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Abstract

The advent of susceptibility-sensitive MRI techniques, such as susceptibility

weighted imaging (SWI), has enabled accurate in vivo visualization and quantification

of iron deposition within the human brain. Although previous approaches have been

introduced to segment iron-rich brain regions, such as the substantia nigra, sub-

thalamic nucleus, red nucleus, and dentate nucleus, these methods are largely

unavailable and manual annotation remains the most used approach to label these

regions. Furthermore, given their recent success in outperforming other segmenta-

tion approaches, convolutional neural networks (CNN) promise better performances.

The aim of this study was thus to evaluate state-of-the-art CNN architectures for the

labeling of deep brain nuclei from SW images. We implemented five CNN architec-

tures and considered ensembles of these models. Furthermore, a multi-atlas segmen-

tation model was included to provide a comparison not based on CNN. We

evaluated two prediction strategies: individual prediction, where a model is trained

independently for each region, and combined prediction, which simultaneously pre-

dicts multiple closely located regions. In the training dataset, all models performed

with high accuracy with Dice coefficients ranging from 0.80 to 0.95. The regional

SWI intensities and volumes from the models' labels were strongly correlated with

those obtained from manual labels. Performances were reduced on the external

dataset, but were higher or comparable to the intrarater reliability and most models

achieved significantly better results compared to multi-atlas segmentation. CNNs can

accurately capture the individual variability of deep brain nuclei and represent a

highly useful tool for their segmentation from SW images.
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1 | INTRODUCTION

In the last decade, advances in the field of susceptibility sensitive

magnetic resonance imaging (MRI) have enabled the visualization and

quantification of iron within the human brain in vivo (Ropele &

Langkammer, 2017). Specifically, the use of susceptibility sensitive

gradient-echo (GRE) sequences in combination with post-processing

techniques and modeling approaches have focused on enhancing

iron-related contrast and quantification of iron content. The most

promising approaches are mapping of transverse relaxation rates (R2,

R2*, and R20), susceptibility weighted imaging (SWI), and quantitative

susceptibility mapping (QSM; Bilgic, Pfefferbaum, Rohlfing, Sullivan, &

Adalsteinsson, 2012; Liu et al., 2015; Ropele & Langkammer, 2017).

The characterization of iron deposition within different brain struc-

tures using these methods has brought into focus the importance of

iron in brain development and aging (Acosta-Cabronero, Betts,

Cardenas-Blanco, Yang, & Nestor, 2016; Larsen et al., 2020) as well as

in multiple neurological disorders including Parkinson's disease,

Alzheimer's disease, and multiple sclerosis (Atamna & Frey, 2004;

Bergsland et al., 2019; Zivadinov et al., 2012; Zucca et al., 2017).

Iron-rich brain regions such as the substantia nigra (SN), subthalamic

nuclei (STN), the red nucleus (RN), and the dentate nucleus (DEN) are

hardly identifiable on routinely acquired structural MR images such as

T1-weighted images. Therefore, these brain structures are not included

in most popular brain atlases from major neuroimaging suites such as

FreeSurfer, FSL, and SPM, nor considered by most segmentation tools.

Nonetheless, multiple dedicated segmentation approaches leveraging a

range of MR modalities have been proposed, including semi-automated

methods (Kim, Lenglet, Duchin, Sapiro, & Harel, 2014), fully automated

patch-based (Haegelen et al., 2013), level-set (Basukala, Mukundan,

Melzer, & Keenan, 2019; Li, Jiang, Li, Zhang, & Meng, 2016), majority-

voting label-fusion (Xiao et al., 2014), Bayesian (Visser, Keuken,

Forstmann, & Jenkinson, 2016), segmentation by registration to atlas in

standard space (Lim et al., 2013), and multi-atlas segmentation

(Li et al., 2019). Unfortunately, the vast majority of these approaches

have not been made publicly available, and, to date, manual segmenta-

tion still remains one of the most used approaches in neuroimaging to

obtain labels of the SN, STN, RN, and DEN, which greatly limits the use-

fulness of the related studies beyond research interest. Fully automa-

tized, accurate, and unbiased methods are necessary in order to enable

clinical applicability for iron-related MRI.

Deep learning-based approaches have been shown to outperform

or achieve comparable performance compared to other methods in

the task of segmenting brain regions (Bakas et al., 2018; Carass

et al., 2018; Lundervold & Lundervold, 2019). Since their introduction,

U-Nets (Ronneberger, Fischer, & Brox, 2015) and fully convolutional

nets (FCN; Long, Shelhamer, & Darrell, 2015) have become the preva-

iling architectures for the segmentation of brain regions. Their inherent

integration of multiscale information renders them especially well-

suited for accurate segmentation of brain regions. Interestingly, even

though these approaches promise to outperform previous methods,

we are aware of only a few attempts to apply CNNs for the segmenta-

tion of individual deep brain nuclei (Bermudez Noguera et al., 2019;

Kim, Patriat, Kaplan, Solomon, & Harel, 2020; Le Berre et al., 2019; Raj,

Malu, Sherly, & Vinod, 2019), however, none using susceptibility

weighted (SW) images.

In this work, we decided to use SWI as our target modality. This

choice was motivated by the fact that, although not quantitative, SWI

provides enhanced contrast for the visualization of deep brain nuclei

compared to other iron-sensitive modalities, aside from QSM. Fur-

thermore, SWI is widely used and well established in the clinical set-

ting. Of note, SWI can always be computed given GRE raw phase and

magnitude images, whereas QSM cannot if only filtered phase images

are available, as is often the case for SWI sequences. Furthermore,

SWI sequences are more readily available in the clinic for routine

examination and do not need advanced off-line image processing, in

contrast to QSM. For these reasons, we believe that SWI is of great

value for the purpose of deep brain nuclei segmentation.

Our goals were therefore to explore how well multiple state-of-

the-art CNN architectures perform in the segmentation of the SN,

STN, RN, and DEN on SW images and to provide trained models and

their implementations. The source code is freely available at https://

github.com/mui-neuro/swi-cnn.

2 | METHODS

2.1 | Datasets and preprocessing

SW images from 30 healthy controls (16 females; 14 males; mean age

49.5 years; SD 10.6 years; range: 24–70 years) with no known history of

neurological disorder were retrospectively obtained from the database

of the Medical University of Innsbruck, and used as internal dataset; as

data sharing was not included in the original ethics, the images cannot

be made available publicly due to privacy issues. The SW images were

acquired on a 3-Tesla whole-body MR scanner (Magnetom Verio, Sie-

mens, Erlangen, Germany) with a 12-channel head coil at the Depart-

ment of Neuroradiology, Medical University of Innsbruck using a three-

dimensional (3D) GRE sequence with the following parameters: repetition

time (TR) = 28 ms, echo time (TE) = 20 ms, flip angle = 15�,

bandwidth= 120 Hz/px, slice thickness= 2.4 mm, number of slices= 64,

field of view 178 � 220 mm, matrix size = 260 � 320; GRAPPA factor:

2. SW images were directly processed on the scanner.

An additional 20 SW images from healthy controls (8 females;

12 males; mean age 26.6 years; range: 21–38 years) with no known his-

tory of neurological disorders, available from the Forrest Gump dataset

(Hanke et al., 2014; http://studyforrest.org/), were used as external

dataset; three images were excluded due to abnormally low contrast and

prominent noise in target regions of interest (ROIs). These SW images

were acquired on a 3-Tesla Philips Achieva equipped with a 32 channel

head coil using a 3D Presto fastfield echo (FFE) sequence with the fol-

lowing parameters: TR = 19 ms, TE = 26 ms, flip angle = 10�,

bandwidth = 217.2 Hz/px, slice thickness = 0.35 mm, number of

slices = 500; FoV = 181 � 202 mm; matrix size = 512 � 512,

NSA = 2, Sense reduction AP = 2.5, FH = 2.0. The SW images were cal-

culated by two-dimensional (2D) slice-wise filtering the phase image
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with a symmetric 96 � 96 homodyne filter, creating a phase mask from

the filtered phase image, and multiplying the phase mask with the magni-

tude image four times (Haacke, Xu, Cheng, & Reichenbach, 2004).

All SW images were resampled to an isotropic resolution of 0.69 mm

using cubic interpolation, matching the in-plane resolution of the internal

data. Normalization of the resampled SW images was performed by

extracting a brain mask using FSL's Brain Extraction Tool (Smith, 2002),

removing low-frequency intensity nonuniformity using ANTs' N4 bias

field correction (Tustison, Avants, Cook, et al., 2010), and normalizing the

values within the brain mask using an outlier-robust sigmoidal normaliza-

tion (SRS; Fulcher, Little, & Jones, 2013). Additionally, the range of intensi-

ties in the normalized SW images of the external dataset were roughly

aligned to those of the internal dataset by mapping the intensities to the

[0, 0.75] interval and adding an offset 0.25. This adjustment was empiri-

cally derived by observing the mean normalized intensities in the ground

truth ROIs from the internal and external datasets.

2.2 | Manual labeling

Manual labeling of the ROIs was performed (V.B.) on the normalized SW

images using ITK-SNAP (Yushkevich et al., 2006; www.itksnap.org) and

subsequently validated (C.S.). To evaluate the intrarater reliability the

labels from 10 randomly selected subjects in each of the training and

external test dataset were relabeled twice by the same rater (V.B.). On

SW images, the DEN, RN, SN, and STN are all visible as hypointense

regions (Figure 1). The RN is a spherical region situated within the

tegmentum of the midbrain. The SN is a lentiform region located in the

mesencephalon, posterior dorsally to the crus cerebri, ventrally to the

midbrain tegmentum, and laterally to the RN. The STN is located ven-

trally to the thalamus, dorsally to the STN, and medially to the internal

capsule. The dentate nucleus is situated medially within each cerebellar

hemisphere, posterolaterally to the fourth ventricle. The EvePM deep

gray matter atlas (Lim et al., 2013), the 7 T MRI atlas of the STN

(Milchenko et al., 2018), as well as the SUIT cerebellar atlas (Diedrichsen

et al., 2011) served as general guidance. Although the regions had some-

times superior contrast on one side compared to the other (observed

visually), no systematic trend could be identified.We note that at 3 T, the

exact border between the SN and the STN is difficult to identify. How-

ever, by visualizing the structures through multiple axes, especially the

coronal viewwhere the SN and STN can be identified as two superposed

ovoids, and with the help of the STN atlas, it is possible to accurately

identify the STN. In Figure 2, we present the probability map from the

STN atlas, as well as an example delineation of the STN. Finally, we note

that it was in general impossible to identify the interposed nuclei with

certainty. Therefore, as the emboliform nucleus is known to be continu-

ous with the dorsomedial parts of the dentate nucleus in places, parts of

it were likely included in our dentate labels.

2.3 | Segmentation models

In this work, five CNN architectures were considered: 3D U-Net (Çiçek,

Abdulkadir, Lienkamp, Brox, & Ronneberger, 2016; Ronneberger et al.,

F IGURE 1 Dentate, red nucleus, substantia nigra, subthalamic nuclei visible as hypointense regions in a normalized SW image (a,b), and their
corresponding labels (d,e). The location of the axial views is indicated by the blue lines in the sagittal view (c): top (a, d) and bottom (b, e)
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2015), V-Net (Milletari, Navab, & Ahmadi, 2016), and U-Net++ (Zhou,

Siddiquee, Tajbakhsh, & Liang, 2019), FC-Dense Net (Jegou, Drozdzal,

Vazquez, Romero, & Bengio, 2017), and Dilated FC-Dense Net (Kim

et al., 2020). Details on the implementation of the CNNs are presented

in Figure 3.

The 3D U-Net architecture follows an encoder-decoder design

where convolutional blocks are used followed by either downsampling

(max pooling) or upsampling (up-convolution) and skip connections

provide high-resolution features to the decoding path of the model. It

is one of the most widely used architectures and, as such, provides a

baseline for comparison. The V-Net attempts to improve upon the

original U-Net by substituting the purely convolutional blocks with

residual-like blocks and replaces pooling operations by convolutions.

Conversely, the U-Net++ architecture adopts a dense architecture

with simpler convolution blocks and aggregates the output from mul-

tiple levels. Alternatively, the FC-Dense Net adopts a densely con-

nected block instead of convolution blocks. In general, dense

architectures enable the efficient propagation of gradients, deep

supervision, and the reuse of features. The Dilated FC-Dense Net fol-

lows the same architecture as the FC-Dense Net, but the convolu-

tions of the encoding path are replaced by dilated convolution,

increasing the relative size of their receptive fields.

Furthermore, we have included an ensembles of the CNN models,

an approach that was successfully used for the segmentation of brain

tumors (Kamnitsas et al., 2018) and provided remarkable performance.

For each region, an ensemble of the probability maps is created by

taking the average of the probability maps provided by each model.

We considered the ensembles from CNNs using individual and com-

bined prediction (see Section 2.4), each containing 5 models, and an

ensemble of all CNNs (for a total of 10 models). The final labels for

each ensemble are obtained by assigning the region with maximum

probability value across all regions for each voxel.

The range of models considered here covers some of the main

innovations introduced to CNNs in the last few years and, as such,

provides a wide perspective on the applicability of CNNs to the prob-

lem at hand.

Finally, to provide an alternative comparison to CNN-based

models, we have also evaluated a multi-atlas segmentation model with

joint label fusion (JLF; Wang et al., 2013) implemented in the ANTs

(v2.3.4, https://github.com/ANTsX).

2.4 | Individual versus combined prediction

The most widely used strategy for segmenting multiple brain regions

with CNNs is to perform the combined prediction of all regions using

a softmax layer as output. Although this is certainly more efficient

than training models and performing prediction individually for each

region, a combined approach can suffer from class imbalance, either

because samples for a given region are less frequent than others, or

because the regions are of different sizes. This issue can be remedied

using sampling strategies or specially adapted loss functions, but these

solutions provide only a partial remedy. Hence, here we were inter-

ested to evaluate both individual and combined prediction to deter-

mine if one approach is superior.

As is generally done, the CNN models for combined prediction had

a softmax output. They were trained with patches containing left and

right RN, SN, and STN, and the corresponding labels, including

F IGURE 2 Probability maps for the subthalamic nucleus and an example delineation (red contour) viewed overlayed on a template 7 T T2

image (top, a–c), and a normalized SW image (bottom, d–f), respectively. (a, d): coronal view, (b, e): axial view, and (c, f): sagittal view
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background, were provided as ground truth. Patches were aligned with

the center of mass (COM) formed by these regions (see Section 2.5).

Conversely, the CNN models for individual prediction had a sigmoid

output and a model was trained individually for each region (DEN, RN,

SN, or STN, left or right) with patches centered with the COM of the

corresponding region and only the label for that region as ground truth.

For both types of prediction, the final labels were obtained by assig-

ning the region with the maximum probability value across all regions

for each voxel. In the case of the individual prediction, the probability

maps were hence taken from all the individual models with the same

architecture, but were trained individually for each of the ROIs. For the

combined prediction, probability maps for the RN, SN, and STN were

provided by a single model, but the maps for the left and right DEN

were provided by the corresponding individual prediction models. We

did not perform combined prediction for the DEN as a single patch

encompassing all the ROIs would be too large to fit in memory.

2.5 | Region localization and patch extraction

Two U-Net++ CNNs were trained to predict binary masks centered

over the selected ROIs given normalized and downsampled SW

F IGURE 3 Simplified representation of the CNN models. The number of channels (N) is specified within each convolutional block (circles).
The inputs to the first convolutional block of all models have a single channel. Max pooling, down convolution, transposed convolution, and
upsampling operations have a respective pool size or stride of 2. The details of the dense block (DB) and dilated dense block (DDB) are given as
an example for blocks of depth 4; for different depth, the recursions are shortened or extended accordingly

BELIVEAU ET AL. 4813



images as input; one model for individual prediction with left and right

DEN, RN, SN, and STN as targets (8 outputs), and another for com-

bined prediction including the left and right DEN and the RN-SN-STN

as a combined region (3 outputs). The COM from the predicted binary

masks was then used to extract patches from the full resolution image

centered at those locations. Normalized SW images were down-

sampled to 3 mm isotropic resolution using cubic interpolation. Gro-

und truth binary patches were created by locating the COMs of the

corresponding labels and labeling 15 � 15 � 15 binary patches

(corresponding approximately to 64 � 64 � 64 voxels at full resolu-

tion) centered at that location in the low-resolution space.

2.6 | Data augmentation

Data augmentation of the normalized SW images and their

corresponding ground truth labels was performed using random elas-

tic deformation (Simard, Steinkraus, & Platt, 2003; α = 500 and

σ = 10) with cubic and nearest-neighbor interpolation, respectively,

and a random left–right flip. For each training epoch, all images were

augmented, hence providing new random samples. Data augmenta-

tion was performed off-line and augmented images were reused

across models during training, thus avoiding the unnecessary compu-

tational overhead required to deform the images (�1 min per image).

Augmented SW images were also downsampled off-line for the train-

ing of the region localization CNNs.

2.7 | Training

Training of the region localization U-Net++ CNNs was performed over

90 epochs with a batch size of 6 and the Adam optimizer with default

parameters (β1 = 0.9, β2 = 0.999) was used (Kingma & Ba, 2014). The

Dice coefficient (DSC) loss was used as the loss function. The initial

learning rate was varied from 10�2 to 10�4 using a step decay with

3 steps (30 epochs). Similarly, training of the segmentation CNNs was

performed over 75 epochs with a batch size of 4. The DSC loss was

also selected as loss function for the individual prediction, whereas a

focal Tversky loss (Abraham & Khan, 2019) with parameters (α = 0.3,

β = 0.7, γ = 3) was used for combined prediction. The Tversky loss is

an extension of the DSC which balances the weights of false positives

(α) and false negatives (β), and the focal part of the loss increases the

relative weighting of the less well-trained classes (γ). The initial learning

rate was varied from 10�2 to 10�4 for the U-Net, V-Net, and U-Net++

models and from 10�2 to 10�5 for the FC-Dense Net and Dilated FC-

Dense Net, using a step decay with 3 steps (25 epochs).

2.8 | Evaluation

The segmentation models were evaluated using DSC and the 95th per-

centile Haussdorf distance (HD; Huttenlocher, Rucklidge, & Klanderman,

1992) as measures. These measures were also used to evaluate the

intrarater reliability. As one of themain applications for the labels is to per-

form region-based analysis, we also evaluated the association between

the mean regional SWI intensities extracted using the manual labels and

the labels obtained from the models; however, we note that SW images

do not provide quantitative measures of magnetic susceptibility. Further-

more, we also evaluated the association between regional volumes

estimated from the manual labels and the labels predicted by all the

models. The associations for mean regional SW intensities and volumes

were assessed using Pearson's correlation coefficients.

The models were evaluated on the internal dataset within a five-

fold cross-validation (CV). Then, the models were then retrained using

all 30 SW images available from the internal dataset and subsequently

evaluated on the external test dataset. We note that, although model

and training parameters can potentially be optimized using a nested

CV, this was not done here; this is indeed not common with CNNs

due to the expensive computational demand that it would require.

For completeness, we also evaluated the accuracy of the models

for region localization by measuring the Euclidean distance between

the COMs computed from the predicted binary patches and the ones

obtained from ground truth. The evaluation was also performed

within a fivefold CV.

Finally, as the SW images in the internal and external datasets

originate from different scanners, with different sequences and post-

processing, we evaluated the contrast-to-noise ratio (CNR) for each

ROI in every image to assess potential biases. For a given region, a

background was derived by dilating (square connectivity) five times

the corresponding manual label and excluding any overlap with man-

ual labels from all ROIs. Signal and noise was extracted from the

manual labels and backgrounds, respectively, and CNR was estimated

according to: CNR = jmean(signal) – mean(noise)j/SD(noise).
Pairwise model comparisons were performed using the Sign test

(Dixon & Mood, 1946). Differences between measures of model per-

formance and intrarater reliability were evaluated using the Median

test (Conover, 1998). Differences in CNR were assessed using the

Mann–Whitney U test. Statistical tests were corrected for the corres-

ponding number of tests (regions and/or models) using the false dis-

covery rate (FDR) procedure with α = 0.05 (Benjamini & Hochberg,

1995). The p-values below .05 were considered significant. Statistical

analyses were performed in R (v3.6.0).

3 | RESULTS

3.1 | Intrarater reliability

The measures of intrarater reliability (DSC and HD) for both datasets

are presented in Table 1. Across all regions, the intrarater DSCs and

HDs obtained in the training dataset were significantly higher or

lower, respectively, compared to those obtained for the external test

dataset. Almost all models achieved significantly higher DSC com-

pared to the intrarater DSC in the training dataset (Table S1), and all

models achieved significantly higher DSC in the external test dataset.

In the training dataset, the HD estimated for only a few models was
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significantly lower compared to the corresponding intrarater HD

(Table S2). In the external test dataset, the HDs obtained for all

models were significantly lower compared to the corresponding intra-

rater HD. Notably, the intrarater DSCs and HDs in both datasets were

not significantly lowered or higher, respectively, compared to the

corresponding measures obtained for any of the models.

3.2 | Evaluation on the internal dataset

The mean DSCs across all CV folds for all the models evaluated in the

internal dataset are presented in Figure 4 and Table S1. The CNNs

and the ensembles achieved mean DSCs ranging from 0.86 to 0.96 for

the DEN, RN, and SN and from 0.81 to 0.87 for the STN. Overall, the

models performed very similarly and no single model consistently per-

formed significantly better or worse than all other models across all

regions. Many individual prediction models achieved significantly

higher DSCs across all regions compared to the corresponding com-

bined prediction models, while none of the combined prediction

models realized significantly higher DSCs (Table S1). The mean HDs

across all folds for all the models are presented in Table S2 and

ascribed to the same pattern as the mean DSCs. The mean HDs

ranged from 0.42 to 1.33 mm for the DEN, RN, and SN, from 0.78 to

1.49 mm for the STN.

The Pearsons' correlation coefficient for the mean regional SWI

intensities and regional volumes evaluated in the internal dataset are

presented in Tables S3 and S4, respectively. For all regions and

models, the correlations between regional SWI values were highly sig-

nificant (p < .0001). Correlations for regional volumes were highly

significant (p < .0001) for the DEN and RN across all models. For the

SN, volumetric correlations were also highly significant (p < .0001) for

most models, but a few models exhibited significance between

p = .0001 and .05. The STN was the region for which the volumes

quantified from the predicted segmentations had the lowest correla-

tion with ground truth, with significance ranging from p = .0001 to

.05, and a few models providing nonsignificant correlations; see

Table S4 for details. Mean regional SWI intensities and volumes are

included in Tables S5 and S6.

3.3 | Evaluation on the external test dataset

The mean DSCs across all subjects for the models evaluated in the

external test dataset are presented in Figure 5 and Table S7.

The CNNs and the ensembles achieved mean DSCs ranging from 0.74

to 0.90 for the DEN, RN, and SN and from 0.53 to 0.77 for the STN.

Similarly, to the internal dataset, no model performed significantly

better (p < .05) than all other models across all regions. However, the

JLF model performed significantly worse than all the CNNs and

ensembles across almost all regions (Tables S7 and S8). Here again,

the majority of individual prediction models achieved significantly

higher DSCs across all regions compared to the corresponding com-

bined prediction models (Table S7). The mean HDs across all subjectsT
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of the external dataset are presented in Table S8 and ascribed to the

same pattern as the mean DSCs. The mean HDs ranged from 0.70 to

3.56 mm for the DEN, RN, and SN, and from 1.01 to 3.29 mm for

the STN.

The Pearsons' correlation coefficient for the mean regional SWI

intensities and regional volumes evaluated in the external test dataset

are presented in Tables S9 and S10, respectively. Across all regions and

models, correlations with SWI intensities were highly significant

(p < .0001). Correlations using volume estimates were largely above

p = .0001, but, nonetheless, significance was retained for most models

and regions, aside from the STNwhere the volumetric results frommul-

tiples CNNs were not correlated with those of the manual labels; see

Table S10 for details. Volumes estimated with JLF were not signifi-

cantly correlated with ground truth for the STN and the left DEN.

3.4 | Accuracy of the region localization

The CV accuracy of the CNNs for region localization was evaluated in

the extraction of patches for individual and combined prediction. In all

cases, the predicted COMs were identified within 3 mm,

corresponding to the resolution of the downsampled SW images.

3.5 | Evaluation of contrast-to-noise ration

Contrast-to-noise ratios for the internal and external datasets are

presented in Table 2. These results indicate that the CNR is on aver-

age lower in the external test dataset compared to the internal dataset

across all regions, and the difference reached statistical significance

(p < .05) for the DEN and STN.

4 | DISCUSSION

In this work, we have compared a range of CNN architectures

for the segmentation of deep brain nuclei from SW images and

evaluated an individual and combined prediction approach. An

ensemble of the CNNs was introduced to reduce bias and

improve the overall prediction, and a multi-segmentation atlas

F IGURE 4 (a) Mean Dice coefficients, and (b) mean 95th Hausdorff distance across all folds of the cross-validation in the internal dataset.
The black lines indicate the range of the data. DEN L, left dentate; DEN R, right dentate; RN, red nucleus; SN, substantia nigra, STN, subthalamic
nucleus; L, left; R, right; IP, individual prediction; CP, combined prediction; Att, attention
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model was also evaluated to provide a comparison to the CNN

models. The models were assessed in internal and external

datasets and regional SW intensities and volumes quantified

from the predicted segmentations were evaluated against ground

truth.

4.1 | Accuracy and generalizability of the
segmentation models

All models achieved very high accuracy, both in terms of DSC and

HD, in the CV performed on the internal dataset. In this context, there

F IGURE 5 (a) Mean Dice coefficients, and (b) mean 95th Hausdorff distance across all subjects in the external test dataset. The black lines
indicate the 95% confidence interval. DEN L, left dentate; DEN R, right dentate; RN, red nucleus; SN, substantia nigra; STN, subthalamic
nucleus; L, left; R, right; IP, individual prediction; CP, combined prediction; Att, attention

TABLE 2 Contrast-to-noise ratio
across all the regions of interest for the
internal dataset and the external dataset

Region
Internal dataset median
[min, max]

External dataset median
[min, max]

Mann–Whitney U-testZ
(p-value)

DEN L 1.54 [0.76, 3.00] 1.07 [0.70, 1.79] �4.93 (<0.0001)

DEN R 1.58 [0.91, 2.64] 1.17 [0.66, 1.76] �4.01 (0.0005)

RN L 1.61 [0.79, 2.45] 1.51 [0.92, 1.90] �1.65 (0.7881)

RN R 1.66 [0.81, 2.78] 1.39 [0.90, 2.06] �1.96 (0.4039)

SN L 0.89 [0.30, 1.76] 0.86 [0.35, 1.60] �0.38 (1.0000)

SN R 0.90 [0.38, 1.69] 0.80 [0.58, 1.35] �0.74 (1.0000)

STN L 1.96 [0.53, 3.20] 1.39 [0.98, 1.75] �3.66 (0.0020)

STN R 1.88 [0.51, 2.63] 1.40 [0.99, 1.81] �3.94 (0.0007)

Note: The p-values are FDR-corrected.

Abbreviations: DEN L, left dentate; DEN R, right dentate; RN, red nucleus; SN, substantia nigra; STN,

subthalamic nucleus; L, left; R, right.
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was no overall best model across all regions. This suggests that, in this

specific dataset, the models' accuracy may be close to an upper

boundary defined by the relative accuracy of the manual labels which

is in turn related to the intrinsic resolution of the SW images. Indeed,

this is also supported by the fact that the measures of intrarater reli-

ability were inferior compared to the performance achieved by the

models.

In the external test dataset, the mean DSCs decreased by approx-

imately 0.10 unit for all regions. Although CV with a small number of

folds can provide slightly optimistic results (Varoquaux et al., 2017), a

reduction in performance was expected as the general problem of

domain shift, here introduced by the usage of a different MR scanner,

sequence, and postprocessing methods for creating the SW images, is

a well-known and currently unresolved problem for CNNs. Further-

more, we have shown that, in the external dataset compared to the

internal dataset, the measures of intrarater reliability (DSC and HD)

were significantly lower or higher, respectively, across all regions and

that the CNR for the DEN and the STN was significantly reduced. In

an optimal scenario, a training dataset formed with images from both

the internal and external datasets would provide more generalizable

models, however, this was purposefully avoided to provide a compari-

son with completely unseen data. Nonetheless, almost all CNNs

achieved superior performances for all regions compared to the JLF

model. Here again, there was no apparent overall best model across

all regions.

Interestingly, for both the internal and external datasets, the dif-

ferent ensembles did not provide superior results across all regions.

Hence, when considering the computational overhead required by

these models, the individual CNNs appear preferable. However, we

note that the weighting of individual models through nested CV was

not performed and that it could improve the accuracy of the

ensembles.

The main errors of the CNN models were either an underlabeling

of the ROI or the mislabeling of another brain structure partly resem-

bling the ROI. Typically, underlabeling can be primarily diagnosed by a

decrease in DSC whereas mislabeling (when it happens far from the

ground truth label) can be diagnosed by a sharp increase HD value.

Examples of these errors visualized on a normalized SW image of the

external dataset are presented in Figure 6.

For both the internal and external datasets, the STN had the low-

est performances. As noted in Section 2.2, the STN is notoriously dif-

ficult to segment at 3 T (Le Berre et al., 2019). With the given slice

thickness of the SW images and the contrast obtainable with a 3 T

MRI scanner, the borders of the STN can be ambiguous and the man-

ual labeling may lack precision compared to other regions. Nonethe-

less, most CNNs outperformed the JLF models and high correlations

between regional SWI intensities extracted from STN supports their

validity for extracting regional signal.

Regional SWI intensities and volumes obtained from the segmen-

tation were significantly correlated with those obtained from ground

truth labels across all regions in both the internal and external

datasets, aside from a few exceptions. Notably, some models provided

STN volumes that were not significantly correlated with ground truth

volumes. Therefore, our results support the use of CNNs for

F IGURE 6 Examples of typical mislabeling and underlabeling errors on a normalized SW image of the external dataset. (a, e) normalize SW
image without labels, (b, f) manual labels, (c, g) and (d, h) examples of typical mislabeling from CNN models. a–d: axial view. e–h: coronal view.
White arrows indicate underlabeling, and the black arrow indicates mislabeling
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extracting signal intensities and volume estimates for the ROIs, how-

ever, the segmentations should be carefully inspected, especially

when estimating STN volumes. Ultimately, test–retest validation will

be necessary to ascertain the validity of these models for performing

volumetric analyses, but we note that the volume estimates obtained

with the CNNs and which were significantly correlated with ground

truth are in line with previous reports (He et al., 2017; Langley et al.,

2015; Li et al., 2019).

4.2 | Individual versus combined prediction

In both the internal dataset external datasets, most individual predic-

tion models achieved significantly higher DSCs compared to combined

prediction across all regions. Hence, even though we have used a loss

optimized to favor small regions in the case of combined predicton,

our results indicate that the segmentations derived from individual

prediction are equal or superior. Although training multiple models

can significantly increase the total training time, the prediction of all

regions remained time-efficient (<1 min). Hence, in scenarios where

time is not critical, our results indicate that individual prediction is

preferable.

4.3 | Region localization

One major issue in the training of CNNs for the segmentation of volu-

metric data comes from the sheer size of the models and data

involved. Due to the large dimensionality of modalities such as MR

images (>100,000 voxels), small patches (3D models) or slices

(2D models) have to be extracted and processed individually to allow

the model and data to fit in memory during the training, which is com-

putationally inefficient when only target regions are required. The 2D

models which span a large view are especially relevant when global

context can help the segmentation task, however, this comes at the

cost of losing 3D information on the structure to be segmented.

Hybrid 2D models which aggregate multiple 2D models trained with

mutually orthogonal slices have been used to address this issue and

have been shown to perform remarkably well in whole-brain segmen-

tation tasks (Roy, Conjeti, et al., 2019). However, in the specific case

where the global context can easily be resolved and is not necessary

to improve the segmentation process, the problem can be locally con-

strained, thus providing models which are more specific to the regions

to be segmented. Following this principle, in this work we trained

models dedicated to the localization of the ROIs from low-resolution

images to resolve the global context. A similar approach was also

recently used by Han, Carass, He, and Prince (2020) for the anatomi-

cal parcellation of the cerebellum. Although coregistration with a tem-

plate could also be used (Kim et al., 2020), we found that using a CNN

for region localization was computationally more efficient and robust,

as we have previously experienced that coregistration with tools such

as FSL's FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002) could fail

unexpectedly. Our results indicated that the COM could be identified

within 3 mm, which corresponds to the resolution of the down-

sampled SW images used for the localization.

4.4 | Limitations

The application of CNNs to the problem of image segmentation is rap-

idly evolving. Recent advances such as attention mechanisms, for

example, multi-scale attention (Qin et al., 2018), self-attention (Fu

et al., 2019), or squeeze and excite (Roy, Navab, & Wachinger, 2019),

have not been evaluated here and may improve the models included

in this work. Advances are often evaluated in a specific context

(e.g., 2D images) or task (e.g., segmentation of whole-brain or brain

tumors) and their effectiveness in different settings remains to be

thoroughly evaluated and should be part of future work. Nonetheless,

the current study provides a strong comparative baseline and paves

the way for such evaluation in the specific task of segmenting deep

brain nuclei from iron-sensitive MRI.

As the range of SWI intensities can vary drastically depending

on scanner, sequence or the actual implementation details of the

algorithm used for the calculation of the SW images, some form of

normalization is necessary to bring the image intensities approxi-

mately in the same domain. It is also a common preprocessing step

in many CNN segmentation pipelines. Unfortunately, the models

presented here did not initially generalize well on the external test

dataset when using only minimal preprocessing (i.e., standardization),

and empirically aligning the intensities of the region of interest with

those of the training dataset was found to be the most straightfor-

ward approach to solve this issue. Contrast- agnostic strategies have

recently been introduced to address this (Benjamin et al., 2020),

however, as previously stated, the general issue of domain shift in

CNN-based segmentation is currently unresolved and is beyond the

aims intended by this work. We note that our normalization

approach did not specifically aim to solve this issue, but was primar-

ily used to improve image quality by removing nonbiological low-

frequency fluctuations and provide a normalization less sensitive to

outliers.

5 | CONCLUSION

We have presented an evaluation of multiple CNN architectures for

the labeling of deep brain nuclei from SW images, including ensembles

of these models, and a multi-atlas segmentation model as a non-CNN-

based reference. In our internal dataset, all models performed with

high accuracy. In addition, our results in an external dataset indicate

the CNNs provided more accurate segmentation on unseen data com-

pared to a reference multi-atlas segmentation model. Furthermore,

we have shown that individual prediction can be more accurate than

combined prediction for small ROIs. The CNNs presented here repre-

sent a strong alternative to manual labeling for the segmentation of

deep brain nuclei from SW images. The source code is freely available

at https://github.com/mui-neuro/swi-cnn.
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