
 International Journal of 

Molecular Sciences

Review

Chemotaxis Towards Aromatic Compounds: Insights
from Comamonas testosteroni

Yun-Hao Wang 1,2, Zhou Huang 1 and Shuang-Jiang Liu 1,2,*
1 State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of

Microbiology, Chinese Academy of Sciences, Beijing 100101, China; wangyunhao_123@yeah.net (Y.-H.W.);
huangzhou_129@msn.com (Z.H.)

2 University of Chinese Academy of Sciences, Beijing 101408, China
* Correspondence: liusj@im.ac.cn; Tel.: +86-10-64807423

Received: 21 April 2019; Accepted: 30 May 2019; Published: 1 June 2019
����������
�������

Abstract: Chemotaxis is an important physiological adaptation that allows many motile bacteria to
orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli.
Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori,
and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria
belong to α-, γ-, ε-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members
have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas
testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of
aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic
compounds, mainly from investigations of C. testosteroni and other Comamonas species.
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1. Introduction

Aromatic compounds have one or more aromatic rings containing resonance bonds, which make
them chemically inert due to charge distribution over the whole skeleton of the aromatic ring. It has
been estimated that about 25% of photosynthetic products from plants are deposited as lignin, which
is one of the most abundant aromatic compounds on earth [1,2]. Other biogenic aromatic compounds,
such as phenylalanine, tyrosine, tryptophan, many hormones, and signal molecules, play important
roles in the maintenance and regulation of biological processes. Chemically synthesized aromatic
compounds are important raw materials. Benzene, phenol, and toluene are classified as priority
pollutants [3]. The toxicity and mutagenicity of nitroaromatic compounds have been documented [4,5].

Microbial biodegradation is an important process for removal of aromatic pollutants from
environments [6,7]. In addition to metabolic robustness, microbial degradation also relies on the
bioavailability of aromatic pollutants. Bacterial chemotactic responses toward aromatic compounds
have attracted extensive interest [8–10] and are beneficial for bacteria to find more friendly environments
and to degrade pollutants [11–13]. Chemotaxis may also facilitate the transfer of catabolic genes via
motile bacteria to contaminated environments [14], thus promoting the coexistence of biodegradation
and chemotaxis genes. Reviews are available on bacterial chemotaxis regarding stimulus-sensing and
signal-processing [15], on exploring the function of bacterial chemotaxis [16], and on Pseudomonas
chemotaxis [17]. This review is focused on the recent progress made on the study of bacterial chemotaxis
towards aromatic compounds, in particular with Comamonas testosteroni.
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2. The Taxonomy, Ecology, Physiology, and Chemotaxis of C. testosteroni

C. testosteroni belongs to the genus Comamonas that has 21 species (http://www.bacterio.
net/comamonas.html) (Figure 1). The Comamonas species are Gram-negative bacteria belong
to β-Proteobacteria, and are distributed widely in soil, sediments, and garden ponds [18–20].
Based on the IMG database (https://img.jgi.doe.gov/), 11 of the 21 Comamonas species have been
genome-sequenced [21], and mining these genomes indicated that the key genes for hexose
phosphorylation were missing [22]. Thus, unlike Pseudomonas species that prefer to assimilate
carbohydrates for growth, the Comamonas species do not use glucose as a sole carbon source,
but grow well with non-sugar carbon sources such as organic acids and aromatic compounds.
Although Comamonas and Pseudomonas species are different in carbohydrate assimilation, they share
similar ecological habitats, and both are able to metabolize aromatic compounds. Studies have
demonstrated that Comamonas species play an important role in the biological geocycling of nutrients
in environments [23–25], as well as in bioremediation of polluted environments [26–28]. A search on
Web of Science using the key word “Comamonas” revealed more than 1700 publications from 2000
to 2018, and citation of these publication has increased sharply in recent years, which suggests a
growing interest from scientists. The C. testosteroni strain CNB-1 was isolated from activated sludge
and grows using chloronitrobenzene as carbon and nitrogen sources [29]; it has been exploited for the
bioremediation of chloronitrobenzene-polluted soil [30]. The genes involved in the degradation of
chloronitrobeneze were located on a mega-plasmid pCNB1 [31], and the degradation pathway was
identified [32]. Another strain of C. testosteroni, CNB-2, is a derivative from strain CNB-1 from which
pCNB1 was cured [33].
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five chemoreceptors for chemotaxis. However, many environmental bacteria have more gene clusters
and chemoreceptors. Studies show that the number of chemoreceptors in genomes is relevant to
lifestyles, but not to genome sizes [34]. C. testosteroni strain CNB-1 is motile with 1–3 polar flagella and
chemotactically responds to a range of aromatic and other organic compounds (Table 1). In contrast to
E. coli, data-mining of the CNB-1 strain genome revealed two chemotaxis-like gene clusters and 19
putative chemoreceptor genes.

Table 1. Summary of the chemotactic responses of Comamonas species to various organic compounds.

Strain Potential Chemoeffector Refs

Comamonas sp. strain JS765 2-nitrotoluene [35]

Comamonas testosteroni
strain CNB-1

benzoate 2-hydroxybenzoate

[36–38]

3-hydroxybenzoate 4-hydroxybenzoate
2,6-dihydroxybenzoate protocatechuate
vanillic acid vanillin
gallic acid gentisate
phenol catechol
adipate succinate
fumarate pyruvate
citrate malate
α-ketoglutarate cis-aconitate
oxaloacetate isocitrate

Comamonas testosteroni
ATCC 11996

1-dehydrotestosterone pregnenolone

[39]
17α-hydroxyprogesterone androstanedione
11α-hydroxyprogesterone testosterone
21α-hydroxyprogesterone deoxycorticosterone
5-androsten-3β-17β-diol

3. Chemoreceptors of C. testosteroni

According to the well-studied enteric bacteria E. coli and Salmonella enterica, typical chemotactic
responses start with signals generated by transmembrane chemoreceptors, also called methyl-accepting
chemotaxis proteins (MCPs). Upon conformational changes of chemoreceptors, the phosphotransfer
starts from histidine kinase CheA to response regulator CheY [15]. Phosphorylated CheY interacts
with the flagellar switch protein FliM and, as a result, reverses flagellar rotation [40]. The chemotactic
proteins phosphatase CheZ [41], methyltransferase CheR [42], and methylesterase CheB [43] contribute
to signal termination and adaptation. C. testosteroni has a dozen predicted chemoreceptors, one
histidine kinase, two response regulators, and also has phosphorylation and methylation systems.

3.1. Genomic Data-mining of Chemoreceptor Genes

Analysis of the C. testosteroni CNB-1 genome using the MiST.2 database [44] revealed 19
chemoreceptor genes. The putative chemoreceptor genes of other Comamonas genomes were also
explored. For example, C. kerstersii has 25 and C. aquatic 35 chemoreceptor genes. Surprisingly,
C. serinivorans has only one chemoreceptor gene on its entire genome. It would be interesting to know
how this bacterium senses and responds to different environmental signals in the environment.

3.2. Classification of Chemoreceptors from C. testosteroni CNB-1

Based on signaling domain sequences in chemoreceptors, the predicted nineteen chemoreceptors
of strain CNB-1 belong to two major classes, 40H and 36H (Figure 2) [45]. Seventeen of the nineteen
chemoreceptors are assigned to the 36H class. Members of the 36H class chemoreceptors are known to
interact with the chemotaxis signal transduction class F7 [46,47]. The 36H chemoreceptors MCP2201,
MCP2983, and MCP2901 from C. testosteroni CNB-1 were experimentally shown to be involved in
chemotaxis towards di- and tricarboxylic acids and aromatic compounds [36–38]. The only 40H class
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chemoreceptor MCP3986 has recently been identified to be involved in biofilm formation [48]. The last
chemoreceptor, MCP0846, does not match confidently to any classes (Figure 2).
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Besides the signaling domain, the ligand-binding domain (LBD) that senses environmental
stimuli is also used for chemoreceptor classification. Wuichet et al. [50] classified chemoreceptors
according to their topologies into four classes (I–IV). Lacal et al. [51] further distinguished class I as
two subclasses, according to the number of transmembrane (TM) regions of chemoreceptors. The
class IV chemoreceptors can also be divided into two subclasses according to the presence or the
absence of LBDs [51]. As shown in Figure 2, the most abundant topology in C. testosteroni CNB-1 is
class I chemoreceptors that harbor pericytoplasmic LBDs: 12 chemoreceptors belong to class Ia and
two chemoreceptors belong to class 1b. MCP2005 and MCP0955, both containing a cytoplasmic PAS
domain, belong to class II topology. MCP0834 and MCP2342 have one or two TM regions but no LBDs,
so they can be assigned to class III topology. Their functions in chemotactic sensory are still unknown.
MCP0846 has a class IVa topology with two PAS domains and no TM helices (Figure 2).

4. Functional Identification of Chemoreceptors from C. testosteroni

4.1. Bioinformatic Prediction of Potential Ligand-Binding Domains

The LBD sequences are more divergent compared with the signaling domains of chemoreceptors.
According to Ortega et al. [52], more than 80 different LBD types were found in the Pfam 31.0 database.
As shown in Figure 2, there are 10 chemoreceptors equipped with LBDs composed of 4-helix bundles
(4HB_MCP_1 and TarH) in CNB-1. There are four chemoreceptors containing PAS domains: MCP0846,
MCP0955, MCP2005, and MCP3064 (Figure 2). The chemoreceptors MCP3490 and MCP3986 contain
dCache and PilJ domains, respectively (Figure 2). The LBD of MCP4715 is an unknown LBD type
(Figure 2). There is no LBD identified in MCP0834 and MCP2342 (Figure 2), which raised the question as
to how they sense stimulating signals. The diversity of LBDs is the structural basis for chemoreceptors
to recognize diverse environmental signals. Meanwhile, this diversity also resulted in the complexity
and difficulty of LBDs functional annotation, although a variety of ways to annotate them have been
introduced [53].

4.2. Functional Redundancy of Chemoreceptors

Recent studies have shown functional redundancy of chemoreceptors in P. aeruginosa [54] and
other bacteria [55,56]. In C. testosteroni CNB-1, the 19 putative chemoreceptors were individually
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disrupted, and the resulting mutants were tested for chemotaxis towards aromatic and other organic
compounds with semisoft agar plate assays. Results showed that none of these mutants completely
lost chemotactic responses to the tested compounds, although several mutants showed weakened
chemotactic responses. These observations indicated that the chemoreceptors in C. testosteroni were
likely to be functionally overlapping or redundant. A chemoreceptor-null mutant CNB-1∆20 was
created by deletion of all 19 chemoreceptor genes (this mutant was named CNB-1∆20 because the
gene MCP2901 was deleted two times). As expected, this mutant CNB-1∆20 completely lost its
chemotactic responses. With this chemoreceptor-null mutant CNB-1∆20, we were able to identify
the functional redundancy of chemoreceptors in C. testosteroni via complementation of individual
chemoreceptor genes. All three chemoreceptors MCP2201, MCP2901, and MCP2983 were able
to trigger metabolism-dependent chemotaxis towards aromatic compounds, although they have
different ligand-binding spectra: MCP2201 binds to oxaloacetate, citrate, cis-aconitate, isocitrate,
α-ketoglutarate, succinate, fumarate, and malate [36]; MCP2983 only binds to cis-aconitate [37]; and
MCP2901 binds to citrate, as well as to aromatic molecules such as gentisate, 4-hydroxybenzoate,
2,6-dihydroxybenzoate, and 2-hydroxybenzoate [38]. The advent of the MCP-null mutant CNB-1∆20
is critical to overcome functional redundancy of chemoreceptors, and this mutant CNB-1∆20 can be
used to identify chemoreceptors from other bacteria.

5. Chemotaxis of C. testosteroni Towards Aromatic Compounds

Chemotaxis towards aromatic compounds has been widely documented for various bacteria,
including members of Pseudomonas [9,14], Acidovorax [35], Ralstonia [57,58], Agrobacterium [59],
Azospirillum [60], Bradyrhizobium, and Rhizobium [61]. C. testosteroni grows with a variety of
aromatic compounds, and many of these compounds also serve as chemotactic attractants. Both
metabolism-dependent and metabolism-independent chemotaxis, as defined by Pandey and Jain [62],
have been reported for C. testosteroni [36,38]. The well-known metabolism-dependent chemotaxis
of aromatic compounds is Aer-like chemoreceptors mediated chemotaxis. The PAS domains of
Aer-like chemoreceptors are able to sense the concentrations of FAD molecules during metabolism of
compounds. It was demonstrated that Aer2 [63] and three other polar localized Aer-like proteins [64]
triggered chemotaxis of P. putida towards (methyl)phenols and phenylacetic acid. Acidovorax species
also uses an Aer chemoreceptor for taxis towards 2-nitrotoluene [35]. C. testosteroni CNB-1 has four
Aer-like chemoreceptors (MCP0846, MCP0955, MCP2005, and MCP3064) with PAS domains, which
have tryptophan as a specific recognition site of FAD [65]. MCP0955, MCP2005, and MCP3064 have
typical transmembrane regions and are predicted to be membrane-located, while MCP0846 does
not have transmembrane regions and is predicted to be a cytoplasmic chemoreceptor. Although the
functions of these chemoreceptors have not been experimentally identified, their functions presumably
are the same as other Aer-like chemoreceptors (Figure 3).
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Besides the Aer-like chemoreceptors that sense FAD molecule, recent studies have demonstrated
that other chemoreceptors trigger chemotaxis towards aromatic compounds via sensing intermediate
metabolites [36–38]. The chemoreceptors MCP2201 and MCP2983 from C. testosteroni mediated
chemotaxis towards aromatic compounds via binding to citrate, cis-aconitate, succinate, and other
molecules of Kreb’s cycle when grows with aromatic compounds (Figure 3) [36,37]. Chemoreceptors
that bind to and sense Kreb’s cycle intermediates were reported in other bacteria such as P. aeruginosa,
P. putida, and Salmonella typhimurium [66–68]. One of these chemoreceptors, TcpS, was able to trigger
chemotaxis towards aromatic compounds when it was complemented into C. testosteroni ∆20 [36].
Evolution of metabolism-dependent chemotaxis towards aromatic compounds may occur widely
in microbes, and it is a shrewd strategy. This strategy converges a wide variety of substances into
a few metabolic intermediates (including FAD) as chemoeffectors, so it would reduce the variety
of chemoreceptors and save energy. Metabolism-independent chemotaxis was also reported, and
chemoreceptors that were putatively binding directly to aromatic compounds were proposed. The
chemoreceptor NahY from P. putida triggered chemotaxis towards naphthalene [69,70], and the
chemoreceptor NbaY of P. fluorescens triggered chemotaxis towards 2-nitrobenzoate [71]. Moreover, the
McpT of P. putida DOT-T1E and CtpL of P. aeruginosa PAO1 reportedly trigger chemotactic responses
to toluene, 4-chloroaniline, and catechol [72,73]. However, the ligand-binding properties of those
chemoreceptors were not demonstrated. Recently, studies reported that the McpP from P. putida bound
C2 and C3 carboxylic acids, which had been proposed being a chemoreceptor for benzoate. McpP
is homologeous to NbaY, and investigation showed that neither McpP nor NbaY bound to benzoate,
nitrobenzoate, or other substituted benzoates [74]. The first biochemical evidence that demonstrated
a chemoreceptor directly bound to aromatic compounds was from C. testosteroni: MCP2901 binds
to 2,6-dihydroxybenzoate and 2-hydroxybenzoate and triggers signal transduction for chemotaxis
(Figure 3) [38]. So far, the other known chemoreceptor that binds to aromatic compounds is the PcaY
for protocatechuate from P. putida KT2440 [75]. We have also biochemically characterized PcaY from
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P. putida F1, and its ligand is also protocatechuate. Compared to metabolism-dependent chemotaxis,
metabolism-independent chemotaxis enables microbes to have a faster response and improves the
chances of survival. For some non-metabolizable substances such as toxic compounds and metal,
metabolism-independent chemotaxis is the only choice.

6. Chemotactic Signaling Pathways in C. testosteroni and Other Comamonas Species

So far, the chemosensory signaling pathway in enteric E. coli has been extensively
characterized [76,77]. However, environmental bacteria often have more complex chemotactic signaling
systems [15,78] than does E. coli. Based on genome data-mining, half of chemotactic bacteria of which
genomes have been sequenced have more than one CheAs [46]. Besides phosphatases CheZ, CheC,
FliY, and CheX also have dephosphorylation activities for CheY-P [79]. In addition, other chemotactic
proteins have been found: CheD has deamination activity for key glutamine residues of chemoreceptors.
CheV, a CheW-like coupling protein, is a scaffold between CheA and chemoreceptors [80]. These
genetic organizations of chemotactic genes in environmental bacteria are more complex than in enteric
E. coli. Bacteria such as R. sphaeroides, B. subtilis, and P. aeruginosa have additional gene clusters, and
those clusters are similar to the che cluster [81]. Most of these additional clusters are involved in
modulation of chemotaxis [82,83], but some of them are involved in the control of alternative biological
behavior, including twitching motility [84], biofilm formation [85], cell development [86], and flagellar
biosynthesis [87]. In C. testosteroni CNB-1, there are che and che-like clusters, respectively (Figure 4).
The che cluster contains a complete set of chemotaxis genes, and is essential for chemotaxis. Compared
to that of E. coli, the che cluster of C. testosteroni CNB-1 has two CheYs. The CheY2 is FliM-binding and
is the true chemotaxis response regulator in CNB-1. The function of CheY1 is a phosphate sink [48].
In addition to the phosphatase CheZ on the che cluster, we have recently identified an additional
gene (CtCNB_4786) that showed low sequence identity to CheZ but is involved in chemotactic signal
quenching (unpublished data). The che-like gene cluster regulates biofilm formation, and was recently
named flm cluster. Cross-talk between che and flm clusters via phosphotransfer was identified, and
coordination of chemotaxis and biofilm formation was proposed [48].

With this knowledge of C. testosteroni, we explored other Comamonas genomes for che and che-like
gene clusters (Figure 4). We found that nine of the 11 Comamonas genomes have che clusters, and they
have consistent components and similar genetic organization to the che cluster of C. testosteroni CNB-1.
We also found that six of the 11 Comamonas genomes have gene clusters similar to the flm cluster of C.
testossteroni CNB-1, suggesting that coordination of chemotaxis and biofilm formation might occur also
in other Comamonas species. Interestingly, we observed that some of the che-like clusters of C. badia
and C. granuli have annotated pilTs, of which the production is a Tfp pilus assembly protein and can
regulate twitching motility, and other components are consistent with the flm cluster. Some additional
che-like clusters that have different genetic organization to C. testosteroni CNB-1 clusters were observed
in C. granuli and C. aquatica genomes, respectively (Figure 4). So far, the functions of these additional
che-like clusters are still unknown.
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There are in total 11 Comamonas genomes in publically available databases. Except for C. nitrativorans
(IMG Genome ID: 2574180442), in which there was no che or che-like gene cluster, the che and che-like
gene clusters of the other 10 Comamonas genomes were shown. GenbBank IDs are BCNR01000016.1
(C. terrigena); CP021455.1 (C. serinivorans); AXVM00000000.1 (C. badia); BCNT01000000.1 (C. terrae);
AUCQ01000000.1 (C. composti); CP001220.2 (C. testosteroni); CP020121.1 (C. kerstersii); AWTO01000000.1
(C. thiooxydans); BBJX01000000.1 (C. granuli); and CP016603.1 (C. aquatica). The lengths of rectangles are
independent of the lengths of gene sequences.
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7. Summary and Perspective

The knowledge of bacterial chemotaxis toward aromatic compounds is of fundamental importance
to understanding how bacteria adapt and survive in environments, and is also important for the
development of biosensors for the detection of aromatic compounds and to improve bioremediation of
aromatic-polluted environments. As an emerging environmental model organism, not only the ability
of C. testosteroni to degrade aromatic compounds, but also its chemotaxis, has attracted more and more
attention. Studies with C. testosteroni have revealed that chemotaxis towards aromatic compounds can
be triggered via sensing their intermediate metabolites of Kreb’s cycle [36,37], and also provided the
first evidence that chemoreceptor MCP2901 binds directly to aromatic compounds [38]. Chemotaxis
helps bacteria to find aromatic compounds, and the degradation of aromatic compounds can produce
more chemoeffectors to attract bacteria. A positive feedback loop is generated from this process.
In addition, studies with C. testosteroni has also revealed novel functions of che-like clusters and new
chemotactic proteins [48].

Considering the diversity of aromatic compounds and of the putative bacterial chemoreceptors,
there are more “unknowns” than “knowns”. For examples, how chemoreceptors coordinate themselves
for chemotaxis and other behaviors, and how the signals generated from chemoreceptors can be
transmitted downstream, should be the focus of future research. In addition, what the functions are of
novel che-like gene clusters, such as clusters in C. granuli and C. aquatic, is also an interesting question.
Answers to these questions will not only improve our understanding of chemotaxis with C. testosteroni
and other Comamonas species, but will also provide more insight into our understanding of sense and
transduction of signals among chemotactic microorganisms.
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