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Abstract
Studies have shown that following opiate withdrawal, the spontaneous discharge rate of

locus coeruleus (LC) neurons remarkably increases. Combination of intrinsic mechanisms

with extrinsic excitatory modulations mediates the withdrawal-induced hyperactivity of LC

neurons. The nucleus paragigantocellularis (PGi) provides the main excitatory inputs to LC

and plays a pivotal role in opiate withdrawal. In the present study the direct facilitatory role

of PGi on opiate withdrawal-induced hyperactivity of LC neurons was investigated using a

newly developed brain slice, containing both LC and PGi. HRP retrograde neuronal tracing

was used to verify the existence of both LC and PGi neurons in the developed slice. The

spontaneous discharge rate (SDR), resting membrane potential (RMP) and spontaneous

excitatory post-synaptic currents (sEPSCs) were recorded in LC neurons using whole cell

patch clamp recording. Results showed that the net SDR and the net RMP of LC neurons in

slices containing both LC and PGi neurons are significantly higher than slices lacking intact

(uncut) PGi inputs. Also, the frequency of sEPSCs in those LC neurons receiving PGi inputs

significantly increased compared to the slices containing no intact PGi inputs. Altogether,

our results propose that increase in PGi-mediated excitatory transmission might facilitate

the opiate withdrawal-induced hyperactivity of LC neurons.

Introduction
Locus coeruleus (LC) nucleus, which is bilaterally located on the floor of the fourth ventricle, is
the largest cluster of noradrenergic neurons in brain stem [1,2]. This region expresses a high
density of opioid receptors and because of its relatively homogenous structure, serves as a good
model for studying opiate actions [3]. Different in vivo and in vitro investigations have shown
that acute morphine administration decreases LC neuronal activity, whereas these neurons
undergo significant tolerance to opiate effects during chronic opiate exposure [4]. This finding
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has been previously confirmed by the return of LC neuronal firing rate toward the pretreat-
ment levels [5]. In addition, following opiate withdrawal, the spontaneous firing rate of LC
neurons increases dramatically above the normal level [5,6].

Furthermore, different studies have shown that increment in LC neuronal activity following
opioid withdrawal might be mediated (to some extent) through intrinsic mechanisms within
the LC neurons. Different electrophysiological studies have reported the hyperactivity of LC
neurons following naloxone-induced withdrawal in brain slices taken from chronically mor-
phine treated rats [7,8]. In addition, chronic exposure to opiate drugs resulted in diversified
neurochemical changes in LC neurons, which were manifested by enhancement of G-protein
transduction systems [9], adenylyl cyclase activity [10], cAMP-dependent protein kinase activ-
ity [11] and induction of phosphorylated proteins [12–14] such as, cAMP response element-
binding protein (CREB) and tyrosine hydroxylase (TH) [15].

However, aside from the intrinsic properties of LC neurons, other mechanisms responsible
for the increased LC neuronal activity following opiate withdrawal have been proposed to be
mediated through extrinsic signaling pathways. Several in vitro studies have not reported any
increment in spontaneous neuronal activity of LC neurons in brain slices of chronically mor-
phine-treated rats [16–18]. In addition, Akaoka and Aston-Jones (1991) have previously
shown that intra-LC microinjection of naloxone does not activate LC neurons in morphine
dependent rats, whereas systemic administration of naloxone strongly increases LC neuronal
activity. They have proposed the increased excitatory amino acid neurotransmission within LC
region as the responsible factor for this naloxone-induced hyperactivity of LC neurons [12].

Moreover, several investigations have indicated that the excitatory afferents from other
brain regions such as medulla may play a critical role in withdrawal-induced hyperactivity of
LC neurons [4,19]. Different anatomical and physiological investigations of afferents to LC
have revealed that this nucleus receives afferents from only a restricted number of brain loci.
Of them the nucleus paragigantocellularis (PGi) (located in the rostroventrolateral medulla,
RVLM) has been suggested as one of the major brain nuclei sending excitatory (glutamatergic)
afferents to LC region [20]. Previous studies have shown that approximately 73% of LC neu-
rons could be synaptically activated by applying low intensity single-pulse electrical stimula-
tions to PGi neurons [21], whereas, opiate withdrawal-induced hyperactivity of LC neurons
remarkably decreases following lesions of PGi nucleus [22].

On the basis of the above mentioned background, the present study has been designed to
postulate the direct facilitatory role of PGi in opiate withdrawal-induced hyperactivity of LC
neurons using a newly developed slice preparation containing both LC and PGi neurons.

Materials and Methods

Ethics statement
Attention was paid to minimize animal suffering during the entire experimental period. All
procedures were performed according to the ethical guidelines of Faculty of Medical Sciences,
Tarbiat Modares University based on the United States NIH Guide for the Care and Use of
Laboratory Animals (publication no. 85–23). All performed experimental protocols in this
study were approved by the Ethical Committee of Faculty of Medical Sciences, Tarbiat Modares
University.

Animals
Male Wistar rats (2–3 weeks old for electrophysiological and 10–12 weeks for neuronal tracing
experiments) were used in this study. Rats were housed in Plexiglas breeding cages with
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woodchip bedding and free access to food and water. Animals were kept in a colony room with
constant temperature and on 12 h light/dark cycles (the light period started at 7 a.m.).

Drugs
The main chemical substances used in this study were as follows: morphine sulphate (Temad
Co., Iran), naloxone hydrochloride (Sigma Aldrich, USA), horseradish peroxidase (HRP) type
VI (Sigma Aldrich, USA), bicuculline (Sigma Aldrich, USA), chloral hydrate (Merck, Ger-
many), diethyl ether (Merck, Germany) and tetramethylbenzidine (TMB) (Sigma Aldrich,
USA).

Retrograde HRP neuronal tracing and histochemistry
Horseradish peroxidase (HRP) neuronal tract-tracing is a method of intra-axonal transport of
HRP, where its cellular uptake occurs in somata, dendrites, as well as axon terminals through
endocytosis [23] and it can be transported in both anterograde and retrograde directions [24,
25]. This technique is methodologically easy, can be rapidly performed, reaction products can
be visualized by simple histochemical processes and the results may be visible under the light
microscope [23].

In our study, in order to perform retrograde HRP neuronal tracing, initially rats were deeply
anesthetized by chloral hydrate (400 mg/kg, i.p.). Thereafter, 0.1 μl of 10% HRP (dissolved in
sterile saline) was injected slowly into the LC via a long-shank glass micropipette (connected to
a 1-μl Hamilton syringe), which was left in the site for 5 min to prevent any backflow of the
injected HRP. After that, the pipette was smoothly removed and the incision site was carefully
sutured with all aseptic precautions.

After 24–36 h, rats were deeply anesthetized again with aforementioned maneuver and
transcardially perfused with 250 ml PBS (37°C) followed by 50–100 ml of fixative solution (1%
paraformaldehyde and 1.25% glutaraldehyde in 0.1 M phosphate buffer at pH 7.4, 4°C). Brains
were carefully removed from the skull and cryoprotected by overnight soaking in PBS (0.1 M)
containing sucrose (30%). The tissue blocks were serially sectioned into 40 μm-thick slices
using a freezing microtome (Histo-Line Laboratories, Italy). Finally, the prepared sections were
processed for HRP reaction by TMB method [26] and counterstained with 0.1% neutral red.

Slice preparation
In this study, three forms of brain slices were prepared: horizontal (HZ) slices (containing LC
but not PGi neurons), oblique to horizontal (OTH) slices (containing both LC as well as PGi
neurons, parallel to the LC-PGi connecting bundles) and oblique to horizontal-cut (OTH-cut)
slices (similar to OTH slices containing both LC and PGi neurons, but connecting area between
LC and PGi was linearly cut). For these, rats were deeply anaesthetized by diethyl ether and
decapitated. Brains were quickly removed from the skull and trimmed in ice-cold (1–4°C),
low-calcium sucrose-based artificial cerebrospinal fluid (sucrose-aCSF) containing (in mM)
sucrose 213, KCl 2.6, CaCl2 0.1, MgCl2 2, NaHCO3 26, NaH2PO4 1.23, L-ascorbic acid 0.4, D-
glucose 2 (290–310 mOsmol/L, pH 7.3–7.4 when bubbled with 95% O2, 5% CO2). For prepar-
ing HZ slices, a block of tissue containing LC was glued to the cutting stage of a vibratome
(1000 Plus Sectioning System, Vibratome, USA) with the dorsal side up. For preparing OTH
slices, the ventral side of a tissue block containing both LC and PGi nuclei were mounted on
the steep surface of a wedge-shaped agarose gel piece which was glued to the cutting stage of
the vibratome. The slope of this agarose wedge was 50° in a way that LC, PGi and the vibratome
blade were aligned in the same orientation (Fig 1B and 1C). Finally, for all forms of slices (HZ,
OTH and OTH-cut), 2–3 brain sections of 400 μm thicknesses were provided at 1–4°C. The
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Fig 1. Photomicrograph of a typical OTH brain section. Photomicrograph shows retrogradely labeled PGi neurons in the rostra1 ventral medulla of a rat
which received intra-LC microinjection of HRP (A, left side). Insets illustrate high magnification of LC and PGi regions. Following a single pulse electrical
stimulation of PGi, an evoked EPSC was recorded from LC neuron (A, right side). The schematic representation of cutting stage orientation for preparation of
OTH brain slices. The tissue block containing LC and PGi were mounted on the wedge-shaped agarose gel with an angle of 50°. The red dashed line shows
the cutting direction (B). Picture shows the blade direction and the way through which tissue block was mounted on cutting stage (C). OTH: oblique to
horizontal; LC: locus coeruleus; PGi: paragigantocellularis; HRP: horseradish peroxidase; EPSC: excitatory post synaptic current.

doi:10.1371/journal.pone.0134873.g001
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procedure of preparing OTH slices was the same for both electrophysiological study and HRP
neuronal tracing.

The slices were first incubated in a holding chamber with standard aCSF containing (in
mM) NaCl 125, KCl 3, NaH2PO4 1.25, NaHCO3 25, CaCl2 2, MgCl2 1.3, L-ascorbic acid 0.4
and D-glucose 10, saturated with 95% O2 and 5% CO2 for 30 to 40 min at 35°C. Osmolarity
was maintained between 290 and 310 mOsmol/L and pH between 7.3 and 7.4. Slices were then
kept at room temperature (~25°C) in the same chamber until the recording time. Then all the
slices were transferred to the recording chamber mounted on a fixed-stage upright microscope
(Axioskop 2 FS, Carl Zeiss, Germany) and were made fixed there under nylon strings attached
to a U-shaped platinum frame. All brain slices were continuously perfused with the standard
aCSF at a flow rate of 1 to 2 ml/min. LC neurons were visualized using an IR-CCD camera (IR-
1000, USA) with 10X and 40X water immersion objective lenses.

Whole-cell patch-clamp recording
The patch electrodes were made from borosilicate glass pipettes (1.5 mm outer diameter,
GC150-11; Harvard Apparatus, UK) with a programmable puller (P-97, Sutter Instrument,
USA). The tip resistance of the electrode was 3 to 7 MO when filled with intracellular solution
containing (in mM) potassium gluconate 120, NaCl 6, CaCl2 1, MgCl2 2, MgATP 2, NaGTP
0.5, phosphocreatine Na2 12, EGTA 5 and HEPES hemisodium 10 (pH 7.3 as adjusted with
KOH; osmolarity 285–290 mOsmol/L). The LC neurons were preselected according to the
IR-DIC image. After establishment of the cell attached configuration (3–8 GO seal resistance),
the whole cell mode was established with a brief negative pressure pulse. Recording was started
at least 5 min after the rupture of the patch membrane to stabilize the intracellular milieu.
Access resistance of< 20 MO was considered acceptable and was monitored periodically
throughout the experiment. The experiment was terminated if the access resistance changed
more than 15%. Whole-cell current clamp recordings were acquired with a MultiClamp 700B
amplifier and pClamp 10 software (Molecular Devices, USA), with a 3 kHz low-pass Bessel fil-
ter, and digitized at 10 kHz using a Digidata 1440A data acquisition system (Molecular
Devices, USA).

Spontaneous EPSCs (sEPSCs) were recorded in voltage clamp mode at a holding potential
of -70 mV and isolated using GABAA receptor antagonist (bicuculline, 20 μM). The amplitude
and the frequency of each sEPSC were measured. Currents with peak amplitude smaller than 8
pA (depending on the basal noise level of the recording) were excluded from analysis. All the
sEPSCs were recorded 5 min before and after naloxone application (1 μM, 5 min).

Experimental groups
All the rats were grouped as, rats without any treatment (naïve, untreated, non-dependent,
control) and rats chronically treated with morphine (morphine-dependent, 20 mg/kg, daily, i.
p. for consecutive 7 days).

Resting membrane potential (RMP), frequency of spontaneous discharge rates (SDR) and
the amplitude as well as frequency of sEPSCs, in LC neurons, were evaluated in horizontal
(HZ), oblique to horizontal (OTH) and oblique to horizontal-cut (OTH-cut) brain slices pre-
pared from the rats of two main above mentioned groups.

In our study, it is mentionable that, in another experimental group, the acute effect of mor-
phine on RMP and SDR was measured in brain slices taken from non-dependent rats (acute
morphine group). For studying the acute effect of morphine, all slices taken from non-depen-
dent rats were incubated and perfused with morphine (5 μM) during 60 to 90 min of the
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experiment. The slices taken from morphine-dependent rats were continuously bathed in mor-
phine (5 μM) during the whole experimental period.

In addition, for all OTH brain slices, only LC neurons having monosynaptic connection
with PGi afferents (as evidenced by recording the evoked EPSC from LC neurons in response
to single pulse electrical stimulation of PGi region) were included in the experiments (Fig 1A).

Moreover, in order to induce withdrawal in LC neurons of brain slices taken from chroni-
cally morphine treated rats, naloxone (1 μM) was superfused after 5 min baseline recording.

Furthermore, in order to investigate the effect of PGi excitatory afferents on naloxone-
induced hyperactivity of LC neurons in chronically morphine treated rats, kynurenic acid
(Kyn, 500 μM, an excitatory amino acid antagonist) was used.

Data analysis
All values are expressed as mean ± SEM. Electrophysiological data were analyzed off-line using
Clampfit software (pClamp 10; Molecular Devices, USA) and statistical analysis was performed
using GraphPad Prism version 6.01 for Windows (GraphPad Software, USA). Results were
compared before and after naloxone administration using paired Student's t-test or a one-way
ANOVA for multiple group comparisons. Tukey’s post hoc test was used following ANOVA to
test significance among different groups.

The net increment in electrophysiological indices was calculated by subtracting the values of
pre and post naloxone administration. P< 0.05 was considered statistically significant.

Results

Slice preparation and histology
As shown in Fig 1A, intra-LC microinjections of HRP retrogradely labeled the ipsilateral PGi
neurons in the rostra1 ventral medulla. This figure indicates that both LC and PGi neurons
were present in the newly developed OTH brain slices. Furthermore, the cutting method is
shown in Fig 1B and 1C.

Spontaneous discharge rate and resting membrane potential in naïve
group
In naïve rats, for each form of slice preparation, 8 neurons were investigated from separate
slices. Only neurons with stable spontaneous discharge frequency and membrane potential
were included in data analysis. In all forms of slices, there were no significant differences
among the SDR of LC neurons (the mean SDR were 0.74 ± 0.1, 0.76 ± 0.06 and 0.83 ± 0.05/s
for HZ, OTH-cut and OTH brain slices, respectively; Fig 2D, left side). Similarly, RMPs were
also close together for all brain slice forms (-53.38 ± 1.4, -51.63 ± 1.3 and -51.8 ± 1 mV for HZ,
OTH-cut and OTH brain slices, respectively; Fig 2D, right side). In addition, the effect of nal-
oxone was tested in all cells of this group, where no significant change was observed in RMP as
well as in SDR (Fig 2A–2C).

Spontaneous discharge rate and resting membrane potential in acute
morphine group
In the present study, acute administration of 5 μMmorphine for 60 to 90 min led to significant
decrement in RMP of LC neurons in non-dependent animals (-73 ± 4.7, -74 ± 3.9 and -72 ± 4.1
mV for HZ, OTH-cut and OTH brain slices, respectively; Fig 3A–3C). Furthermore, SDR was
suppressed in LC neurons of all slices in the presence of morphine (Fig 3A–3C). On the other
hand, when naloxone (1 μM) was applied following acute morphine administration, SDR as
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well as RMP were returned to the baseline levels in the non-dependent animals (0.78 ± 0.16,
0.82 ± 0.18 and 0.8 ± 0.21/s; -51 ± 2.2, -50.6 ± 3.1 and -50.7 ± 4 mV for HZ, OTH-cut and
OTH brain slices, respectively; Fig 3A–3C). These findings suggest that RMP and SDR of LC
neurons did not change by naloxone administration after 60 to 90 min morphine superfusion
compared to the baseline in all forms of brain slices taken from naïve animals. It should be

Fig 2. SDR and RMP of LC neurons in naïve (non-dependent) rats.Representative traces show the spontaneous discharge activity of three LC neurons
before and 5 min after naloxone superfusion (1 μM) in HZ (A), OTH-cut (B) and OTH (C) brain slices. Histograms (A–C) indicate the mean RMP and
frequency of SDR recorded before and after naloxone application. Note that naloxone did not alter the SDR and RMP of LC neurons in naïve rats. The
dashed line represents the RMP. Summary data showing the mean SDR and RMP in LC neurons of all three slice forms in naïve rats, which were not
significantly different among themselves (D). Data are expressed as mean ± SEM, n = 8 in each type of brain slice. Data were analyzed using paired
Student’s t-test (A–C) and one-way ANOVA followed by Tukey’s post hoc test (D). SDR: spontaneous discharge rates; RMP: resting membrane potential;
NLX: naloxone; LC: locus coeruleus; HZ: horizontal; OTH-cut: oblique to horizontal-cut; OTH: oblique to horizontal.

doi:10.1371/journal.pone.0134873.g002
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noted that, no significant differences were observed in the net effect of naloxone on RMP and
SDR in three forms of brain slices (Fig 3D).

Spontaneous discharge rate and resting membrane potential in
morphine-dependent group
In our study, the mean RMP of LC neurons in morphine-dependent group in the presence of
continuous 5 μMmorphine were -54.2 ± 2.6, -53.4 ± 1.4 and -54.3 ± 2.9 mV for HZ, OTH-cut
and OTH brain slices, respectively (Fig 4A–4C). A clear depolarization in RMP was observed
in these slices after naloxone treatment. The average RMP in LC neurons following naloxone
superfusion in morphine-dependent group were -50 ± 3, -49.3 ± 3 and -48.1 ± 1.9 mV for HZ,
OTH-cut and OTH brain slices, respectively (Fig 4A–4C). In addition, LC neurons from
dependent animals exhibited a higher mean SDR after naloxone application than that of naïve
rats, which was evident in all three slice preparations (Fig 2 versus Fig 4).

Moreover, as shown in Fig 4D, the net effect of naloxone on RMP and SDR in OTH brain
slices was significantly (p< 0.05) higher than those of HZ and OTH-cut brain slices of mor-
phine dependent rats. Net RMP depolarization were 4.2 ± 0.5, 4.1 ± 0.4 and 6.2 ± 0.4 mV and
net increased SDR were 0.7 ± 0.14, 0.7 ± 0.2 and 1.2 ± 0.1/s for HZ, OTH-cut and OTH brain
slices, respectively.

Fig 3. Effect of acute morphine application on SDR and RMP of LC neurons in naïve rats.
Representative traces show the RMP and SDR of three LC neurons before and 5 min after naloxone
superfusion (1 μM) in HZ (A), OTH-cut (B) and OTH (C) brain slices (slices taken from naïve animals were
incubated with 5 μMmorphine for 60 to 90 min before naloxone application). Histograms (A–C) indicate the
mean RMP and frequency of SDR recorded before and after naloxone application. Acute incubation of brain
slices with 5 μMmorphine led to significant decrement in RMP and suppression of the SDR of LC neurons in
non-dependent animals. Note that naloxone returned SDR and RMP values to the baseline levels in naïve
animals. It should be noted that the net effect of naloxone on RMP and SDR was similar among the three
forms of brain slices (D). The dashed line represents the RMP after naloxone superfusion. Data are
expressed as mean ± SEM, n = 8 in each type of brain slice, *** P < 0.001, compared to before naloxone
application. Data were analyzed using paired Student’s t-test (A–C) and one-way ANOVA followed by
Tukey’s post hoc test (D). RMP: resting membrane potential; SDR: spontaneous discharge rates; NLX:
naloxone; LC: locus coeruleus; HZ: horizontal; OTH-cut: oblique to horizontal-cut; OTH: oblique to horizontal.

doi:10.1371/journal.pone.0134873.g003
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Effect of kynurenic acid on withdrawal-induced hyperactivity of LC
neurons in morphine dependent rats
In order to investigate the effect of PGi excitatory afferents on naloxone-induced hyperactivity
of LC neurons in chronically morphine treated rats, kynurenic acid (an excitatory amino acid
antagonist) was used. As shown in Fig 5C and 5D, kynurenic acid (Kyn) administration
(500 μM) attenuated the observed net increment in LC neuronal SDR and RMP to that of
receiving no PGi inputs (HZ and OTH-cut brain slices). Also, kynurenic acid application in
HZ and OTH-cut brain slices did not significantly affect the increased SDR and RMP values
following withdrawal-induced hyperactivity of LC neurons (Fig 5).

Frequency and amplitude of spontaneous EPSCs in naïve rats
As shown in Fig 6, frequency of sEPSCs as well as amplitude index were not significantly differ-
ent among three forms of brain slices taken from naïve rats. Furthermore, application of nalox-
one did not alter the frequency and amplitude of sEPSCs in LC neurons of all three slice forms
in naïve rats (Fig 6A–6C).

Fig 4. Effect of naloxone on SDR and RMP of LC neurons in morphine-dependent rats.Representative
traces show the spontaneous discharge activity and the RMP of three LC neurons before and 5 min after
naloxone superfusion (1 μM) in HZ (A), OTH-cut (B) and OTH (C) brain slices. The slices were bathed in 5 μM
morphine. Histograms indicate the mean RMP and frequency of SDR recorded before and after naloxone
application. Naloxone significantly increased the SDR and RMP of LC neurons in all form of brain slices. It
should be noted that the net (not the mere) effect of naloxone on RMP and SDR was significantly higher in
OTH brain slices than those of HZ and OTH-cut preparations taken frommorphine dependent rats (D). Data
are expressed as mean ± SEM, n = 8 in each type of brain slice, * P < 0.05, ** P < 0.01 and *** P < 0.001
compare to HZ and OTH-cut. Data were analyzed using paired Student’s t-test (A–C) and one-way ANOVA
followed by Tukey’s post hoc test (D). RMP: resting membrane potential; SDR: spontaneous discharge rates;
NLX: naloxone; LC: locus coeruleus; HZ: horizontal; OTH-cut: oblique to horizontal-cut; OTH: oblique to
horizontal.

doi:10.1371/journal.pone.0134873.g004
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Frequency and amplitude of spontaneous EPSCs in morphine
dependent rats
In the present study, though the naloxone superfusion increased the mean frequency of the
sEPSCs in LC neurons significantly (P< 0.001) from 1.9 ± 0.2 to 3.1 ± 0.3/s in OTH slices
taken from morphine treated rats (n = 8), but this treatment did not significantly affect its
mean amplitude (28.3 ± 3.7 versus 31.8 ± 4.7 pA), as shown in Fig 7C. However, naloxone
altered neither the frequency nor the amplitude of sEPSCs in LC neurons of HZ and OTH-cut
brain slices (Fig 7A and 7B).

Discussion
Identification of the neuronal network mediating autonomic, neurochemical and behavioral
responses are essential for understanding opioid dependence and withdrawal. Among these
diversified networks strong projections from PGi to LC have been verified by various antero-
grade and retrograde neuronal tracers and these routes have been confirmed via antidromic
electrophysiologic stimulations [21].

In this study, we developed an oblique to horizontal (OTH) brain slice containing both the
LC and PGi neurons (Fig 1). The existence of both brain regions was detected using HRP retro-
grade neuronal tracing in this slice preparation. Moreover, the OTH slice was prepared in a
way to contain at least some PGi to LC projections within its 400 μm thickness, which was fur-
ther verified by applying a low intensity, single electrical pulse to PGi neurons followed by

Fig 5. Effect of kynurenic acid on LC neuronal activity following morphine withdrawal in morphine-dependent rats. Summary data showing the effect
of kynurenic acid (500 μM) on the SDR (A: total and C: net) and RMP (B: total and D: net) of LC neurons following opiate withdrawal in all three slice forms
taken frommorphine treated rats. Kynurenic acid application in HZ and OTH-cut brain slices did not significantly affect the net increased SDR and RMP
values following withdrawal-induced hyperactivity of LC neurons. Also, Treatment of OTH brain slices with kynurenic acid deceases the observed increment
in LC neuronal SDR and RMP in comparison to HZ and OTH-cut brain slices. Data are expressed as mean ± SEM, n = 6–8 in each type of brain slice, *
P < 0.05 versus LC neuronal SDR and RMP from OTH brain slices without kynurenic acid application. Data were analyzed using One-way ANOVA followed
by Tukey’s post hoc test. Kyn: kynurenic acid; RMP: resting membrane potential; SDR; spontaneous discharge rates; NLX: naloxone; LC: locus coeruleus;
HZ: horizontal; OTH-cut: oblique to horizontal-cut; OTH: oblique to horizontal.

doi:10.1371/journal.pone.0134873.g005
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recording of evoked EPSCs from LC neurons (mean latency of evoked EPSCs were 5.12 ± 0.2
ms; Fig 1A, right side).

It has been shown by retrograde neuronal tracing that the PGi nucleus, located in RVLM,
provides the main LC afferents [27]. It has also been reported that there might be at least three
distinct projecting pathways from PGi to LC- first one climbs dorsally along the lateral sides of
the pons, then turns to reach the LC nucleus along the lateral-to-medial axis, the second path-
way is located in the medial part of medulla, ventral to the medullary adrenergic bundle and
the third one is the ascending adrenergic pathway innervating the LC nucleus [20]. Our results
confirm the existence of some functional connections between PGi and LC regions within the
OTH slices. With respect to aforementioned pathways, the first as well as the second ones are
more probable to provide the main afferents from PGi to LC in our OTH slices, as the orienta-
tion of cutting stage (Fig 1B and 1C) was in line with these anatomical routes.

In addition, since PGi to LC connecting bundles were cut in OTH-cut slices, electrical stim-
ulation of PGi region did not result in evoked EPSCs in LC neurons. So, LC neurons have not
been affected by intact connecting fibers from PGi in this type of slice preparation. Also, pre-
pared HZ slices had no PGi region, thus the presence of intact PGi to LC afferents would not
be possible.

Our findings indicated that following acute morphine administration in brain slices taken
from non-dependent animals, SDR was suppressed and RMP decreased to more hyperpolar-
ized values in LC neurons compared to those of slices taken from naïve (untreated) rats (Fig 2
versus Fig 3). However, SDR and RMP values returned to the level of LC neurons taken from

Fig 6. Frequency and amplitude of sEPSCs in LC neurons of naïve (non-dependent) rats. The samples
traces of sEPSCs before and after application of naloxone (1 μM) in LC neurons of HZ (A), OTH-cut (B) and
OTH (C) brain slices taken from naïve rats. Histograms indicate the mean frequency and amplitude of
sEPSCs recorded before and after naloxone application. No significant alteration was observed in amplitude
and frequency of sEPSCs in LC neurons of all slice forms following naloxone application. Data are expressed
as mean ± SEM, n = 8 in each type of brain slice. Data were analyzed using paired Student’s t-test. NLX:
naloxone; LC: locus coeruleus; sEPSCs: spontaneous excitatory post-synaptic currents; HZ: horizontal;
OTH-cut: oblique to horizontal-cut; OTH: oblique to horizontal.

doi:10.1371/journal.pone.0134873.g006
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naïve animals following naloxone application in acute morphine group (Fig 3). Our results are
very much consistent with previously reported findings [8].

It is noteworthy that, before naloxone application, SDR and RMP values in LC neurons of
chronically morphine treated rats of our study were maintained around those of naïve animals
(Fig 2 versus Fig 4), which was due to development of tolerance to morphine in LC neurons of
dependent animals. In this regard, it has been reported that, opiate binding to μ opioid recep-
tors (MORs) results in decreased activity of adenylyl cyclase (AC) and cAMP signaling [10].
Also, acute binding of opiates to the MORs reduces the spontaneous activity of LC neurons,
primarily by activating G protein-gated inwardly-rectifying K+ (GIRK) channels [28,29]. In
addition, following long term opiate treatment, both firing rate and cAMP signaling return to
the baseline level due to an up-regulation of cAMP pathway representing tolerance to opiates
[5,13,30].

In the present study, during naloxone-induced withdrawal, the SDR of LC neurons
increased significantly compared to the control group in HZ and OTH-cut brain slices (that is,
lacking intact PGi afferents) taken from morphine dependent rats (Fig 2 versus Fig 4). It should

Fig 7. Effect of naloxone on frequency and amplitude of EPSCs in LC neurons of morphine-
dependent rats. The samples traces of sEPSCs before and after application of naloxone (1 μM) in LC
neurons of HZ (A), OTH-cut (B) and OTH (C) brain slices taken frommorphine dependent rats. The slices
were bathed in 5 μMmorphine. There was no significant alteration in amplitude and frequency of sEPSCs in
LC neurons of HZ and OTH-cut slices following naloxone application. As shown in histograms, the frequency
of sEPSCs in LC neurons of OTH brain slices has significantly increased following naloxone application.
However, no significant change was observed in the amplitude of sEPSCs after naloxone treatment in OTH
brain slices. Histograms show the mean frequency and amplitude of sEPSCs recorded before and after
naloxone application. Data are expressed as mean ± SEM, n = 8 in each type of brain slice, *** P < 0.001
versus before naloxone application. Data were analyzed using paired Student’s t-test. NLX: naloxone; LC:
locus coeruleus; sEPSCs: spontaneous excitatory post-synaptic currents; HZ: horizontal; OTH-cut: oblique to
horizontal-cut; OTH: oblique to horizontal.

doi:10.1371/journal.pone.0134873.g007
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be noted that following naloxone application, no significant difference was observed in RMP
between the HZ and OTH-cut brain slices of control and morphine dependent rats.

These findings are consistent with the previous study report indicating that the LC neuronal
discharge rate increased following naloxone administration in morphine dependent rats while
the RMP did not become significantly more positive than the RMP value in naïve animals [8].
This means that similar to the previously reported in vivo investigations, LC neurons could
show the local withdrawal-induced hyperactivity in vitro [31]. Also, in this part of the study
results are in line with previous in vitro extracellular study which indicated in brain slices taken
from morphine dependent rats, LC neuronal discharge rate increases in response to opioid
withdrawal [30]. It has also been reported that intra-LC microiontophoretic administration of
naloxone (as an opiate antagonist) increases LC neuronal activity in morphine dependent rats
[5].

It is noteworthy that the previously reported withdrawal-induced hyperactivity of LC neu-
rons could not be completely abolished by antagonizing excitatory amino acid (EAA) transmis-
sion or lesions of LC afferents [22,32]. Furthermore, it has been demonstrated that a two fold
increase in LC firing rate was observed following opioid receptor antagonism in cultured LC-
containing slices (coronal section from rat brain) which had been chronically treated with mor-
phine [7]. Ivanov and Aston-Jones (2001), using quasihorizontal brain slices, (partly similar to
HZ slices and without PGi region) have shown that withdrawal-induced hyperactivity of LC
neurons taken from morphine dependent rats could only be affected to somehow by glutamate
and GABA receptor antagonists or by tetrodotoxin (TTX) administration (in order to prevent
synaptic transmission). In other words, these manipulations were unable to inhibit the
increased activity of LC neurons [8]. Thus, only a small part of withdrawal-induced hyperactiv-
ity of LC neurons might be mediated by EAA inputs at in vitro condition. This phenomenon
seems to be occurred at the result of LC neuronal adaptations to chronic morphine treatment.
However, previous investigations have unveiled to some extent that the molecular mechanisms
involved in this neuronal adaptation, where chronic morphine administration resulted in up-
regulation of AC I, AC VIII, cAMP, CREB and protein phosphorylation pathways in LC neu-
rons [3,11,33,34]. In addition, both the increased activity of LC neurons and the intensity of
withdrawal-induced behavioral features were decreased by blocking of any of proposed molec-
ular pathways [7,35].

In the present study it was shown that LC neurons receiving intact excitatory synaptic
inputs from PGi region in OTH brain slices displayed a higher net discharge rate during opiate
withdrawal compared to the LC neurons in HZ or OTH-cut preparations (Fig 4D). Also, the
net resting membrane potential changes before and after naloxone administration in LC neu-
rons of OTH brain slices was significantly more positive than those of LC neurons receiving no
intact excitatory synaptic inputs from PGi (HZ and OTH-cut brain slices). It seems that, PGi
excitatory afferents may increase LC neuronal discharge rate during naloxone induced opiate
withdrawal.

Our findings about the effect of kynurenic acid on the three types of brain slices taken from
morphine dependent rats (Fig 5), also support the idea that increase in net SDR and RMP val-
ues of LC neurons in OTH slices (compared to other brain slice types) following naloxone
application might be due to the increased activity of PGi excitatory afferents. In addition, the
partial attenuating effect of kynurenic acid on SDR and RMP of LC neurons in OTH slices and
ineffectiveness of this EAA antagonist on the same variables SDR and RMP in HZ and OTH-
cut slices following naloxone administration revealed that, observed increment in excitability
indices of LC neurons in OTH slices could not be attributed solely to the neurochemical
changes induced during development of opioid tolerance.
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An in vivo microdialysis study has confirmed the involvement of other brain regions in opi-
ate withdrawal-induced hyperactivity of LC neurons, where the extracellular release of gluta-
mate and aspartate in LC nucleus was increased during opiate withdrawal [19].

It has also been reported that intracerebroventricular (i.c.v.) administration of kynurenic
acid prior to opiate antagonist injection, prevented withdrawal-induced hyperactivity of LC
neurons [36]. Since LC nucleus receives afferents primarily from two brain regions-PGi in
RVLM and nucleus prepositus hypoglossi (PrH) in dorsomedial rostra1 medulla [20,27], so,
these areas seem to be the main candidates for mediating the extrinsic modulation of LC neu-
ronal activity during opiate withdrawal. However, as PrH nucleus sends strong GABAergic
projections to LC, most likely it might not play a critical role in hyperactivity of LC neurons
during opiate withdrawal. Instead, LC receives strong excitatory inputs from PGi which could
mediate in part withdrawal-induced hyperactivity of LC neurons [12].

It has also been shown that low intensity, single-pulse electrical stimulation of PGi resulted
in excitation of approximately 73% of LC neurons [21]. Regarding the involvement of excit-
atory afferents of PGi in mediating withdrawal induced hyperactivity of LC neurons, previous
studies have reported that following lesions of PGi (as the main LC glutamatergic input) or i.c.
v. microinjection of kynurenic acid, there was decrement in withdrawal-induced hyperactivity
of LC neurons [22,36]. However, in our study, the frequency of sEPSCs recorded from LC neu-
rons in OTH brain slices has significantly increased following naloxone application, though
the amplitude was not affected after the same treatment in the same slices. It is noteworthy that
the frequency of sEPSCs in HZ and OTH-cut slices did not significantly increase after naloxone
administration in morphine dependent animals (Fig 7).

Moreover, different in vivo extracellular recordings have shown that the discharge rate of
PGi neurons in morphine dependent rats significantly increases following naloxone adminis-
tration compared to the control (non-dependent) rats [37–39]. Thus, it is possible that the
observed increment in LC neuronal activity following opiate withdrawal might be due to incre-
ment in the activity and therefore the excitatory tone of PGi neurons.

Conclusion
In conclusion, our results strengthen the idea that intact PGi inputs, preserved in the OTH
slices, facilitate the cellular expression of morphine withdrawal in the LC neurons. This is fur-
ther supported by the electrophysiological differences observed among slice preparations.
However, such facilitative effect of intact PGi afferents on cellular expression of morphine
withdrawal in LC neurons has not been directly investigated in vitro. Also, these findings show
that the hyperactivity of LC neurons during opiate withdrawal might be due to an increment in
their resting membrane potential. This in turn could be mediated by an increase in the excit-
atory tone of PGi neurons to LC.
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