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Abstract 

Background:  A novel RNA coronavirus was identified in January 2020 as the cause of a pneumonia epidemic affect‑
ing the city of Wuhan; it rapidly spread across China.

Aim of the review:  The aim is to discuss the potential efficacy of some pharmacologically known pharmacological 
antidotes (N-acetylcysteine; hyperbaric oxygen; deferoxamine; low-dose naloxone) for the management of COVID-
19-associated symptoms and complications.

Method:  An extensive search was accomplished in Medline, Embase, Scopus, Web of Science, and Central databases 
until the end of April, 2021. Four independent researchers completed the screening, and finally, the associated studies 
were involved.

Conclusion:  The current proof hinders the experts for suggesting the proper pharmacological lines of treatment of 
COVID-19. Organizations, for example, WHO, should pursue more practical actions and design well-planned clinical 
trials so that their results may be used in the treatment of future outbreaks.
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Introduction
Early in January 2020, a novel RNA coronavirus was 
identified as the cause of a pneumonia epidemic affect-
ing Wuhan, spreading rapidly across China, then across 
the world, with the quickly increasing every day number 
of established new cases [1–3]. Up to 28 March 2020, the 
death of 26,495 individuals worldwide and infection of 
more than 570,000 were caused by COVID-19 [4].

The World Health Organization (WHO) named coro-
navirus disease 2019 as COVID-19. It has been declared 
as a pandemic because of its widespread infectivity and 
highly contagious rate. Respiratory and enteric infections 
are the typical presentation of the human coronaviruses 

[5, 6]. The main presentation of infection with COVID-19 
is the flu-like symptoms such as fever, cough, and asthe-
nia, resembling other coronaviruses [7, 8]. Severe lung 
injury has been pronounced at all ages, which can pre-
cipitate acute respiratory failure with high fatality rates. 
The virus is more probable to cause severe manifestations 
in some high-risk individuals, such as the elderly or those 
affected by multiple previous morbidities, these in the 
form of acute respiratory distress syndrome, interstitial 
pneumonia, and subsequent multi-organ failure [9].

COVID-19 is mainly a disease with respiratory mani-
festations, but it is important for clinicians to be aware 
of the increasing reports of thrombotic and cardiovascu-
lar complications which are recognized during infection 
with COVID-19. The proinflammatory immune response 
with high levels of inflammatory processes which is 
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present in most infected cases is associated with hyper-
coagulable state [10].

Management of the infected cases is mainly sympto-
matic and supportive [11–14]. Most available therapeutic 
options for managing COVID-19 are based on the expe-
riences regarding treatment of SARS-CoV and MERS-
CoV. The WHO guidelines of treatment of infected cases 
are supportive care including oxygen therapy in addition 
to fluid therapy and antibiotics for treating secondary 
infections, with social isolation of the confirmed and sus-
pected patients for COVID-19 [15].

The purpose of the present mini-review is to discuss 
the potential efficiency of some pharmacologically 
known antidotes in alleviating the clinical manifesta-
tions of COVID-19 contagion with a brief discussion 
of their mechanisms to counteract the symptoms of 
COVID-19 infection.

Main text
Methodology
Two groups of investigators were working indepen-
dently for the study selection. A search was performed 
using the following databases: Science Direct, PubMed, 
Scopus, Medline, Google Scholar, and Web of Science. 
Any discrepancies were resolved through consensus. 
All articles which were supposed potentially author-
ized were retrieved for full-text reviews. We limited our 
search results to publications in English and excluded 
abstracts from conferences and observations. The key-
word “coronavirus” was paired with coronavirus and/
or COVID-19 was paired with one or more of “ARDS,” 
“N acetyl cysteine,” “hyperbaric oxygen,” “deferoxamine,” 
“low dose naloxone,” and “methylene blue” to obtain 
published articles up till October 2020. No language 
restraint was imposed.

Discussion
The COVID-19 pandemic is caused by the coronavirus 2 
(SARS-CoV-2) that belongs to the Coronaviridae family. 
This family has been accountable for two viral epidem-
ics recently; the first one was during 2003 due to severe 
acute respiratory syndrome coronavirus (SARS) [16]. The 
second outbreak was during 2012 due to the spread of 
coronavirus (MERS-CoV) [17].

Recently, severe acute respiratory syndrome (SARS-
CoV-2), a novel strain of fatal coronavirus, struck China 
mainly in Wuhan. It is a beta type of coronaviruses pro-
posed with the name (family: Coronaviridae). This novel 
strain of coronavirus managed to spread within a very 
short period of time over a wide geographic location. On 
February 28, 2020, the total number of confirmed nCoV-
19 infections worldwide was 83,652, and the number of 
deaths is more than 3000 [18].

Coronaviruses (CoV) are enveloped viruses that con-
tain non-segmented, positive-stranded genomic RNA 
[19]. These viruses are characterized by being pleomor-
phic particles, sized from 80 up to 120 nm, and their 
replication cycle entirely occurs in the cytoplasm [20]. 
An innovative coronavirus 2019 (nCoV-19) has been 
recently identified in humans that was responsible for 
thousands of deaths during the period from January to 
March 2020 [21]. Furthermore, CoVs were established to 
be the causal of the Middle East respiratory syndrome 
(MERS-CoV) and SARS-CoV-2. Serologically, there are 
three strains of this virus that have been reported up 
to date. Two strains which are HCoV-229E and HCoV-
OC43 have been identified in 1960 causing the well-con-
trolled common cold symptoms. The third coronavirus 
that is life-threatening and may lead to lethal pneumonia 
is called SARS-CoV [22].

COVID-19 virus transmission can occur primarily 
direct through contact with the diseased cases or indi-
rect through contact with objects used by the infected 
people [5, 6, 23]. Respiratory contagions can be occur 
through droplets of diverse sizes (droplet particles; sized 
> 5–10 μm and droplet nuclei; sized < 5 μm) [24]. Stud-
ies on cultured COVID-19 virus from a stool specimen 
revealed its feco−oral transmission [25, 26].

The sequence of the virus life within the host consists 
of 5 stages: attachment, penetration, biosynthesis, then 
maturation and lastly release. At first (attachment) is the 
binding of the viruses to the host receptors, entering host 
cells through membrane fusion (penetration) or endocy-
tosis. Immediately when the viral contents were released 
inside the host cells, the viral RNA enters the nucleus 
for replication. Viral mRNA is used to make viral pro-
teins (biosynthesis). Finally, the novel viral particles are 
designed (maturation) and released [27].

Therapeutic management of COVID‑19
Presently, there is no evidence from randomized clinical 
trials (RCTs) that any potential therapy improves out-
comes in patients with either suspected or confirmed 
COVID-19. There are no clinical trial data supporting 
any prophylactic treatment. More than 3 hundred vigor-
ous clinical treatment trials are in progress [28].

The treatment protocols for severe cases of SARS 
include supportive care with mechanical ventilation and 
ICU admission [29], depending on the hypothesis of 
cytokine deregulation, and treatment guidelines includ-
ing the administration of steroids, aiming to modulate 
the exacerbated cytokine response [30].

Recent guidelines establish the usage of some anti-
bacterial drugs for prevention of secondary bacterial 
contagions and steroids for modulation of cytokine 
deregulation in addition to ribavirin which is a nucleoside 
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analog with a broad antiviral activity [25, 26]. Several 
challenges were made to study in  vitro susceptibility to 
various complexes with potential anti-SARS activity.

Hyperbaric oxygen therapy
Hyperbaric oxygen therapy (HBOT) is the primary anti-
dotal therapy for acute carbon monoxide toxicity. It is a 
sort of management considered to increase the oxygen 
level in the blood delivered to the tissues. It is defined as 
breathing of 100% oxygen at elevated atmospheric pres-
sure than the sea-level. The pressure applied usually is 2 
to 3 times the atmospheric pressure at sea level [31]. It 
can be delivered either in a mono-place or a multi-place 
chamber. Mono-place chambers are condensed with pure 
oxygen accepting single case at one time, while multi-
place chambers are pressurized with air accommodating 
multiple cases that can breathe throughout a tight-fitting 
face or endotracheal tube as clinically indicated. Manage-
ment generally lasts for up to 8 h, depending on the indi-
cation, and may be accomplished 1 to 3 times on a daily 
basis [32].

Presently, there are numerous FDA accepted circum-
stances for the practice of HBOT in clinical toxicology as 
carbon monoxide poisoning, as well as gas and air embo-
lism, clostridial myositis, crush injury, compartment 
syndrome, decompression sickness, diabetic foot, and 
chronic intractable osteomyelitis [33].

Therapeutic mechanisms of action of HBOT are estab-
lished on Henry’s Law, which declares that the concen-
tration of an interfacing gas (oxygen in the alveoli of the 
lungs) in a liquid (pulmonary blood) is comparative to the 
interfacing gas pressure. The final oxygen uptake and bind-
ing to the hemoglobin in red blood cells of the pulmonary 
capillary are reliant on the diffusion of dissolved oxygen 
across alveolar-capillary membrane to blood flow [34].

Hyperbaric oxygen therapy produces the rise of both 
the hydrostatic pressure and the partial pressure of oxy-
gen during which the arterial oxygen tension classically 
exceeds 1500 mm Hg, consequently rising the dissolved 
oxygen content of plasma over the required to meet the 
cellular resting requirements without any involvement 
from the hemoglobin binding oxygen [32].

Rationale of hyperbaric oxygen therapy in management 
of COVID‑19  Progressive hypoxemia is a characteristic 
sign in the clinical course of severe COVID-19 pneumo-
nia. The latest data suggest that interstitial and alveolar 
inflammation amid the thickened alveolar-capillary mem-
brane was the major pathological alteration in COVID-19 
pneumonia [35, 36]. Moreover, systemic metabolic rate 
was found to be continuously rising owing to the systemic 
inflammation, so the amount of oxygen transported by 
hemoglobin cannot meet the body’s metabolic needs. The 

body is in a “chronic” hypoxic state of systemic tissues; 
therefore, in some patients, the extracorporeal membrane 
oxygenation may still be insufficient to correct hypoxia in 
deep tissues and vital organs [37, 38].

Several studies suggest certain proteins of the novel 
virus could attack the 1-beta chain of hemoglobin, con-
sequently dissociating iron from porphyrin resulting in 
destruction of the hemoglobin as a cause of hypoxemia 
in COVID-19. This attack would result in a drop in the 
hemoglobin available to carry oxygen and also shift the 
oxygen dissociation curve to the left hence producing a 
picture comparable to carbon monoxide poisoning [39].

The application of HBOT to pneumonia cases due to 
COVID-19 is of great effectiveness through the various 
following mechanisms:

1.	 It enhances multiple stages of oxygen diffusion by 
increasing the dissolved oxygen in the alveolar and 
inflammatory barriers with subsequent increasing 
the amount of oxygen dissolved in blood plasma, 
so raising the oxygen saturation of hemoglobin in 
red blood cells. Thus, it delivers satisfactory blood 
oxygen levels virtually in comprehensive absence 
of lung-blood exchange [40]. Moreover, it solves 
the imbalance between oxygen prerequisite and 
oxygen available through providing the body with 
an intermission of adequate aerobic metabolism 
for the deep hypoxic tissues and important organs 
playing a good role in supporting treatment [41].

2.	 It has a definite immunosuppressive effect; it can 
reduce the intensity of the inflammatory response 
to stimulus-induced pro-inflammatory cytokine 
construction. It encourages cytokine downregula-
tion, decreasing IL-1, IL-6, and TNFα levels [42]. 
The immunosuppressive outcome of HBOT might 
be owing to variations in the distribution of mono-
nuclear cells and macrophage function impairment 
which is a significant origin of IL-1 and TNFα. Fur-
thermore, HBOT was instituted to persuade apop-
tosis in other cytokine-producing cells reducing 
cytokine manufacture [43]. The immunosuppression 
of the pro-inflammatory interleukins IL-1 and IL-6 
have beneficial effects in various inflammatory dis-
orders including viral contagions [11, 12, 44]. HBOT 
declines TLR expression, NF-kB signaling trails, 
and the expression of these molecular platforms in 
diverse tissues [45, 46].

3.	 It has several bactericidal, bacteriostatic effects, sup-
presses toxin production, or strengthens resistance 
against contagions. HBOT inhibits the adherence of 
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neutrophils to the endothelium of vessels, reducing 
inflammation, free radicals manufacture, vasocon-
striction, and tissue destruction [47, 48].

4.	 It can noticeably prevent the variation in the coagu-
lation cascade in an experimental model of multiple 
organ failure syndrome. In a study done by Imperatore 
et al. [49], they explained that HBOT could reduce the 
stimulation of the coagulation system, the inhibition of 
fibrinolysis, and platelet hyper-aggregation.

5.	 It has a great beneficial role in the management of 
various thrombotic events as cerebral thrombosis 
since it relieves brain edema by its vasoconstric-
tion action and counteracts the vasodilatation of 
the capillaries in the hypoxic tissues decreasing the 
permeability of BBB. HBO also reduces the swelling 
of the neurons by improving their metabolism [50]. 
COVID-19 may persuade to both venous and arterial 
embolisms owing to excessive inflammation along 
with hypoxia, immobilization, and diffuse intravascu-
lar coagulation [51].

A recent systematic review summarized that overall, 
HBOT seems to be a safe and effective method of oxy-
genation in patients with COVID-19. However, its large 
space occupation and lack of availability in large num-
bers may limit its use in the settings of a pandemic where 
many patients require oxygenation, and this shortcoming 
needs to be addressed. There is limited knowledge and 
evidence regarding the effects of HBOT in the settings of 
COVID-19, and further well-designed trials with larger 
sample sizes are recommended to carefully assess the 
outcomes of this treatment modality and compare it with 
other oxygenation methods [52].

Management protocol of HBOT in COVID-19 according 
to the recent recommendations summarized that HBOT 
is indicated in confirmed COVID-19 patient with SO2 
saturation ≤ 90%, with signs of hypoxemia or pulmonary 
hypoxia provided no respiratory distress, pulmonary 
shock, emphysema, air cysts, or bullae, and untreated 
pneumothorax. The treatment protocol is carried out 
with 1.45 atmospheric pressure sessions of 120 min, once 
per day. The patient and the operator must have all the 
equipment required for personal safety and isolation. 
Regular evaluation of oxygen saturation is essential; CT 
chest and ultrasound are obligatory to evaluate the clini-
cal response to treatment after the 5th session [53].

There may also many side effects of HBOT such as mid-
dle ear barotrauma (MEB), sinus/paranasal barotrauma, 
dental barotrauma, central nervous system (CNS) oxy-
gen toxicity, pulmonary oxygen toxicity, hyperoxic myo-
pia, cataracts, retrolental fibroplasia following hyperoxic 

exposure, claustrophobia or increase in blood pressure, 
pulmonary edema, and hypoglycemia in diabetics [54]. 
Furthermore, oxygen toxicity due to excess free radical 
generation, barotrauma to the middle ear, pneumotho-
rax, and inert gas uptake induced narcosis are the com-
monly reported complications of HBOT.

N‑acetyl cysteine (NAC)
It is an antidote of paracetamol overdose; it is an acetylated 
precursor of L-cysteine amino acid where acetyl group 
attached to the nitrogen atom. It has been also approved 
in the management of various disorders involving; doxoru-
bicin cardiotoxicity, ischemia-reperfusion cardiac injury, 
bronchitis, acute respiratory distress syndrome (ARDS), 
HIV/AIDS, and psychiatric disorders [55] (Fig. 1).

The World Health Organization recognizes NAC as a 
pertinent and a significant medication required in a very 
basic health system. It may be administered orally or 
intravenously or in a nebulizer form as in cases of acute 
lung diseases [56]. It has numerous advantages: as is con-
sidered a stable drug, commercially available at a low 
price and a safe drug with low bioavailability [57].

Mechanism of action
NAC has shown mucolytic, antioxidant, and anti-inflam-
matory properties.

1.	 Mucolytic effect

It has a mucolytic effect by breaking the disulfide 
bridges between macromolecules of mucous and 

Fig. 1  Structure of the N-acetyl cysteine (NAC)
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reducing the heavily cross-linked mucus, resulting in 
condensed mucous viscosity [56, 58].

2.	 The antioxidant effect

N- Acetyl cysteine is a significant antioxidant and a 
cytoprotective mediator that reloads intracellular glu-
tathione. It has been shown to have a defensive role 
against cardiovascular complications [55]. This action 
is through complex methods by acting as a glutathione 
precursor and being a precursor of a thiol group [59, 60].

The antioxidant effect can be related to at least three 
different mechanisms

	 I.	 A direct antioxidant effect: NAC can act as a direct 
antioxidant or direct scavenger for many oxidant 
radicals such as “NO2, ˙OH, and CO3” and non-
radical oxidants such as hypochlorous (HOCl) and 
related species which are oxidants formed from 
activated neutrophils and monocytes through 
the activity of myeloperoxidase (MPO) that are 
involved in the pathophysiology of some lung dis-
eases [61].

	II.	 An indirect antioxidant effect: as a result of NAC’s 
capability to act as a cysteine precursor, in which it 
serves as a substrate for the synthesis of glutathione 
(GSH) in the body, thus preventing the damaging 
effects in some organs like; liver, skin, lung, and 
brain [62].

	III.	 GSH is a direct antioxidant for a lot of antioxidant 
enzymes including glutathione (reductase, peroxi-
dase, glyoxalases 1 and 2, peroxiredoxin, transferase) 
and (membrane-associated proteins in eicosanoid 
and glutathione metabolism) MAPEG [63]. NAC 
also augments the glutathione content of the tissues 
and tissue GSH-to-oxidized GSH ratio [59, 60].

	IV.	 A breaking effect on disulfides and reserve ability 
of thiol pools, which regulates the redox state; it is 
the unique reducing effect of NAC. This releases 
free thiols, which have better antioxidant activity 
and enhance the GSH synthesis, besides reduced 
proteins, which have an important direct anti-
oxidant activity in numerous cases, as for mercap-
toalbumin. The reducing action of NAC also can 
explain its mucolytic activity in reducing heavily 
cross-linked mucus glycoproteins [57, 64].

3.	 Anti-inflammatory effect

NAC inhibits the inflammatory cytokines including; 
tumor necrosis factor-alpha (TNFα), IL-1β, and IL-6. 
In addition, it can reduce the activation of transcription 

factors NF-κB which is responsible for the initiation of 
inflammatory process and causes downregulation of 
IL-10 mRNA and protein expression in NAC-treated 
cells which cause further modification of the inflamma-
tory cytokine profile [56, 65].

Rationale of the potential efficacy of N acetyl cysteine in 
the management of COVID‑19  NAC was described 
to reduce the manifestations of influenza-like illness in 
humans and administration of a dose of 100 mg/kg can 
contribute to the success of the management of contami-
nated cases with the 2009 pandemic H1N1 virus [66]. 
The following are the beneficial mechanisms of NAC in 
COVID-19

1.	 An anti-inflammatory effect is used in acute respira-
tory distress syndrome (ARDS) to protect cells from 
inflammation and apoptosis, so it may reduce the 
overall intensive care admission rate [67].

2.	 Antioxidant effect of NAC can potentially ameliorate 
COVID-19 induced oxidative stress complications as 
ARDS and multi-organ failure [68]. Also, the antioxi-
dant effect of NAC can counteract the unfortunate 
antioxidant defense that present in patients with old 
age, smoking and chronic debilitating disorders, and 
may grave the outcome of COVID-19 due to the 
lack of endogenous glutathione [37, 38, 69]. proved 
that NAC increases the level and the activity of glu-
tathione reductase (GR) enzyme, and an increased 
level of this enzyme can increase glutathione level in 
about 40% of COVID-19 cases.

3.	 Antiviral effects were supported by several studies 
that explaining its anti-viral activity against influ-
enza A strains [70, 71]. It raises GSH levels which can 
diminish the viral load by inhibiting the viral repli-
cation, inhibits the production of pro-inflammatory 
molecules (CXCL8, CXCL10, CCL5 and interleu-
kin-6 (IL-6)), and reduces the activation of transcrip-
tion factors NF-κB [72].

4.	 NAC can ameliorate ribavirin therapeutic index, 
either by declining its toxicity or even allowing the 
use of a lower dose of the ribavirin, a previous report 
was conducted on mice illustrated that administra-
tion of NAC combined with antiviral therapy had a 
better response, both have a diverse mechanism of 
action that improves the outcome and reduce the 
severity of illness [71].

NAC treatment regimen
NAC is recommended to use in high doses 600-900 mg 
twice daily in COVID -19 to decline the complications 
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and to improve the outcome [68]. As NAC is considered 
a safe drug with low toxicity and mild side effects includ-
ing nausea, vomiting, tachycardia, and pruritus, there is 
no fear to administrate it in high doses [55].

Lastly, Mohanty et  al. [73] concluded that NAC has 
proven antioxidant activity which is useful in attenuating 
the immune activation and cytokine storm in animal and 
human studies. It is a safe, cost-effective, widely available 
drug, and its mechanism of action hypothetically suggests 
its potential role in the management of cytokine storm in 
COVID-19. However, with the limited evidence currently 
available, it would be imprudent to formulate any recom-
mendation regarding the use of NAC in COVID-19. Any 
future recommendation regarding its use in this condi-
tion will depend on the outcome of the ongoing clinical 
trials. There are also found two case series related to the 
use of NAC in COVID-19 [74, 75].

Naloxone and low‑dose naltrexone (LDN)
Naloxone
Naloxone is an official primary antidote of opioid over-
does; it acts at the brain μ-opioid receptor as a neutral 
competitive antagonist [76], Naloxone has great selectiv-
ity for the μ opioid receptor ([77] ), in addition to its abil-
ity to bind to kappa and sigma opioid receptors. Besides 
its effects against exogenous opioids, the activity further 
extends to the endogenous endorphins [78]. It is one of 
the components of the “coma cocktail” which is a part of 
empirical treatments to correct altered mental status of 
unknown cause [79]. It can be used in the newborn for 
respiratory depression reversal that occurs due to trans-
placentally acquired narcotics [80].

It was established that naloxone produces a favorable 
action on respiratory mechanics, pulmonary function 
test parameters, and oxygen metabolism of cases with 
respiratory failure, and it can considerably improve the 
general state of the body [81]. ChuiLi [82] reported that 
naloxone combined with the non-invasive ventilation can 
rapidly improve the clinical complaints and arterial blood 
gasses findings in respiratory failure associated with pul-
monary encephalopathy. Newborns with respiratory 
failure also respond better with using naloxone in large 
doses, without any side-effects [83].

Ayres et al. [84] was the first one who explained the role 
of using naloxone in respiratory failure. Naloxone creates 
an increase in oxygen saturation in excess of the increase 
in ventilation, so better ventilation-perfusion matching is 
established in the acute illnesses with acute respiratory 
failure [84].

Chemically, Naloxone is a synthetic derivative of oxy-
morphone (C19H21NO4) in which the N-allyl group 
replace N-methyl one [42]. There are numerous routes 

in which naloxone can be administered, either intrave-
nously, intramuscularly, subcutaneously, and intranasally. 
Oral forms of the drug has rapid first-pass metabolism 
and thus do not provide the necessary efficacy resulting 
in extensive naloxone metabolism before blood stream 
access [85]. The recommended original dose of naloxone 
ranges from 0.04 to 0.4 mg [86].

Naloxone had US Food and Drug Administration 
(FDA) approval in 1971 (off-patent 1985) as Narcan I.V. 
It is on the core list by WHO of the crucial medicines 
as it is regarded as an example of the ideal antidote [87]. 
Auto-injector naloxone has been approved by the US 
FDA for usage in 2014 (Edwards, [88]) as Evzio, and in 
November 2015, Narcan Nasal Spray became the first US 
FDA-approved non-injectable naloxone product for the 
treatment of opioid overdose [89].

Naloxone as a neutral antagonist, do not have risk for 
overdose [90] .In non-dependent opioids patients, nalox-
one has a high tolerability profile as opioid withdrawal is 
the most frequently reported adverse effect with symp-
toms of nausea, irritability, vomiting, and anxiety [91].

Low dose naltrexone (LDN)
Naltrexone has the highest μ-opioid receptors affin-
ity, like naloxone being pure opioid antagonist that was 
approved by FDA for the treatment of opioid addiction 
in 1984 [92]. It is comparable to the naloxone concerning 
the structure and the function, but with better oral bioa-
vailability and a longer biologic half-life [93]. Chemically, 
naltrexone is 17-(cyclopropylmethyl)-4,5-epoxy-3,14-di-
hydroxymorphinan-6-one [94].

The term low-dose naltrexone (LDN) refers to doses 
about 1/10th the size of the dose used normally in opioid 
overdose; typically 4.5 mg though a variable dose a limited 
milligrams below or above that communal value (50 mg) 
[95, 96]. In the contrary to higher doses of naltrexone, 
LDN cause increasing the endorphins release in the body 
through its action on the β-endorphin receptors [97].

Rationale of the potential efficacy of LDN in the manage‑
ment of COVID‑19 

1.	 LDN has the ability to reduce pro-inflamma-
tory cytokines as it was found to be allied with a 
decline of plasma concentrations of transforming 
growth factor (TGF)-β which belongs to a group of 
cytokines that is together called ‘The super-family 
TGF-β’, and also responsible for regulating epithelial 
cell differentiation, expansion , organization, motil-
ity, and apoptosis [98].

2.	 LDN has the capability to raise anti-inflammatory 
cytokines. It is established that COVID-19 cases were 



Page 7 of 12El Shehaby et al. The Egyptian Journal of Bronchology            (2022) 16:5 	

allied with increased level and activity of TGF-β due 
to the virus-induced violent immune and inflamma-
tory reactions with the dysregulation of the coagula-
tion and fibrinolytic pathways that extremely stimu-
late the latent TGF-β in the lungs and the blood of 
the contaminated cases [99]. COVID-19 contagion 
is linked with massive increase of neutrophil infiltra-
tion into the lungs where the neutrophils can release 
the stored TGF-β, being a strong chemokine-like 
molecule; so, it can engage more neutrophils into the 
lung resulting in a vicious cycle. LDN can ameliorate 
edema and fibrosis in the lungs of COVID-19 cases, 
due to activation of TGF-β which is one of the known 
causes of lung fibrosis and as well as disturbances in 
the fluid homeostasis in the lung [100]; due to uncon-
trolled inflammatory reactions, “cytokine storm” ulti-
mating in edema and fibrosis in the lungs in COVID-
19 cases [101].

3.	 LDN is an immune-modulator that decreases the 
number of TH1 cells and TH17 cells results in 
immune–balance with the regulation of cytokines 
release [36]. Among cytokines concerned in the 
storm allied with COVID-19 are those involved in T 
helper 17 (TH17) type responses as evidenced by the 
remarkably high number of TH17 cells in the periph-
eral blood of a case with severe COVID-19 contagion 
[35]. TH17 cells themselves produce IL-17, G-CS, 
IL-21, IL-22, IL-17 IL-1β, IL-6, and TNFα interleu-
kins. IL-17 has extensive pro-inflammatory proper-
ties on the induction of cytokine G-CS (responsible 
for recruitment of neutrophils) and IL-22 (which 
stimulates mucins, fibrinogen, anti-apoptotic pro-
teins, and serum amyloid A) [102].

4.	 LDN is a modulating tool of the neuroimmune axis 
causing higher reactivity of immune cells mediated by 
transient increases in the opioid growth factor [103, 104] 
. The classical effect of naltrexone at low-dose range is 
the transient opioid receptor blockade resulting in up-
regulation of opioid signaling [105]. Experimental mod-
els guarantee the role of LDN in the upregulation of the 
endogenous opioid system through raising the levels of 
beta-endorphin and met-enkephalin (opioid growth fac-
tor) [106].

5.	 LDN is considered as “Enhancer of quality of life” due 
to its probable neuropsychological theoretical ben-
efits [105] as upregulated endorphins have neuropsy-
chological benefits arises from the well-reported 
relations between mu-opioid receptors and mesen-
cephalon dopamine neurons [103, 107]. The field of 
psychoneuroimmunology (PNI) illustrates the link 
between mood and immunity allowing mutual influ-
ences between the brain and the immune system 
[108, 109].

6.	 LDN may promote both the prevention and the man-
agement of viral disorders and bacterial contagions 
through being immune functions enhancer and espe-
cially the natural killer cell activity [110]. Cytokines as 
chemical messengers are made by immune cells that 
can be either increase or decrease the immune func-
tion. The body’s capability to keep a balance between 
cytokines that promote inflammation and those that 
reduce it is responsible for the harmonization between 
the diverse responses of the immune system [111].

The potential side effects of naloxone in the context 
of COVID‑19
A recent meta-analysis focused on probable troubles 
subsequent to naloxone management, precisely review-
ing literature related to whether naloxone increased 
the risk of seizures after treatment of tramadol poison-
ing [112]. Furthermore, a recent study in 2017 stated on 
2 unblinded randomized controlled articles comparing 
the frequency of adverse measures with either intranasal 
naloxone via a mucosal atomizer or intramuscular nalox-
one, involving anxiety and/or violence, nausea, vomiting, 
and headache [113].

Deferoxamine (Desferal)
Deferoxamine is an iron-chelating mediator used in the 
handling of acute iron poisoning and chronic iron over-
load. It belongs to heavy metal antagonists as it chalets 
iron by creating a stable complex which averts additional 
biochemical reactions of iron. It is available in vials for 
any form of injection.

Rationale of the potential efficiency of deferoxamine in the 
management of COVID‑19 

1.	 Decreasing the iron availability by deferoxamine 
causing decline of viral multiplication [114]. Further-
more, it is declared that iron overload is also impli-
cated as a hazard element for rapid evolution of the 
illness [115].

2.	 Inhibiting the synthesis of DNA through inactivation 
of iron-dependent ribonucleotide reductase, thus 
altering the viral multiplication [116].

3.	 Reducing the development of free hydroxyl radi-
cals [117]. Deferoxamine is a well-known antioxi-
dant agent. High serum level of iron is allied with 
increased oxidative stress particularly in viral-
infected cases [118, 119].

4.	 Ameliorating the cardiac injuries of severely ill 
COVID-19 cases throughout its antioxidant fea-
tures [14].
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5.	 Preventing the organ injury and reduce the fatality 
rate in a variety of experimental and clinical models 
of ischemia–reperfusion injury [120].

Adverse effects

•	 Local responses such as swelling and tenderness at 
the injection site

•	 Systemic reactions for example allergic reactions, 
arthralgia, fever, headache, myalgia, or asthma

•	 Digestive troubles as abdominal ache, nausea, vomit-
ing, and diarrhea

•	 Cardiovascular reactions as tachycardia, shock, and 
hypotension

•	 Other adverse properties like blood dyspraxia, 
cramps in the leg, and some neurological disorders 

Fig. 2  Deferoxamine action (https://​europ​epmc.​org/​artic​le/​med/​32681​497#)

https://europepmc.org/article/med/32681497#
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involving faintness, peripheral neuropathy, paresthe-
sia, and encephalopathy

•	 Ocular and auditory dilemma

Desferal-iron complex is excreted predominantly 
throughout the kidney, so it is contraindicated in cases 
with severe renal troubles (Fig. 2).

Conclusions

–	 Deferoxamine is an iron-chelating agent. The use of 
deferoxamine seems to be of very limited benefit in 
selected patients in critical COVID-19 with vague 
mechanism.it needs to be validated especially that its 
adverse effects are multiple and may be fatal.

–	 Besides the antidotal action of naloxone and nal-
trexone as a pure opioid antagonist, naloxone 
may show some benefit but still there is limited 
evidence-based information about this and the 
authors didnot mention the potential side effects of 
the medication in the context of COVID-19. Maybe 
its use in critical or severe COVID may be benefi-
cial but still this needs validation.

–	 Hyperbaric oxygen therapy (HBOT) is the most 
powerful oxygen therapy known. It can solve 
the problem of hypoxemia more effectively than 
normal pressure oxygen therapy with either high 
flow oxygen inhalation or mechanical ventilation 
as well as its role in improving circulation, altera-
tion of coagulation cascade, and immune sup-
pressive effect. Moreover, it seems that this is a 
rather expensive modality of treatment for very 
selected patients that is not available in most 
centers and requires special expertise. Obviously, 
the pandemic was very widespread rendering the 
use of this modality tremendously limited.

–	 N. acetyl cysteine is considered an essential drug for 
a healthy life, a safe drug with mild side effects. There 
is so limited evidence-based proof for the benefit of 
N-acetyl cysteine in treatment of mild and moderate 
cases of COVID-19 and although side effects are not 
serious but they really upset the patient especially the 
GIT symptoms.

–	 Finally, further large clinical trials are needed to study 
the efficacy of these agents.
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