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A B S T R A C T   

Radiation therapy (RT) nowadays is a main treatment modality of cancer. To ensure the therapeutic efficacy of 
patients, accurate dose distribution is often required, which is a time-consuming and labor-intensive process. In 
addition, due to the differences in knowledge and experience among participants and diverse institutions, the 
predicted dose are often inconsistent. In last several decades, artificial intelligence (AI) has been applied in 
various aspects of RT, several products have been implemented in clinical practice and confirmed superiority. In 
this paper, we will review the research of AI in dose prediction, focusing on the progress in deep learning (DL).   

Introduction 

Since the beginning of last century, RT has completed the evolution 
from two-dimensional (2D) to three-dimensional (3D) conformal 
radiotherapy technology to Intensity-Modulated Radiotherapy (IMRT). 
Presently, IMRT is widely used in clinical practice, which includes 
multiple variants (fixed beam intensity-modulated radiation therapy, 
volume intensity-modulated radiation therapy, and tomographic radi-
ation therapy, etc.).IMRT as one of the three-dimensional conformal 
radiation therapy, is superior in terms of uniform radiation dose to 
planning target volume (PTV) and protection of organ-at-risks (OARs) 
[1].In order to achieve individualized and precise radiotherapy, mini-
mizing normal tissue damage while persevering sufficient tumor control 
is crucial [2].Planners often need to perform multiple rounds of 
parameter adjustment in a trial-and-error manner to achieve the optimal 
dose distribution. This process is time-consuming, labor-intensive, and 
may delay patient treatment, leading to poor prognosis [3,4]. Further-
more, the quality of the final dose distribution delivered varies signifi-
cantly as a result of differences in knowledge and experience from 
different institutions or individuals [5]. The widespread use of AI will 
have the opportunity to change that. 

AI, a branch of computer science, produces a new kind of intelligent 
machine that can respond in a similar way to human by understanding 
the nature of intelligence. Research in this field includes robotics, speech 
recognition, image recognition, natural language processing, and expert 
systems. Machine learning (ML) as a branch of AI., it trains the model by 
selecting an appropriate algorithm, and obtains the model by automat-
ically analyzing the data, so that the model can be used to predict the 
unknown data. The pivotal concept of machine learning is to generate 
accurate predictions after training on a limit learning dataset. Since the 
DL based on CNN won the ImageNet [6], it has made outstanding 
achievements in various fields including medicine in last ten years with 
the massive use of computers and the growth and explosion of data [7]. 
Among them, the convolution neural network (CNN) it contains is the 
most common neural network that has been applied to image analysis, 
which plays the same pivotal role in the field of dose prediction. 

The combination of AI and dose prediction is not only expected to 
improve the poor prognosis of patients due to delayed treatment, but 
also improve the consistency of treatment plan among individuals and 
even between institutions, thus realizing the standardization of tumor 
radiotherapy. This paper reviews the application of AI in dose predic-
tion, focusing on the research progress of DL in this field in recent years. 
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* Corresponding author at: Department of Radiation Oncology, The First Hospital of China Medical University, No.155 Nanjingnan Street, Heping District, She-
nyang 110000, China. 

E-mail addresses: JC727315287@163.com (C. Jiang), 18040095029@163.com (T. Ji), Braveheart8063@outlook.com (Q. Qiao).  

Contents lists available at ScienceDirect 

Clinical and Translational Radiation Oncology 

journal homepage: www.sciencedirect.com/journal/clinical-and-translational-radiation-oncology 

https://doi.org/10.1016/j.ctro.2024.100792 
Received 23 April 2024; Accepted 7 May 2024   

mailto:JC727315287@163.com
mailto:18040095029@163.com
mailto:Braveheart8063@outlook.com
www.sciencedirect.com/science/journal/24056308
https://www.sciencedirect.com/journal/clinical-and-translational-radiation-oncology
https://doi.org/10.1016/j.ctro.2024.100792
https://doi.org/10.1016/j.ctro.2024.100792
https://doi.org/10.1016/j.ctro.2024.100792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clinical and Translational Radiation Oncology 47 (2024) 100792

2

Dose prediction 

Dose prediction is mainly the dose distribution for PTV and OARs. Its 
generation can be seen as an iterative super-parametric adjustment 
process that achieves final balance by constantly balancing conflicting 
clinical goals [8]. Excellent dose prediction strikes a balance between 
PTV and surrounding OARs exposures: it minimizes OARs exposures 
while ensuring adequate PTV dosing [9]. At present, the generation of 
IMRT dose distribution widely used in clinical practice mainly depends 
on inverse planning (IP) [10]. Unlike the previous positive planning, IP 
allows physical therapists to preferentially determine the number and 
angle of irradiation fields, and the target doses of PTV and OARs, then 
provides the results to the computer, getting various parameters of the 
delivery plan finally. Although the proposal of this method reduces the 
work pressure of physicists to a certain extent, the total time con-
sumption still cannot be underestimated. The introduction of dose pre-
diction based AI has been demonstrated in many studies to free the 
physical therapist from the chore and improve the efficiency and quality 
of plan (See Fig. 1). 

Traditional method 

Hussein et al. [9] divided the automated planning methods (include 
dose prediction) applied in clinical practice since 2018 into three cate-
gories: Protocol-based Automatic Iterative Optimization (PB-AIO), 
multi-criteria or multi-objective optimization (MCO) [8,11–15], and 
Knowledge-based Planning (KBP). The PB-AIO and KBP have been 
separately commercialized and put into clinical practice: the Auto- 
Planning function of Pinnacle system [16–18], Rapid plan of Varian 
Eclipse TPS [9], MRIdian, Unity of Elekta, and Ethos of Vrian. KBP 
currently has more relevant studies. 

According to the different methods used, KBP can be divided into two 
categories [19]: case-based and atlas-based methods, statistical 
modeling and machine learning methods. The core of the former mainly 
relies on the past similar cases, and transfer the useful knowledge from 

the plan to the current. The latter creates a predictive model based on 
clinical database. Regression model was mainly used in the past, but 
now traditional machine learning methods such as support vector ma-
chine and decision tree are also gradually used [19–25]. In 2014, Varian 
officially integrated the KBP-based DVH prediction model (named Rapid 
Plan) into its commercial development of TPS (Eclipse) and evaluated it 
well in multiple site tumors [19]. In recent years, with the advancement 
of online adaptive radiotherapy (oART), devices such as MRIdian, Unity, 
and Ethos can be used for oART treatment. MRIdian is based on the 
traditional Monte Carlo algorithm. Although it has high accuracy in 
calculation, it is limited by technical difficulties in the face of complex 
treatment plans (such as HNC). For example, the slow movement of 
MLC, the gantry rotation speed, limited beam Angle, etc [26]. Unity 
system and Ethos have high target coverage and OAR protection in terms 
of dosimetry, due to the necessity of clinicians to modify the target 
volume, the treatment time is longer than the traditional treatment 
method. Therefore, there is a tradeoff between the time spent adjusting 
the treatment plan and the dosimetric gain [27–29]. 

Although KBP has improved and accelerated the treatment process, it 
often limited by the quality of clinical treatment plan process. In addi-
tion, the predicted DVH curve lacks spatial information on dose distri-
bution, which is inconsistent with the current overall goal of 
personalized and precise treatment [30–33]. 

Dose prediction based on deep learning 

With the rapid development of DL, the focus of research has gradu-
ally tilted in recent years, and a large number of dose prediction models 
based on DL have been developed. Compared with the traditional ma-
chine learning method, DL can learn and acquire features from images 
without manual delineation. After acquiring each voxel information 
from patients’ CT, MRI or PET, DL uses these information mapping to an 
optimal dose value, and then uses the voxel dose map to guide the 
optimization process in the TPS, and generate a final dose distribution 
[34]. In addition, the dose distribution can be predicted given the 
anatomical information and the dose prescription for use as a target for 
IP [35]. 

Dose prediction research related to DL gradually arose from 2012. 
Thanks to the increasingly mature application of CNN in radiotherapy, 
the proposal of the network optimized the defect of KBP in lack of three- 
dimensional information and retained the spatial relationship between 
each voxel. Now, it has been widely used in the field of dose prediction 
[34,36,37]. U-net, Generative adversarial network (GAN) and trans-
former are the main bodies of the current research [34]. 

U-Net 
U-Net [35] is a convolutional network structure for fast and accurate 

volume segmentation. In dose prediction, it is able to collect local and 
global features from the input image to generate pixel or voxel pre-
dictions in its 2D or 3D variants, respectively. 

In 2017, Nguyen et al. [38] first used the U-net in the dose prediction 
feasibility study, and developed a variant of the 3D U-Net model [39], i. 
e., the layered and densely connected U-net based on the U-Net and 
DenseNet [40], which shows that the model outperformed the other two 
models in terms of uniformity, dose consistency and dose coverage 
(single classical U-net and DenseNet). 

Since Nguyen pioneered the U-Net variant, more and more studies 
have focused on the DL developed based on 3D U-Net. By changing the 
internal structure of the model, it can be combined with different ML 
methods, such as DenseNet [41], HD U-Net, DVHnet, and ResDevNet.Or 
by using various input data, such as distance information, PTV and OARs 
contour information, etc., with corresponding development in the fields 
of head and neck cancer [1,42–48], breast cancer [49,50], lung cancer 
[51,52], prostate cancer [36,44,53–59], and cervical cancer [60], 
respectively. 

The superiority of dose prediction model lies not only in its structure, Fig. 1. Flow diagram of the search and selection process.  
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but also in the input information. The input information can be divided 
into contour information, distance information, machine parameters, 
etc. In previous studies, the contour information was often used as a 
single input, while the Ma [55] additionally included dose distribution 
information that only considered PTV (i.e., a scheme that sacrificed 
OARs for optimal PTV coverage) to obtain more dose characteristics, 
thus helping to optimize dose distribution. Dong [61] established a Deep 
DoseNet model to collect missing density information from CT images to 
improve the resolution of the dose distribution. Fan [62] created fluence 
map converted 3D volume (FMCV), which directly used the fluence map 
as input to establish a direct mapping relationship with the 3D dose 
distribution, and proved its feasibility in different parts and had great 
potential to improve the calculation efficiency and accuracy. Peng et al. 
[63] directly extracted the 3D projections from the volume CT and 
anatomical data according to the beam incidence direction and used 
them as inputs to output the predicted energy flow diagram (PFM) of 
each beam. The PFM was then converted to an multi-leaf collimator 
(MLC) sequence with deliverable management to generate the final 
treatment plan. 

Different from the data adjustment limited to the input, Hu et al. [64] 
made improvements to both input and output. They proposed the His-
torical Suboptimal Set (HSE: the set of multiple suboptimal models ob-
tained in one round of training) for the first time. The non-intensity- 
modulated dose distribution (the initial amount conforming to the 
target shape during the IP) was used as input and HSE was used to 
improve the prediction accuracy. The experimental results showed that 
the non-intensity-modulated dose was faster than the conventional 
network, and it was more accurate for the prediction of quantitative 
indicators and high and low dose regions, and could reduce the devia-
tion of the final prediction results. 

Apart from the combination with traditional ML, emerging algo-
rithms such as imaging omics and reinforcement learning (RL) are 
gradually applied to dose prediction. Lou, Doken et al. [65] have 
established a multi-task deep neural network —Deep Profiler, which 
combines neural network, imaging omics with clinical practice. By 
learning the multi-dimensional spatial characteristics of CT images of 
multiple patients receiving different doses of radiotherapy and con-
necting with imaging omics, these information and clinical variables are 
combined to obtain iGray, an individualized radiation dose. Wang et al. 
[66] included RL in CNN and developed a multi-objective adjustment 
strategy network (MOAPN) to learn how to adjust multiple objectives in 
TPS to achieve a high-quality plan (See Table 1). 

GAN 
GAN is learned through mutual game between two neural networks, 

which can enhance the robustness of the model. It is composed of two 
modules: a generation network and an discriminator network. The goal 
of the generation network is to generate data that simulate real samples 
in a training set as much as possible, while the discriminator network 
screens the output of the generation network from the real samples. 
These two networks achieve nash equilibrium through countermeasure 
training. However, the traditional GAN rely on the ability of the 
discriminator network to distinguish between false prediction and actual 
prediction, so the overall performance is limited by the authenticity 
ability of the identifier. 

Due to the special ability of GAN to distinguish authenticity, the 
predicted dose closest to the clinical dose is often obtained clinically by 
developing GAN-based models. Aaron Babier et al. [67] constructed a 
3D GAN model that can predict the dose of the entire 3D CT image at one 
time and consider the correlation between adjacent CT slices, thus 
meeting the criteria for clinical plan more than 3D Dosenet and 2D GAN. 
Subsequently, they [68] also performed a study on the synergistic per-
formance of the dose prediction model and the optimization model, 
combining GAN and random forest (RF) with the optimization models IP 
and digital macrograph (DM), respectively, trained in oropharyngeal 
cancer patients and proved that the generated plan of GAN-IP was better 

than the other three, and that the performance of the automated KBP 
depended on the synergistic performance of the prediction and optimi-
zation model. Therefore, they suggest that multiple optimization models 
should be tested before the new prediction methods are considered to be 
state-of-the-art. Zhan et al. [69] proposed an automatic dose prediction 
framework Mc-GAN for multi-constrained GAN. In this model, it can 
learn the nonlinear mapping relationship between input (contour in-
formation) and output (dose distribution map), capture more local and 
global useful features to generate better results, avoid model over-fitting 
and improve the consistency between actual and predicted dose. 

Most of the published studies use the manually sketched PTV and 
OARs contour information as the input to the model. Although accurate 
contour information can help to obtain a more true and accurate dose 
distribution, the time consumed in manually sketching may delay the 
treatment of the disease and lead to a poor prognosis. Murakami [70] 
and Cui et al. [71] attempted to develop a corresponding model based on 
GAN to predict dose distribution with only CT raw images as input, and 
verified their feasibility in prostate cancer and rectal cancer, respec-
tively. The latter also introduced multi-task learning (MTL) strategy to 
compensate for missing anatomical information and demonstrated su-
perior performance over other mainstream approaches (U-net, Deep-
LabV3+, DoseNet, and GAN) (See Table 2). 

Transformer 
Transformer is a neural network model based on self-attention 

mechanism, which is used to process sequential data. It adopts self- 
attention mechanism to capture the correlations within a sequence 
and overcome the limitations of long-range dependencies. By parallel-
izing the training process, the training speed can be improved [74]. 
Currently, it has been applied in various domains such as image classi-
fication, target detection, and semantic segmentation, etc. Due to the 
lack of global feature acquisition in CNN, researchers have employed the 
transformer and developed several superior dose prediction models in 
combination with other DL models [74–81]. Wen et al. [80] argue that 
existing DL models overlook the isodose lines and gradient information 
in dose maps. They embed the Transformer to address the lack of global 
features and establish the TransMTDP multi-task dose prediction 
network, which has been validated to be superior in rectal cancer and 
head and neck cancer datasets. Jiao et al. [76] firstly utilized a graph 
convolutional network (GCN) based on superpixels to extract anatomi-
cally relevant features and embed the Transformer into the backbone 
network, establishing the TransDose model. This model solely employs 
CT images for dose prediction and has demonstrated its generalization 
ability and superiority through extensive experiments (See Table 3). 

Considering the individual differences of patients, the parameters of 
the treatment machine will not be static when treatment is delivered, 
and the accurate dose distribution is not only predicted based on the 
individual information of patients. The unsatisfactory delivery param-
eters such as the shape, angle, beam direction, and medium density of 
the MLC can also lead to large deviation between the treatment dose and 
the planned dose. Thus, direct machine parameter prediction is another 
potential area of study in which the optimization of a plan as well as its 
deliverability can be considered based on the precision of the planned 
dose [52,58,74,78,82–84]. Kontaxis et al. [85] established the DeepDose 
framework for accurate dose calculation of IMRT MLC shapes, which 
utilized different anatomical structures and patient anatomy as inputs to 
predict the dose for each individual part of the patient’s plan based on 
the actual machine parameters of the linear accelerator. Gyanendra [58] 
and Ana et al. [52] used given set of beam angles and patient anatomy as 
model inputs, adding the ability to adjust beam orientation to the Pareto 
optimal dose prediction model based on DL without the need to train 
specific models for each beam arrangement. 

Based on the dose prediction studies, some studies has been realized 
the direct automation of treatment planning. Fan et al. [45] designed an 
automatic voxel-based planning method based on matRad [86]: using 
CT images and outlining information as inputs, and integrating dose 

C. Jiang et al.                                                                                                                                                                                                                                    



Clinical and Translational Radiation Oncology 47 (2024) 100792

4

Table 1 
Selected studies on Unet-based dose prediction.  

Reference 
and years 

Dataset Model Input Output Main results 

Chen et al 
[42]/2021 

Nasopharyngeal 
cancer:180 
Training set:153 
Testing set:27 

DVHnet Two-channel images with contoured 
structures. 

DVH curve for 
each slice. 

Mean difference of all OARs: 0.30 ±
0.95 Gy 
Differences in D2% and D50: within 
2.32 and 0.69 Gy.  

Fan. et al 
[45]/2019 

H&N cancer:270 
Training set:195 
Validation set:25 
Testing set:50 

Residual neural network The image representing the patient anatomy 
in each trans-axial CT slice. 

Dose 
distribution. 

Except brainstem, right and left 
lens, there is no statistically 
significant difference between 
prediction and real clinical plan. 

Chen. et al 
[46]/2018 

Early-stage 
nasopharyngeal cancer 
(NPC):80 
Training set:70 
Test set:10 

ResNet101 Two inputs: one included the images (with 
associated structures) without manipulation; 
another involved modifying the image gray 
label with information from radiation beam 
geometry. 

Dose 
distribution. 

Using radiation geometry 
performed better than another. 

Fan et al 
[62]/2021 

Nasopharyngeal, lung, 
rectum and breast 
cancer:267 
Training set:200 
Validation set:20 
Test set:47 

Voxel traversal 
algorithm 

Each individual beam Dose 
distribution 

The average per-voxel bias and 
standard deviation:0.17 % ± 2.28 
%.  

Ma et al.  
[44]/2022 

Head and Neck 
cancer:443; 
Prostate cancer:14 
Training set:457 
Validation set: 49 
Test set:102 

DNN (U-net) Desired volumetric dose distribution Ground truth 
(GT) 

The mean dose difference 
(PTV):1.42 %±0.37 % 

Xing et al 
[36]/2020 

Lung cancer:120 
Training set:72 
Validation set:18 
Testing set:30 

HD U-Net The fluence map and CT Dose 
distribution 

New model average gamma passing 
rate:97.6 %(±2.4 %),old:87.8 % 
(±9.0 %) 
MSE:0.11(±0.05)vs 0.31(±0.21). 

Montero et al 
[52]/2019 

Lung cancer:129 
Training/validation 
set:100 
Testing set:29 

Hierarchically densely 
connected U-Net (HD U- 
net) 

10 input channels: one for beam setup and 
the other 9 for anatomical information (PTV 
and organs). 

Dose 
distribution 

Dice scores: in low and medium 
dose region: AB model 10 % higher 
than the AO model; high:2–5 % 

Ahn et al 
[49]/2021 

Breast cancer:55 
Training set:35 
Testing set:10 
Validation set:10 

DpNet CT images Dose 
distribution 

MAE ± SD between clinical and 
DpNet:D95% 0.02 ± 0.04 %,Dmean 

0.01 ± 0.83 %. 

Xing et al 
[36]/2020 

Prostate cancer:78 
Training set & validation 
set:70 
Testing set:8 

A modified 
Hierarchically Densely 
Connected U-net (HD U- 
net)model 

Pre-calculated inaccurate dose distribution 
and patient CT 

Dose 
distribution 

The dose difference between DL and 
CS < 0.25 Gy;for volume:<0.16 %.  

Ma et al 
[43]/2021 

Prostate cancer:97 
Training/Validation set:77 
Testing set:20 

3D U-net Patient PTV/OAR masks and the desired 
DVH. 

Dose 
distribution 

The largest average error: mean 
dose 1.6 %,maximum dose 1.8 % 

Ma et al 
[53]/2019 

Prostate cancer:70 
Training set:60 
Test set:10 

CNN The contours of six structures in CT images Dose 
distribution 

Mean SARs:0.029 ± 0.020 
(bladder),0.077 ± 0.030(rectum). 

Kandalan et 
al[54]/ 
2020 

Prostate cancer:248 
Training set:108 
Test set:14–29 

3D U-Net; transfer 
learning 

The contours of PTV and the OARs; Dose 
distribution 

With transfer learning, the model 
can improved the mean DSC to 
0.88–0.95 and 0.92–0.96 for 
internal and external styles. 

Ma et al 
[55]/2019 

Prostate cancer:70 
Training set:60 
Test set:10 

CNN Contour information and the dose 
distribution from a PTV-only plan 

Dose 
distribution 

The mean SARs:PTV 0.007 ± 0.003, 
bladder 0.035 ± 0.032, rectum 
0.067 ± 0.037. 

Sumida et al 
[56]/2020 

Prostate cancer:66 
Training &validation 
set:50 
Testing set:16 

U-net The CT images Dose 
distribution 

The mean DSC: DC model 0.763,D 
model 0.592. 

Kajikawa et 
al[57]/ 
2019 

Prostate cancer:95 
Training &validation 
set:80 
Test set:15 

CNN (3D U-net) The contours for PTVs and OARs Dose 
distribution 

MAE with ISD between clinical and 
CNN:D2 1.10 %±0.64 %. 

Bohara et al 
[58]/2020 

Prostate cancer:70 
Training set:54 
Validation set:6 
Test set:10 

U-Net Model I:converting the PTV,OARs and body 
into beam angles 
Model II: converting the beam angles into 
beam doses 

Dose 
distribution 

Model I’s prediction error:0.327 
(R50), 3.90 % (D98);Model II:0.626 
(R50), 6.50 % (D98). 

Ni et al[59]/ 
2022 

Prostate cancer:171 
Training set:144 
Testing set:27 

3D U-Net Patients’ CT and contour information Dose 
distribution 

V95% > 99 %, 
V107%<0.2 %. 

(continued on next page) 
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prediction and reverse optimization in the same process, without human 
participation in the whole process. Liu et al. [73] developed a GAN- 
based AI proxy model, which can directly generate the optimal ray 
flux intensity map of IMRT when being trained in patients with naso-
pharyngeal carcinoma, and no reverse planning or dose prediction is 
required in the process. The generated flux map can be converted 
directly into a deliverable plan in the business process planning system. 

Discussion 

Dose calculation is a vital part of RT, which is a time-consuming and 
labor-intensive process. Especially with the increasing attention paid to 
individualized treatment and precise radiotherapy, it’s challenged to 
consider the patient-specific and achieve the optimal dose distribution at 
the same time. It not only requires accurate dose calculation, but needs 
to select the matching treatment parameters. The whole formulation 
process is complex and endless. The emergence of dose prediction 
models will help to improve this situation. 

Recent years, with the rapid development of AI, it has been suc-
cessfully applied in various fields of society and life, such as defeating 
the world champion of alphago, and autonomous vehicle. Its achieve-
ments in the medical field are also brilliant, mainly in medical imaging, 
auxiliary diagnosis, drug research and development, health manage-
ment, and disease prediction. In the field of medical imaging, although 
AI is still in the trial stage, mature products have been produced in such 
fields as tuberculosis, fundus, breast cancer, and cervical cancer [87]. 
Based on these successful cases, AI has been gradually combined with 
RT. At present, mature commercial software has been put into use in 
image fusion and registration, target delineation, dose prediction, 
quality assurance, toxicity prediction, and other links. 

The early researches of AI in dose prediction mainly focused on 
traditional ML methods such as regression analysis, support vector 
machine, and decision tree. With the deepening of research on DL, ML 
has a more comprehensive application prospect, which can process 
larger database and obtain more detailed features for training models, 
improve model prediction performance, and maximize the realization of 

Table 1 (continued ) 

Reference 
and years 

Dataset Model Input Output Main results 

Kearneyet al 
[41]/2018 

Prostate cancer:151 
Training set:106 
Validation set:20 
Test set:25 

DoseNet 3D CT, prostate, bladder, penile bulb, 
urethra, and rectum volumes. 

Dose 
distribution 

Average ΔDoseNet: CI (conformity 
index) 0.04,HI (heterogeneity 
index) 0.03. 

Dong et al 
[61]/2021 

Ten patient CT image 
datasets of different 
disease sites 

DDN (Deep Dose Net) The AAA dose slices, and the corresponding 
down sampled CT slices 

Dose 
distribution 

The average mean-square-error 
between DDN and AXB:7.0 × 10^ 
[-5]. 

Zhang et al 
[60]/2020 

Cervical cancer:100 
Endometrial cancer:20 
Training set:86 
Validation set: 11 
Test set:20 

3D U-Net Contoured structures Dose 
distribution 

The average DSCs under different 
isodose volumes > 0.9.  

Peng et al 
[63]/2023 

Rectal 
adenocarcinoma:334 
Training & validation 
set:314 
Test set:20 

CNN;3D residual U-Net Projections in cone beam space Predicted 
fluence map 
(PFM) 

Compared to manual plans, RTTP 
increases in PTV D1% by 2.33 % (p 
< 0.001), a decrease in PTV D99% 
by 0.45 % (p < 0.05). 

Hu et al[64]/ 
2020 

GO disease:107 
Training set:76 
Validation set:13 
Test set:18 

DNN The nonmodulated dose distribution Dose 
distribution 

PTV D99:92.533 ± 83.757, HI 
0.041 ± 0.046,CI 0.091 ± 0.102.  

Table 2 
Selected studies on GAN-based dose prediction.  

Reference and 
years 

Dataset Model Input Output Main results 

Babier et al[67]/ 
2019 

Oropharyngeal 
cancer:217 

3D GAN Contoured CT images Dose 
distribution 

3D GAN satisfied 77 % of all clinical criteria, clinical 
plan satisfied 67 %. 

Babier et al[68]/ 
2020 

Oropharyngeal 
cancer:217 
Training set:130 
Test set:87 

Two dose prediction method: 
GAN,RF. 
Two optimization models: IP, 
DM 

Contoured CT image Dose 
distribution 

GAN-IP satisfied 78 % clinical criteria; 
GAN mean absolute error:3.9 Gy. 

Zhan et al[69]/ 
2022 

Cervical cancer:42 
Rectal cancer:130 
Training set:136 
Validation set:7 
Testing set:29 

Mc-GAN: composed by 
EmbUNet, AdvNet, SENet, 

The original CT, the mask 
of PTV and OARs 

Dose 
distribution 

In cervical cancer: PTV D98 0.007 ± 0.004,D2 0.002 
± 0.001,HI 0.007 ± 0.006,CI 0.020 ± 0.012.In  
rectal cancer: PTV D98 0.008 ± 0.006,D2 0.006 ±

0.004,HI 0.012 ± 0.005,CI 0.013 ± 0.008. 

Murakaml et al 
[72]/2020 

Prostate cancer:90 
Training set:81 
Test set:9 

GAN Paired CT images Dose 
distribution 

The mean difference of OARs were within 
approximately 2 % and 3 %(except for D98%, D95% for 
PTV) 

Cui et al[71]/ 
2022 

Rectal cancer:130 GAN with multi-task learning 
(MTL) strategy 

CT images only Dose 
distribution 

HI:1.023, ΔD95:0.125, ΔDmean:0.023 

Li et al[73]/2021 Oropharyngeal 
cancer:231 
Training set:200 
Validation set:16 
Test set:15 

cGAN-Conditional generative 
adversarial network. 

3D CT volume and 
structures 

Fluence map Dmean of left parotid: 23.1 ± 2.4 Gy, 
Dmean of right parotid: 23.8 ± 3.0 Gy, 
Dmax at 0.01 cc of brainstem: 15.0 ± 2.1 Gy, 
Dmax of body: 121.1 ± 3.9 Gy.  
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individualized precision radiotherapy. In conclusion, compared to con-
ventional methos, AI can be used to achieve the optimal dose distribu-
tion in patients, evaluate the individualized treatment effect, and 
propose the dose distribution scheme for reference and improvement by 
clinicians and physicists. At the same time, it can tremendously reduce 
the time and labor cost on the basis of ensuring the dose accuracy, 
freeing clinicians and physicians from the procedure of dose calculation 
and focusing more energy on other procedures of radiotherapy, such as 
target delineation, which may reduce the waiting time of patients for 
treatment, improve treatment efficiency, thus improve the prognosis of 
patients. 

Despite the successful use of AI in dose prediction, certain aspects 
remain problematic. Firstly, in terms of data, small data sets is a com-
mon problem in most studies. Model training, validation, and testing 
rely on a large and high-quality database. Studies have shown that the 
quality and scale of data have a direct impact on model performance 
[34]. The training data and validation data should be separated from the 
test data for rigorous model training and testing. If there is no enough 
data for model training and testing, the overly complex model generated 
from the limited dataset will often be over-fitted, which will affect the 
generalization performance of the model. Therefore, it is essential that 
large data sets be of high quality and publicly available. However, it is 
not easy for a single tumor center to acquire large enough data sets. If 
multi-center database cooperation is realized, it may be possible to solve 
this problem. Image-net algorithm has also been proven to be effective. 
Ethically, due to the structure and operation principle of AI, especially 
DL, are not transparent, and even researchers cannot explain its opera-
tion principle in detail, it is called a “black box”, and its availability and 
authenticity are often questioned by the outside world, so a 

comprehensive, thorough and strict quality assurance link is needed to 
ensure the high safety of clinical practice in generating plans. In terms of 
clinical application, relevant studies have proved that the algorithm of 
dose prediction, automation increasing error probability, and clinical 
workers’ concern for the safety of automation are the main obstacles to 
its successful clinical application [88]. In addition, except for a few 
studies [89], the current model generalization is limited by data, ma-
chines, and researchers’ experience and consensus. Most of the devel-
oped models are confined to the same treatment center and do not have 
the ability to be widely used. In terms of efficiency, the recent research 
also reminds us that although researchers develop excellent models as 
much as possible to efficiently generate the optimal dose distribution, 
most models use contour information as input, that is, PTV and OARs, 
and this step needs accurate delineation results [71,72]. A mature 
radiotherapy doctor needs at least three hours to complete this process. 
Even if AI is included, artificial calibration still needs a lot of time. 
Therefore, the time required for obtaining a truly accurate dose distri-
bution may be much longer than expected. Finally, there is a lack of 
consensus on defining criteria that objectively judge whether a clinically 
acceptable “best” treatment is acceptable. Researchers usually compare 
various quality indicators with manual plans, and often calculate the 
loss function based on the mean absolute error of voxels, 3D gamma 
analysis of global or local structure, and so on. There is a lack of uniform 
high-quality indicators for evaluation, resulting in the lack of objectivity 
in most studies. 

Although the problems of AI in dose prediction cannot be ignored, its 
advantages of high efficiency, high consistency, high precision rate of 
shoulder-to-shoulder clinical dose prediction, and fully liberating labor 
force make clinical work benefit a lot. I believe that its deficiencies will 

Table 3 
Selected studies on transformer-based dose prediction.  

Reference and 
years 

Dataset Model Input Output Main results 

Yang et al[74]/ 
2022 

Brain tumor:120 
Training set:80 
Validation set:20 
Test set:20 

TS-Net A CT image, a PTV image, an 
OARs image, a beam 
configuration image, and a 
distance image 

Dose distribution MAE:2.98 % for PTV. 
For most isodose volumes,DSC >
0.91. 

Yue et al[75]/ 
2022 

Nasopharyngeal carcinoma:161 
Training set:130 
Validation set:11 
Test set:20 

3D U-Net Distance map Dose map The predicted dose error and DVH 
error are 7.51 % and 11.6 % lower 
than the mask-based method 

Jiao et al [76]/ 
2023 

Rectal cancer:120 
Cervical cancer:42 
Training set:116 
Validation set:12 
Testing set:34 

Super-pixel-level 
GCN 

CT images Dose map HI 0.352;ΔD95 0.150; ΔDmean 

2.40E-2; ΔDmax 1.68E-2 

Pastor-Serrano 
et al[77]/ 
2022 

Training set:17 with disease 
sites of brain, head neck, lung, 
abdomen and pelvis 
Validation set:10 % of training 
set’s CT slices 
Test set:584 beam dose 
distributions 

iDoTA CT images Dose distribution Gamma pass rate in 50 ms:97.72 
± 1.93 %. 
Pass rate in 6–12 s:99.51 ± 0.66 
%, average relative dose error:0.75 
± 0.36 %. 

Hu et al[78]/ 
2023 

Head and neck cancer:340 
Training set:200 
Validation set:40 
Test set:100 

TrDosePred Contoured CT image Dose distribution MAE against the clinical plan:2.25 
%for targets,2.17 %for organs at 
risk 

Zeng et al[79]/ 
2023 

Under VMAT:307 
Training set:246 
Test set:61 

TransQA CT images Predicted high-quality 
voxel-wise prePSQA 
dose distribution 

SSIM:0.9944 % 
MAE:0.2514 % 
RMSE:0.7468 % 

Wen et al[80]/ 
2023 

Rectum cancer:110 
H&N cancer:340 
Training set:88 + 270 
Test set:22 + 70 

TransMTDP CT images, the PTV,OAR 
segmentation masks 

Dose distribution maps, 
isodose lines maps, 
gradient maps 

Rectum cancer: HI 0.856,Dmax 

54.03,Dmean 50.86 
H&N cancer: HI 0.101 
Dmax 67.43 
Dmean 33.30 

Cui et al[81]/ 
2023 

Rectal cancer & cervical 
cancer:120,42 
Training set:120 + 28 
Validation set:2 
Test set:12 

A DAEncoder and 
two CNNs-based 
domain decoders 

CT images and the organ 
segmentation masks 

Dose distribution ΔD98:1.446 
ΔD95:1.231 
HI:0.082  
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be effectively resolved in the near future. 

Conclusions 

This paper reviews the application and research progress of AI in 
dose prediction, and probes into the problems existing in the current 
research. AI greatly shortens the time of radiotherapy dose prediction 
and plan formulation, and has a greater breakthrough in accuracy and 
feasibility, thereby not only avoiding uneven treatment effects caused by 
experience differences of medical centers or medical workers, but also 
streamlining the whole workflow for RT, enabling patients to benefit 
from the results. However, various existing problems will directly affect 
the possibility of its clinical application, and still need to be properly 
resolved in the future. 
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