been then confirmed by the studies

FIGURE 1 | Microenvironmental stress causes ER stress and UPR
activation in cancer cells. As a result, GRP78 is upregulated to
enhance the folding capacity of the ER. A quote of the protein is

transported to the cell membrane where it can bind different
molecular partners and transduce either pro-survival or apoptotic
signals.
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Table 1 | Different cancer types where GRP78 has been reported to

play a role in proliferation, invasiveness, and/or chemoresistance

along with representative references are listed.

Cancer type Reference

Breast Fernandez et al. (19), Gazit et al. (20)

Prostate Daneshmand et al. (23), Fu et al. (24)

Gastric Song et al. (26)

Ovarian Huang, LW et al. (25)

Endometrial Bifulco et al. (31), Calí et al. (32)

Hepatocellular Su et al. (27); Shuda (28)

Esophageal Langer et al. (29)

Fibrosarcoma Jamora et al. (35)

Glioma Pyrko et al. (34)

Melanoma Zhuang et al. (33)

Lung Lin et al. (21), Koomagi et al. (22)

Renal Fu et al. (30)

of Luvsandagva (41) and Gray (42). To address the question
whether GRP78 might play a role in EC cell proliferation, very
recently we performed both salt 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay and proliferation
curve analysis in Ishikawa and AN3CA endometrial adenocarci-
noma cell lines silenced for GRP78 expression. We demonstrated
that, in silenced cells, the growth rate was significantly lower when
compared to mock-transfected cells (31, 32). In addition, GRP78
attenuation resulted also in reduced invasion rate, suggesting that
GRP78 also participates in the malignant phenotype of cell migra-
tion and invasiveness of EC cells (32). As reported in other cancer
cells, such as melanoma and pancreatic cancer cells, besides the
ER localization, we observed also a cell membrane localization
of GRP78 in both EEC tissues and EC cell lines (32), suggesting
that it might exert additional effects on cell growth and signal-
ing. Interestingly, we also reported that, as already described in
pancreatic cancer cells (40), the incubation of EC cells with a
commercial polyclonal antibody directed against the C-terminus
of GRP78 induces apoptosis only in cells that display GRP78 on
their cell surface (32). Despite of the study by Misra in pancreatic
cancer cells (40), apoptosis in EC cell was not accompanied by
an increase of p53 protein, suggesting the involvement of other
key mediators of the apoptotic pathway. However, we observed
a significant decrease of the prosurvival PI3K/Akt signaling. Sus-
tained AKT activity is a common feature of endometrioid ECs, due
to PTEN loss and/or PI3K mutations, and initiates a cascade of
downstream signals leading to proliferation, migration, survival,
and angiogenesis (43). Whether the presence of GRP78 on the
cell membrane of EC cells might further increase cell proliferation
and/or invasiveness is still unclear and is under investigation in our
laboratory. Another important question that should be addressed
is whether the eventual advantage of presenting GRP78 on the
cell membrane of EC cells could be related to the interaction with
other key molecules mediating cell proliferation and/or invasive-
ness. It has been reported recently that GRP78 can interact with
the epidermal growth factor receptor (EGFR) in human amnion
FL cells following ER stress induction by the alkylating agent

N -methyl-N -nitro-N -nitrosoguanidine (MNNG) (44). However,
in this study emerged that the complex EGFR/GRP78 has rather
an inhibitory activity on the EGFR-signaling pathway.

ROLE OF GRP78 IN ENDOMETRIAL CANCER
CHEMORESISTANCE AND THERAPEUTIC IMPLICATIONS
Endometrial cancer is often diagnosed at an early stage and, thus,
has a favorable prognosis. However, 10–15% of these patients
will experience a recurrence (45). Age, menopausal status, tumor
stage and grade, and lymph-vascular space invasion, are known
prognostic factors for the disease free survival of EC patients
(46). Nevertheless, the number of recurrent EC patients tends
to increase yearly and the prognosis for these patients is very
poor (47). Thus, the identification of new biomarkers could help
to better predict high-risk patients that need adjuvant therapy.
Muinelo-Romay et al. have recently reported that TGF-β 1 plays
as a key role in the initiation of tumor invasion in high-risk recur-
rence EC (47). Similarly, GRP78 has been described to play an
important role in the progression of EC. GRP78 expression levels
were, indeed, elevated in high-risk EC tissues compared with both
the low-risk EC and normal endometrial tissues, suggesting that
GRP78 may promote progression in EC and increase malignant
potential (48). GRP78 might, thus, represent a potential biomarker
to better predict high-risk EC and thereby guide clinical therapy.
The combination of paclitaxel and cisplatin in chemotherapy is
a standard regimen for adjuvant chemotherapy in advanced or
recurrent EC (49, 50). However, very recently it has been reported
that the treatment of EC cell lines with cisplatin is capable of
inducing GRP78 expression (42). This is preceded by an increase of
AKT phosphorylation but not by changes of MAPK activity (42).
Use of the small molecule pan-AKT inhibitor MK2206, reduc-
ing AKT activity, blocked constitutive GRP78 expression, and
cisplatin-mediated induction of GRP78 suggesting that GRP78’s
antiapoptosis functions are part of the AKT survival pathway. On
the other hand, GRP78 has been reported to affect optimal AKT
activation since GRP78 knockdown by siRNA reduces AKT activ-
ity, suggesting that in EC cells, GRP78 may be both an upstream
and downstream regulator of AKT (42). The attenuation of GRP78
expression significantly augments cisplatin-mediated cytotoxic-
ity by enhancing the cleavage of apoptotic markers, Poly(ADP-
ribose) polymerase (PARP) and caspase-3 (41, 42), highlighting
the key role that GRP78 might play in the response of EC cells to
chemotherapeutic treatments. A number of natural compounds
have been found to block GRP78 transcription and/or inhibit its
activity. One of these, epigallocatechin-3-gallate (EGCG), has been
recently described to cause the arrest of Ishikawa EC cells in the
G0/G1 phase of the cell cycle and to increase apoptosis by inter-
fering with Akt activation and MAPK signals and modulating the
expression of apoptosis related genes and proteins, such as cas-
pases, Bcl-2, and Bax (51, 52). Several microbial metabolites, such
as versipelostatin and verrucosidin, or plant product, such as arcti-
genin, or members of the biguanide class of compounds, such
as metformin and phenformin, showed to inhibit GRP78 (53).
However, many of these compounds exert additional biological
functions besides inhibition of GRP78 and their action should
be carefully evaluated on EC cells. Another promising opportu-
nity of therapeutic intervention arises from the observation that
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GRP78 is often present on the membrane of different cancer cells,
including EC cells (32, 40). As mentioned above, a commercial
polyclonal antibody directed against the C-terminus of GRP78
induces apoptosis in AN3CA EC cells (32). Another opportunity
of targeting GRP78 present on cell membrane of EC cells might be
represented by synthetic chimeric ligand peptides containing pro-
gramed cell death-inducing sequence, as they showed to suppress
tumor growth in xenograft and isogenic mouse models of breast
and prostate cancer (54).

CONCLUSION
The induction of the UPR pathways and GRP78 increase and/or
localization following ER stress are increasingly recognized as
important contributors to tumor survival and growth as well as to
the development of resistance to chemotherapeutic agents in dif-
ferent types of cancer, including EC. While targeting ER stress and
GRP78 as an anticancer strategy appears to be a very promising
task also in EC, there are a number of limitations in our knowl-
edge about the exact role of molecules involved in ER stress and
how they might influence cell fate. Therefore, future studies in this
area may further clarify whether GRP78 and/or other molecules
involved in the UPR could really represent promising molecules
to be investigated as target for EC therapy.
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