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Abstract

Background: Obesity is a continuing national epidemic, and the condition can have a physical, psychological, as well as

social impact on one’s well-being. Consequently, it is critical to diagnose and document obesity accurately in the patient’s

electronic medical record (EMR), so that the information can be used and shared to improve clinical decision making and

health communication and, in turn, the patient’s prognosis. It is therefore worthwhile identifying the various factors that

play a role in documenting obesity diagnosis and the methods to improve current documentation practices.

Method: We used a retrospective cross-sectional design to analyze outpatient EMRs of patients at an academic outpatient

clinic. Obese patients were identified using the measured body mass index (BMI; �30 kg/m2) entry in the EMR, recorded at

each visit, and checked for documentation of obesity in the EMR problem list. Patients were categorized into two groups

(diagnosed or undiagnosed) based on a documented diagnosis (or omission) of obesity in the EMR problem list and

compared.

Results: A total of 10,208 unique patient records of obese patients were included for analysis, of which 4119 (40%) did not

have any documentation of obesity in their problem list. Chi-square analysis between the diagnosed and undiagnosed

groups revealed significant associations between documentation of obesity in the EMR and patient characteristics.

Conclusion: EMR designers and developers must consider employing automated decision support techniques to populate

and update problem lists based on the existing recorded BMI in the EMR in order to prevent omissions occurring from

manual entry.
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Introduction

Obesity continues to be a major epidemic in the USA,

affecting individuals across diverse demographics and

spectrums.1 The continued growth of the obesity epi-

demic is particularly concerning because obesity can

have a physical, psychological, as well as social

impact on one’s well-being.2 Obesity is also known to

be associated with several significant health issues, such

as hypertension,3 sleep apnea,4 type II diabetes,5 car-

diovascular disease,6 and even mortality.7
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Consequently, it is critical to diagnose and document
obesity accurately in the patient’s electronic medical
record (EMR), so that the information can be used
and shared to improve clinical decision making, such
as screening, prescribing, and identifying targeted ther-
apies for treatment, and, in turn, to improve the
patient’s prognosis. Furthermore, proper documenta-
tion of diagnoses in an EMR8 also allows for this infor-
mation to be shared with the patient and other
clinicians, thus encouraging collaborative practice.9

Obesity is generally classified on the basis of the
body mass index (BMI), calculated as the total body
weight (in kilograms) divided by the height (in meters
squared). According to the Centers for Disease
Control, obesity is defined as a BMI �30 kg/m2,
while a BMI of �40 kg/m2 is defined as class 3 obesity
or morbid obesity.

The Centers for Medicare and Medicaid Services
(CMS) Electronic Health Record Incentive Programs10

allow health-care providers to become eligible for pay-
ments as an incentive for using an EMR system, or face
penalty upon failure to adopt such a system. An integral
component of the incentive program, Meaningful Use
Stage 1, mandated the recording of height, weight, blood
pressure, and BMI as core measures of vital signs in the
EMR at each patient visit.11

Besides documentation of individual body weight
and height at each visit, most modern EMR systems
also allow clinicians to maintain individual patients’
problem lists, utilizing standardized terminologies
such as the International Classification of Diseases,
10th Revision, Clinical Modification (ICD-10-CM).12

These problem lists serve as critical records to identify
and remind clinicians quickly of the presenting
patient’s health issues. While they are part of modern
EMR systems, these problem lists still require clinicians
to update them manually by adding any new and cur-
rent health problems while removing (or archiving)
prior resolved health conditions.

Acknowledgment and subsequent diagnosis are the
first steps toward addressing any health condition.
Prior evidence reveals that increased use of the EMR
is associated with the likelihood of the documentation
of obesity in the patient’s medical record.13 Moreover,
obese patients with documentation of obesity in their
problem list are more likely to receive obesity treatment
and management from their physicians.14 Yet, obesity
remains largely underdiagnosed15 for several reasons,
including the use of appearance rather than BMI for
diagnosis,16 lack of preventive care, weight stigma, and
implicit anti-fat bias among clinicians.17,18

Broader adoption of EMRs has given rise to the
rapid collection of vast amounts of health data. This
big data can be further harnessed by performing ana-
lytics to find patterns in the data and develop novel

machine learning algorithms for use in clinical decision

support. Prior evidence demonstrates the value attrib-

uted to the secondary use of these existing data to

improve health quality and patient outcomes by the

implementation of these models in clinical decision

support.19–21

Therefore, identifying the various factors that play a

role in documenting obesity diagnosis and methods to

improve current documentation practices deserves fur-

ther investigation. This paper examines the extent of

obesity-related problem list omissions at an academic

outpatient clinic and identifies patient-specific factors

associated with documentation of obesity in the EMR.

We also discuss potential solutions and techniques to aid

the maintenance of accurate and updated problem lists.

Method

Study sample and inclusion criteria

Institutional Review Board (IRB) approval

(#UMCIRB 15-000907) was obtained prior to com-

mencing any study activities. We utilized a retrospec-

tive cross-sectional design to analyze the outpatient

EMRs of patients at East Carolina University (ECU

Physicians). ECU Physicians is the medical practice of

the Brody School of Medicine, spread across 26 loca-

tions in Eastern North Carolina. Office visit summary

data were extracted from the EMR for all adult

patients (aged �18 years) who completed at least one

office visit at any of the outpatient clinic locations at

least once between January 1, 2017, and December 31,

2017, and had a corresponding BMI measure for the

visit. Obese patients were identified using the BMI

(�30 kg/m2) which was recorded in the EMR for

each office visit. For patients with more than one

visit during the time period, the BMI from only the

most recent visit was included for analysis in order to

reflect their most recent BMI, consistent with their

diagnosis state.
We subsequently extracted problem lists for the

obese patients identified above to check for documen-

tation of an obesity diagnosis in the EMR.

Documentation of obesity in the problem list was iden-

tified using the corresponding ICD-10 category code

(E66 and below). Patients with any history of any

pregnancy-related diagnosis were identified using cor-

responding ICD-10 category codes O00 through O9A

and excluded in order to avoid confounding the results.

Finally, all the identified obese patients were catego-

rized into two groups (diagnosed or undiagnosed)

based on the presence of a documented diagnosis for

obesity or its omission in the EMR problem list.

Figure 1 illustrates the steps associated with the
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EMR recorded office visits between
01/01/17 and 12/31/2017 and age ≥ 18

62,057 office visits

10,403 unique obese patients

10,208 obese patients included for
analysis

Match with EMR problem list to check for
documented diagnosis of obesity

4,119
undiagnosed (40%)

6,089
diagnosed (60%)
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history of pregnancy-
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(n = 195)

Figure 1. Steps for identification of study sample and categorization into study groups.
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identification of the study sample and the gathering of
the associated data.

The two groups were compared based on demo-
graphics (sex, age group, race and ethnicity, and insur-
ance status) to assess which specific patient
characteristics were associated with the documentation
of obesity in the EMR.

We also compared the two groups based on the
patients’ use of the online patient portal. Prior evidence
indicates that patients who have access to their medical
records typically have more complete and accurate
health information in the EMR, which is attributed
to patient cross-checking and giving feedback on their
health records.22–24 Therefore, within our outpatient
practice, we wanted to assess if obese patients who
were patient portal users may have a more updated
and accurate problem list than nonusers of the patient
portal. A patient portal user was defined as any patient
who had activated their patient portal account and had
logged in to the patient portal at least once six months
beyond the activation date.

Similarly, we compared the documentation of obe-
sity among two groups based on their diagnosis of
other associated comorbidities (coronary heart disease,
type II diabetes, hyperlipidemia, hypertension, osteoar-
thritis, and sleep apnea) to assess whether they played a
role in the documentation of obesity in the EMR. We
selected these chronic health conditions because there is
abundant empirical evidence indicating their associa-
tion with obesity.17,25–28

Statistical analysis

We conducted nonparametric chi-square tests to assess
the differences in the distribution of the sample
between the two groups based on their demographics,
patient portal use, and diagnosed comorbidities. We
used logistic regression analysis to predict the likeli-
hood of the presence or omission of a documented
diagnosis for all obese patients. An a of 0.05 was
used as the threshold level of significance. All statistical
analyses were conducted using IBM SPSS Statistics for
Windows v25.0. (IBM Corp., Armonk, NY).

Results

EMRs for 10,208 unique patients with an obesity BMI
were included for analysis, of which 4119 (40%) did not
have a corresponding diagnosis of obesity in the EMR
problem list. Table 1 lists the distribution of the
patients across the diagnosed and the undiagnosed
groups by patient characteristics (obesity group, sex,
age, race, patient portal use, and insurance provider).
Chi-square analyses revealed statistically significant
differences between the two groups for each of the

patient characteristics assessed (80% for morbidly
obese vs. 52% for obese patients; 62% for females vs.
55% for males; 66% for patients aged �65 years vs.
34% for patients aged �66 years; 65% for black
patients vs. 55%, 54%, and 53% for Hispanic, other,
and white patients, respectively; 62% for patient portal
users vs. 59% for nonusers; and 61% of publicly
insured vs. 59% and 56% for privately insured and
uninsured).

Results of logistic regression analyses indicate that
the patient characteristics assessed were predictive of
the presence of an obesity diagnosis in the EMR prob-
lem list for all obese patients (inferred from BMI �30
kg/m2). As indicated by odds ratios (OR), obese
patients who were female (OR¼1.3), black (OR¼1.6),
and aged �65 years (OR¼3.9) had higher odds of a
presence of an obesity diagnosis in the EMR problem
list compared to obese patients who were male, white,
and aged �66 years. Additionally, morbidly obese
patients (BMI �40 kg/m2) were far more likely to be
diagnosed with obesity (OR¼3.6) compared to other
obese patients (BMI 30–39 kg/m2).

Figure 2 depicts the receiver-operating characteristic
(ROC) curve, displaying the collective strength of the
patient characteristics assessed in being able to predict
the presence of an obesity diagnosis in the EMR for
obese patients. The c-statistic for the ROC, which
describes the area under the curve, was 0.713, indicat-
ing that patient characteristics can effectively discrimi-
nate29 between the two study groups to predict whether
an obese patient would have an obesity diagnosis docu-
mented in the EMR problem list.

We also assessed the presence of an obesity diagno-
sis in the EMR problem list for the two study groups
based on the presence of diagnoses for other obesity-
related comorbidities (coronary heart disease, type II
diabetes, hyperlipidemia, hypertension, osteoarthritis,
and sleep apnea; Table 2). The results of a chi-square
test indicated statistically significant differences among
the two study groups based on the presence of some
comorbidities (coronary heart disease, type II diabetes,
hypertension, and sleep apnea). We found no signifi-
cant differences for obese patients with hyperlipidemia
or osteoarthritis. Interestingly, obese or morbidly obese
patients without coronary heart disease were more
likely to have obesity documented in the EMR problem
list than obese or morbidly obese patients with coro-
nary heart disease were.

Discussion

The results of our assessment of EMRs of obese
patients at our outpatient practice reveal several inter-
esting findings. Underdiagnosis of obesity was clear,
represented by 40% of all obese patients included.
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Table 1. Presence of obesity diagnosis in EMR problem list across various patient characteristics for obese patients (BMI �30 kg/m2).

Patient characteristic

Obesity diagnosis

present in EMR

problem list (%)

Obesity diagnosis

absent in EMR

problem list (%) p

Obesity group <0.0001

Obese (BMI 30–39 kg/m2) 3947 (52%) 3581 (48%)

Morbidly obese (BMI �40 kg/m2) 2142 (80%) 538 (20%)

Sex <0.0001

Female 4259 (62%) 2631 (38%)

Male 1830 (55%) 1488 (45%)

Age (years) <0.0001

18–35 1269 (64%) 713 (36%)

36–45 1177 (67%) 591 (33%)

46–55 1467 (67%) 723 (33%)

56–65 1463 (68%) 692 (32%)

66–75 545 (37%) 943 (63%)

76þ 168 (27%) 457 (73%)

Race <0.0001

Black 3854 (65%) 2114 (35%)

Hispanic 77 (55%) 63 (45%)

Other 78 (54%) 67 (46%)

White 2080 (53%) 1875 (47%)

Patient portal use <0.0133

Users 1787 (62%) 1116 (38%)

Nonusers 4302 (59%) 3003 (41%)

Insurance provider 0.01805

Private 3255 (59%) 2296 (41%)

Public 2653 (61%) 1683 (39%)

Uninsured 181 (56%) 140 (44%)

Total 6089 (60%) 4119 (40%)

Statistically significant values are shown in bold.

EMR: electronic medical record; BMI: body mass index.
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There was a clear demographic divide among our obese

patient population in terms of receiving a diagnosis for

obesity or not. Females, blacks, and younger patients

were more likely to receive a diagnosis of obesity com-

pared to obese males, whites, and older obese patients.
We found that patients with morbid obesity (class 3

obesity) were more likely to be diagnosed. These results

indicate that providers may often wait until the health

condition gets severe enough to warrant documenta-

tion in the EMR. Prevention, health education, and

early treatment are all effective strategies for weight

management, highlighting the need to recognize and

address obesity at the early stage.30–32

Early treatment is especially crucial in order to pre-

vent the onset of several related comorbidities, such

as coronary heart disease, type II diabetes, hyperten-

sion, hyperlipidemia, osteoarthritis, and sleep apnea.

Long-term treatment of these associated chronic

health conditions not only has a negative impact

on the patient’s physical health and quality of life,

but also contributes to increased health-care costs for

the patient.
In terms of associated comorbidities, some of the

results are difficult to explain, particularly how a cor-

onary heart disease diagnosis had an inverse associa-

tion with the documentation of an obesity diagnosis,

while obese patients with other conditions such as type

II diabetes, hypertension, and sleep apnea were more
likely to have obesity documented. It is possible that
physicians associate these conditions more closely with
obesity compared to coronary heart disease or
hyperlipidemia.

It is also interesting to note that obese patients who
were active users of the patient portal had more accu-
rate and complete EMR problem lists, which was
attributed to them being able to access their medical
records routinely and cross-check for any inaccuracies.
Our results are consistent with prior findings that high-
light the relationship between patient access to their
medical records and the accuracy and completeness
of EMR problem lists.22–24
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Figure 2. Receiver-operating characteristic curve based on patient
characteristics as variables in predicting the presence of an obesity
diagnosis in the electronic medical record problem list for obese
patients (body mass index �30 kg/m2).

Table 2. Presence of obesity diagnosis in EMR problem list by
comorbidities for obese patients (BMI �30 kg/m2).

Comorbidity

Obesity diagnosis

present in EMR

problem list

Obesity diagnosis

absent in EMR

problem list p

Coronary heart disease <0.0001

Yes 410 (52%) 372 (48%)

No 5679 (60%) 3747 (40%)

Type II diabetes <0.0001

Yes 1878 (64%) 1046 (36%)

No 4211 (60%) 3073 (42%)

Hyperlipidemia 0.29

Yes 1573 (59%) 1102 (41%)

No 4518 (60%) 3015 (40%)

Hypertension 0.0004

Yes 3814 (61%) 2436 (39%)

No 2273 (58%) 1682 (42%)

Osteoarthritis 0.2

Yes 1084 (58%) 773 (42%)

No 5005 (60%) 3346 (40%)

Sleep apnea <0.0001

Yes 366 (73%) 133 (27%)

No 5723 (59%) 3986 (41%)

Statistically significant values are shown in bold.
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Limitations

There is still no consensus between experts regarding

how to define and measure obesity properly.33 While

BMI is the accepted standard adopted by various

national and international health organizations, it has

been shown to suffer from various limitations, especial-

ly its use in population-wide studies of obesity, which

may include individuals who are athletes or individuals

with heights well below or above the population

average.
Our results are representative of the diagnostic prac-

tices of physicians across outpatient clinics located pri-

marily in a mid-size city and surrounding rural

communities for an academic health system.

Therefore, our findings may not be generalizable

across other diverse health systems.
Finally, our study examines patient characteristics

associated with obesity documentation in the EMR.

To attain a better understanding of the reasons

behind obesity underdiagnosis, it is also imperative to

study physician-related factors that are motivators

or barriers to documenting obesity in the EMR prob-

lem list.

Conclusion

Despite the Meaningful Use Stage 1 mandate for the

recording and documentation of height, weight, blood

pressure, and BMI as core measures of vital signs,34 it is

evident that this information is not being fully har-

nessed and applied in the delivery of health care.

Automated techniques such as machine learning and

natural language processing have been shown to be

helpful for the automated inference of patient problems

from structured EMR data.35 EMR designers and

developers must also consider the use of automated

decision support techniques to populate and update

problem lists by utilizing structured EMR data.

Furthermore, larger-scale studies to analyze how

EMR data can be used to predict patient populations

that are more likely to be diagnosed with obesity may

lead to new knowledge that could be incorporated in

clinical decision support systems.
Further studies are recommended to investigate

underlying causes of lower rates of obesity documenta-

tion for certain socio-demographic groups, and to

study the impact of automated documentation.

Similarly, further studies on physician-specific factors

that play a role in the documentation of obesity in the

EMR are recommended in order to provide a holistic

view of the underdiagnosis problem.
Health-care providers must also continue patient

engagement efforts and encourage patient portal use

as a means of improving the quality of existing

problem lists.
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