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Background. The high-throughput genotyping chips have contributed greatly to genome-wide association (GWA) studies to
identify novel disease susceptibility single nucleotide polymorphisms (SNPs). The high-density chips are designed using two
different SNP selection approaches, the direct gene-centric approach, and the indirect quasi-random SNPs or linkage
disequilibrium (LD)-based tagSNPs approaches. Although all these approaches can provide high genome coverage and
ascertain variants in genes, it is not clear to which extent these approaches could capture the common genic variants. It is also
important to characterize and compare the differences between these approaches. Methodology/Principal Findings. In our
study, by using both the Phase II HapMap data and the disease variants extracted from OMIM, a gene-centric evaluation was
first performed to evaluate the ability of the approaches in capturing the disease variants in Caucasian population. Then the
distribution patterns of SNPs were also characterized in genic regions, evolutionarily conserved introns and nongenic regions,
ontologies and pathways. The results show that, no mater which SNP selection approach is used, the current high-density SNP
chips provide very high coverage in genic regions and can capture most of known common disease variants under HapMap
frame. The results also show that the differences between the direct and the indirect approaches are relatively small. Both have
similar SNP distribution patterns in these gene-centric characteristics. Conclusions/Significance. This study suggests that the
indirect approaches not only have the advantage of high coverage but also are useful for studies focusing on various
functional SNPs either in genes or in the conserved regions that the direct approach supports. The study and the annotation of
characteristics will be helpful for designing and analyzing GWA studies that aim to identify genetic risk factors involved in
common diseases, especially variants in genes and conserved regions.
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INTRODUCTION
Genome-wide association (GWA) studies using high-throughput

single nucleotide polymorphism (SNP) chips have shown the

power to identify novel disease susceptibility loci [1–3]. Two SNP

selection approaches are proposed to design high-density chips:

the direct approach and the indirect approach [4–7]. The direct

gene-centric approach, which focuses on genetic variants in genic

regions [4,5] , can capture putative variants directly. The indirect

approach using quasi-random SNPs or LD-based tagSNPs aims to

capture most of the common variants in both genic and nongenic

regions [6,7]. It provides higher coverage of genome and explores

genic variants as well as potential variants in regions outside

known genes.

It is clear that both approaches can cover the genome densely

either directly or through linkage disequilibrium (LD) [8,9] and be

successful in identifying disease variants in genes [1–3]. It is not

clear, however, the extent to which these approaches can capture

the common genic variants. Moreover, it is also important to

characterize and compare differences among the approaches used

in GWA studies. Nicolae et al. [10] investigated Affymetrix

GeneChip Human Mapping 100K and found that SNPs in the set

were undersampled from coding regions and oversampled from

regions outside genes. Jorgenson and Witte [11] evaluated the

coverage of both genic and nongenic SNPs, and estimated that

random and tagSNP strategy for the indirect approaches could

provide lower coverage of genic SNPs than nongenic SNPs. In this

study, we perform a gene-centric evaluation to characterize the

above approaches used in GWA studies.

Our evaluation is performed on three whole-genome commer-

cial chips representing the above SNP-selection approaches:

Illumina Human-1 Genotyping BeadChip (Human-1, gene-

centric SNP panel) [12], Affymetrix GeneChip Human Mapping

500K Array Set (GeneChip 500K, quasi-random SNP panel) [13]

and Illumina Human Hap550 (Hap550, LD-based tagSNP panel)

[12]. By using both the empirical Phase II HapMap CEU data

(Utah residents with ancestry from northern and western Europe)

[14] and the disease variants extracted from OMIM [15], we

evaluated the coverage of the approaches in genic regions and the

ability to capture disease variants in Caucasian population. Since

SNPs in diseases associated pathways and functionally important
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sequences (for example, genes and evolutionarily conserved region)

are more attractive, we further compared the distribution patterns

of SNPs with these characteristics. Our study reveals the common

and different characteristics between the approaches used in GWA

studies.

RESULTS

Evaluating coverage and capturing disease variants

in genic regions
Figure 1 shows coverage of three high-throughput SNP chips in

genic regions (MAF$0.05, CEU). Although three chips cover about

6,25% of Phase II HapMap SNPs directly (chip), the coverage

increases quickly to 37,96% when counting tagged SNPs (r2$0.8

and r2$0.5). Since Hap550 uses the tagSNPs selected from Phase

I+II HapMap data set , it gets the coverage of near 91% (r2$0.8) as

expected. If r2 threshold set to 0.5, Human-1 and GeneChip 500K

also gets the coverage of 53% and 84%, respectively. On average,

Hap550 and GeneChip can get additional 3,4 folds nonredundant

LD SNPs; while Human-1 can get 5,8 folds.

There are totally 1338 nonredundant SNPs in OMIM that are

defined as disease variants and associated with either diseases or

phenotypes. Among these 1338 nonredundant SNPs, 159 of which

can be mapped to the Phase II HapMap CEU data. We then

evaluate the ability of SNP chips to capture 100 of 159 disease

variants with MAF$0.5. Human-1 and Hap550 can directly

capture 48% and 62% of variants, respectively (Figure 2A),

whereas GeneChip can only capture 11%. Via LD-tagging, all

chips can capture more than 55% (r2$0.8) and 75% (r2$0.5) of

SNPs. According to additional 59 disease variants with

MAF,0.05, 75% of them are uncaptured (Table S1).

Figure 2B shows the overlap of captured variants (r2$0.5).

There are 65 of SNPs captured by all SNP chips, whereas 6 of

them are not captured by any chips. It shows that the indirect

approaches have the same ability as the direct approach to capture

most of common disease variants in genes in HapMap.

Distribution patterns of SNPs in genic regions
SNPs are first classified into genic or nongenic regions with the

annotation of dbSNP. In the analyses, less than 45% of SNPs in

GeneChip 500K and Hap550 locate in genic regions, while 72%

of Human-1 lie in genic regions (Figure S1). When counting

tagged SNPs, the difference is reduced to near ten percent. SNPs

in genic regions can further be classified into one of the five

functional classifications: flank, utr, synonymous, nonsynonymous

and intron. The distribution patterns of GeneChip 500K and

Hap550 are very similar (Figure 3): similar high proportion of

intron classification and similar distribution in other classifications.

Almost 90% SNPs of GeneChip 500K and Hap550 locate in

intron, meanwhile 7% SNPs lie in flank region, which makes it

second-rich region. Each classification of utr, synonymous and

nonsynonymous carries 1,2 percent SNPs. As expected, Human-

1 carries relative small proportion of SNPs in intron region (70%)

and high proportions in other regions (5,10%). It highlights the

pertinent gene-centric design of the functional chip. Owing to the

increasing proportion of intron region in Human-1, all three chips

have the same distribution pattern when including tagged SNPs

(r2$0.8).

Distribution patterns of SNPs in GO categories and

KEGG pathways
To examine whether SNPs of Human-1, GeneChip 500K and

Hap550 distribute in the same ontologies and pathways via genes,

we mapped SNPs to gene ontology (GO) annotation [16] and

Kyoto Encyclopedia of Genes and Genomes (KEGG) [17]

pathways. The distribution of SNPs in all GO component,

function and process categories (Figure 4A) and KEGG pathways

(Figure 4B) remained largely the same between GeneChip 500K

(middle rings) and Hap550 (outer rings), and slightly different with

Human-1 (inner rings). We tested the hypothesis that equal

percentages of SNPs on the chips distribute in KEGG human

diseases pathways (Table 1). GeneChip 500K and Hap550 show

no significant differences in all pathways except for pathogenic

Escherichia coli infection pathway. However, significant differ-

ences are found between the direct and the indirect approaches.

Human-1 exhibits enrichment in several pathways such as

Huntington’s disease and pancreatic cancer pathways, whereas

GeneChip 500K and Hap550 enrich in Parkinson’s disease,

Dentatorubropallidoluysian atrophy (DRPLA) and non-small cell

lung cancer pathways. Furthermore, the difference enlarges

(Table S2) if LD-tagged SNPs are taken into consideration.

More pathways exhibit significant difference between the direct

and the indirect approaches.

Distribution patterns of SNPs in evolutionary

conserved introns and nongenic regions
Highly evolutionarily conserved regions across species may

contain unknown genes, for example, microRNA coding genes,

or regulatory elements such as cis enhancers. It is important to

survey the SNPs in conserved regions both outside genes and in

introns. We plot SNP percentage against conservation score of

Figure 1. Coverage of three high-throughput SNP chips in genic regions. Three chips cover Phase II HapMap SNPs either directly (chip) or through
linkage disequilibrium (r2$0.8 and r2$0.5).
doi:10.1371/journal.pone.0001262.g001
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sequence base in Figure 5. If conservation threshold is set as 0.9,

about two percent SNPs of GeneChip 500K and Hap550 locate in

conserved intron and nongenic bases. Due to enrichment of SNPs

in conserved sequence, Human-1 contains more fractions of SNPs

lying in the evolutionarily conserved bases (17.5% for nongenic

regions, 6.9% for intron). When considering tagged SNPs, the

difference between chips is inconspicuous (Figure S2) and about

3% of SNPs have scores exceed conserved threshold.

DISCUSSION
Various GWA studies have been performed to examine the role of

common genetic variants in complex diseases and traits, taking

advantage of recent advances in high-throughput SNP genotyping

technologies. It has been proved that both the direct and the

indirect approaches are capable of identifying disease variants in

genes. For example, an intron SNP (rs7903146) and nearby SNPs

in LD with it in transcription factor 7-like 2 gene (TCF7L2) gene

had been replicated in several researches with different approaches

[1–3]. In our study, we show that the current high-density SNP

chips provide very high coverage in genic regions and can capture

most of known common disease variants under HapMap frame,

no matter which SNP selection strategy is used. Acting as a hybrid

of the indirect and the direct approaches to evaluate whole-

genome association, Human-1 highlights SNPs enriched in genes

and evolutionarily conserved regions. Therefore, we consider it as

a typical chip of direct gene-centric approach and calculate tagged

SNPs in HapMap. Although the indirect approaches using quasi-

random SNPs or LD-based tagSNPs focus on common variants,

irrespective of their genic location, they perform as good as the

direct approach in genic regions via their high density and

coverage. Our evaluation of coverage and characteristics is based

on the Phase II HapMap data, which is the largest catalogue of

common SNPs with genotyping information till now. Since most

of SNPs on three chips show concordance with HapMap SNPs, it

is reasonable though not very fair to use HapMap for

characterizing the chips. To simplify the procedure, we only used

the pairwise aggressive algorithm and two LD thresholds (r2$0.8

and r2$0.5) to capture tagged SNPs in CEU. On the whole, all

Figure 2. Disease variants in HapMap captured by three high-throughput chips. A. Shows the percentage of disease variants captured by three
chips either directly (chip) or through linkage disequilibrium (r2$0.8 and r2$0.5). B. Displays the overlapped results captured by three chips (r2$0.5).
doi:10.1371/journal.pone.0001262.g002
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three chips can cover more than one half of common SNPs from

HapMap in genic regions.

It is hard to estimate the ability of the approaches to capture

disease variants. Then it is available to estimate whether the

known susceptibility SNPs to common diseases are covered by

ongoing GWA studies using chips. There are some public

databases such as OMIM [15], GAD [18], HGV [19], HGMD

[20] collecting variants that lead to human diseases and

phenotypes variation. However, the number of susceptibility SNPs

is limited in nowadays databases. Thus, we calculate and compare

the ability of the chips to capture 1338 nonredundant SNPs in

OMIM that affect susceptibility of human diseases, most of which

are nonsynonymous mutations. With respect to common SNPs

(MAF$0.05) HapMap genotyped, the chips perform well and can

capture most of them. According to rare SNPs, they are mostly

ignored by the chips in current stage. It had been suggested that

a genome-wide genotyping product could be coupled with a gene-

centric SNP set such as SeattleSNPs Program for Genomic

Application [21] to improve the ability of covering rare SNPs.

Several factors besides genomic coverage and map density can

affect the power of gene-centric GWA studies. One is the

proportion of SNPs in functionally important genic regions and

conserved noncoding sequences. Nonsynonymous coding SNPs

and SNPs in promoters are most traditionally attractive for their

potential altering protein function [22], altering transcript splicing

[23] destabilizing protein 3D structure and reduce protein

solubility [24], and altering regulatory ability [25]. Evolutionarily

conserved regions across species may contain functionally

important elements, for example, cis- regulatory elements [26]

and replication start points [27], or unknown genes such as

microRNA coding genes [28]. Many computational approaches

based on multi-species alignment have been developed to search

regulatory elements in evolutionarily conserved regions [29,30].

Follow-up experiments also validated the potential function of

transcriptional regulation and development association [31,32]. It

is also important to characterize the conservation property of

SNPs outside genes and in introns [33]. Our results show that the

indirect approaches have highly similar patterns in these important

function sequences. Although difference exhibits between the

indirect and the direct approaches for SNPs on the chip, it

becomes inconspicuous after considering tagged SNPs.

Another important factor is the enrichment of SNPs in

ontologies and pathways. Ontologies and pathways are essential

and widely used for differential expression in pathway level [34],

protein-protein interaction (PPI) analysis [35] and constructing

PPI network [36]. Thus, it is reliable to analyze gene-gene

interaction [37] and construct genetic interaction network via

SNPs-enriched ontologies and pathways [38,39]. Lesnick et al.

proposed a genomic pathway approach to construct models of

axon-guidance pathway SNPs that can predict the susceptibility of

Parkinson disease [39]. It hints the potential ability of mining

disease associated ontologies and pathways using high-density SNP

Figure 3. Distribution patterns of SNPs in genic regions. SNPs in genic regions are annotated with five functional classifications: flank (within 2 kb 59
or 500 bp 39 of a gene, originally named locus in dbSNP), utr (59 and 39 untranslated region), synonymous (synonymous coding SNP),
nonsynonymous (nonsynonymous coding SNP) and intron (including splice-site SNPs).
doi:10.1371/journal.pone.0001262.g003
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chips. We examined whether SNPs of Human-1, GeneChip 500K

and Hap550 distribute in the same ontologies and pathways via

genes and tested the hypothesis that the same fraction of SNPs on

the chips distribute in the KEGG human disorder pathways. On

most occasions, Human-1 has the similar fractions as GeneChip

500K and Hap550. Significant differences are observed in some

pathways especially when considering tagged SNPs. Since Hap550

almost cover HapMap and Human-1 contains a limited subset

(Figure 1), it implies that SNPs of Human-1 are not evenly

distributing in genes and pathways.

In this year, Affymetrix (http://www.affymetrix.com) and

Illumina (http://www.illumina.com) released their one million

commercial SNP chips, which are most high density SNP chips

available till now. We can expect that the SNP chips will cover

most of the human common SNPs and density will not be

a common topic in the coming future (maybe in five years). One

possible future direction of developing SNP chips is population-

specific chips. The current chips aim at common SNPs of three

representative populations (CEU, JPT+CHB, YRI), while CEU

matches the SNP sets best and YRI worst. Although YRI-specific

SNP chip has been designed, the population-specific (especially the

populations other than three major populations) chips are needed

since various researches have shown that the portability of

tagSNPs across some populations is not satisfying [40–43].

Another possible direction is developing rare SNPs-based chips,

however, potential large sample size still obstructs this way. A most

realistic direction is developing disease/pathway specific chips for

specific researches. This is quite different with previous candidate

Figure 4. Distribution patterns of SNPs in ontologies and pathways. Outer rings: SNPs on Hap550. Middle rings: SNPs on GeneChip 500K. Inner
rings: SNPs on Human-1. Each section represents the number of SNPs on the chips assigned to a given GO category or KEGG pathways. A.
Distribution patterns in GO cellular component, molecular function and biological process categories. B. Distribution patterns in KEGG pathways.
doi:10.1371/journal.pone.0001262.g004
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pathway/gene studies. The future disease/pathway specific chips

will have the advantages of both high density and research

specificity. That means all possible disease-oriented SNPs in

pathways/genes are included, which is based on the knowledge

and Bioinformatics annotations of the diseases. This will separate

the ‘‘discovering susceptible SNPs’’ stage by WGA chips and

‘‘replicating associations and constructing genetic models’’ stage

by specific chips similarly as we did with resequencing and

genotyping. This will reduce the cost and increase the sample size

greatly. Thus, WGA studies era will be realistic. For the above

reason, Bioinformatics will be deeply involved in the designing of

the chips, analyzing the data and constructing the models. Our

analysis in this research will be an exploration in this future field.

MATERIALS AND METHODS

Data sets
Three genome-wide SNP chips (Human-1, GeneChip 500K and

Hap550) were selected for evaluations, representing gene-centric,

quasi-random SNPs and LD-based tagSNPs approaches, re-

spectively. SNP lists were downloaded from their websites. Since

most of SNPs on three chips show concordance with HapMap

SNPs, we used Phase II HapMap CEU (release 21) data [14] to

evaluate coverage of SNP chips in Caucasian population.

LD-tagged SNPs and coverage calculation
All SNPs of three chips were mapped to HapMap to ensure SNPs

on the chip, and these SNPs were considered as tag SNPs to

capture LD-tagged SNPs. Frequency and LD data of SNPs were

downloaded from HapMap website. We simply used pairwise

aggressive algorithm [44] to ascertain SNPs that have pairwise r2

larger than the specific thresholds (r2$0.8 and r2$0.5). Since

Human-1 acts as a hybrid of the indirect and the direct

approaches, we also calculate its tagged SNPs to get the maximum

coverage. When calculating coverage, only common SNPs

(MAF$0.05) were considered. Coverage is estimated by SNPs

(chip+tagged) divided by all SNPs in HapMap.

Bioinformatics annotation for SNPs
All SNPs were annotated using National Center for Biotechnology

Information (NCBI) dbSNP (build 126) [45]. Each SNP from

various data sets was mapped to dbSNP via ref SNP (rs). SNPs

without an rs number or not presented in current dbSNP would be

Table 1. Distribution differences of SNPs (chip) in KEGG human diseases pathways.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Disease Number of SNPs in pathways Pairwise comparison p-value1

Human-1 500K Hap550
Human-1:
500K

Human-1:
Hap550

500K:
Hap550

Alzheimer’s disease 102 241 269 0.0412 1.7E-05 0.0039

Amyotrophic lateral sclerosis (ALS) 60 187 229 0.8215 0.3705 0.0972

Basal cell carcinoma 131 320 445 0.0456 0.014 0.6157

Cholera 122 332 494 0.3419 0.4852 0.6721

Chronic myeloid leukemia 247 595 869 0.0039 0.0041 0.8283

Colorectal cancer 306 852 1251 0.2512 0.3478 0.7086

Dentatorubropallidoluysian atrophy (DRPLA) 117 584 828 7.1E-07 9.4E-07 0.7463

Endometrial cancer 239 880 1353 0.0075 2.5E-04 0.1582

Epithelial cell signaling in Helicobacter pylori infection 214 511 716 0.0051 9.7E-04 0.6152

Glioma 248 698 1077 0.3688 0.9832 0.1811

Huntington’s disease 112 197 227 5.3E-06 2.1E-11 0.0213

Maturity onset diabetes of the young 46 93 165 0.0266 0.2494 0.1122

Melanoma 239 740 1024 0.7226 0.8386 0.3951

Neurodegenerative Disorders 162 637 886 0.0029 0.0084 0.4862

Non-small cell lung cancer 218 986 1508 1.1E-07 3.2E-10 0.1731

Pancreatic cancer 255 579 766 2.3E-04 5.4E-07 0.1213

Parkinson’s disease 69 354 516 5.0E-05 2.2E-05 0.8882

Pathogenic Escherichia coli infection 91 357 367 0.0259 0.5231 5.8E-06

Prion disease 55 125 201 0.0821 0.255 0.3452

Prostate cancer 273 739 1147 0.1415 0.6181 0.1344

Renal cell carcinoma 223 573 782 0.0485 0.0055 0.3185

Small cell lung cancer 425 1306 1901 0.738 0.6184 0.823

Thyroid Cancer 85 262 362 0.8575 0.8627 0.5938

Type I diabetes mellitus 117 316 498 0.3177 0.8356 0.2273

Type II diabetes mellitus 186 620 1004 0.2372 0.008 0.0278

Total 4342 13084 18885

1.Chi-square tests between pairwise chips were performed to test whether two chips have same percentages of SNPs in the pathways. Bonferroni correction was
proceeded to correct multiple testing. P-values smaller than significant level (P,0.002) are in bold type.

doi:10.1371/journal.pone.0001262.t001..
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ignored. A SNP was first annotated in gene or nongenic regions.

Then genic SNP would further be annotated with five functional

classifications: flank (within 2 kb 59 or 500 bp 39 of a gene,

originally named locus in dbSNP), utr (59 and 39 untranslated

region), synonymous (synonymous coding SNP), nonsynonymous

(nonsynonymous coding SNP) and intron (including splice-site

SNPs).

OMIM (Nov, 2006) [15] deposited 1338 nonredundant SNPs

that affect human diseases or phenotypes variation, most of which

are nonsynonymous mutations. These SNPs were mapped to

HapMap data and evaluated the capturing ability of the SNP

chips. The procedure was same as coverage calculation.

We examined whether SNPs of Human-1, GeneChip 500K and

Hap550 distribute in the same ontologies and pathways via genes.

SNPs were mapped to GO annotations and KEGG pathways via

NCBI dbSNP [45] and Entrez Gene [46]. We plotted the

distribution of SNPs in categories with three concentric rings for

the chips. In addition, we compared distribution difference

between the paired chips in KEGG human disorders pathways.

Chi-square tests between pairwise chips were performed to test

whether two chips have same percentages of SNPs in the

pathways. Bonferroni correction was proceeded to correct multiple

testing.

Base-by-base conservation scores for human bases were down-

loaded from UCSC Conservation Track [47] which used

phastCons [48] to calculate conservation scores across 28

mammalian species. SNPs in nongenic and intron regions were

mapped to the bases to attain conservation scores. Conservation

scores can be considered as probabilities that each SNP lies in

a conserved element [48].

SUPPORTING INFORMATION

Figure S1 Percentage of SNPs in genic and nongenic regions.

Shows the percentage of disease variants captured by three chips

either directly (chip) or through linkage disequilibrium (r2$0.8).

Found at: doi:10.1371/journal.pone.0001262.s001 (1.18 MB

DOC)

Figure S2 Distribution patterns of SNPs in evolutionary

conserved introns and nongenic regions. The percentage of SNPs

(r2$0.8) on three chips is plotted against conservation score.

Found at: doi:10.1371/journal.pone.0001262.s002 (1.31 MB

DOC)

Table S1 MAF of 159 disease SNPs (r2$0.5) in HapMap

Found at: doi:10.1371/journal.pone.0001262.s003 (0.03 MB

DOC)

Table S2 Distribution differences of SNPs (r2$0.8) in KEGG

human diseases pathways. 1. Chi-square tests between pairwise

chips were performed to test whether two chips have same

percentages of SNPs in the pathways. Bonferroni correction was

proceeded to correct multiple testing. P-values smaller than

significant level (P,0.002) are in bold type.

Found at: doi:10.1371/journal.pone.0001262.s004 (0.07 MB

DOC)
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