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Simple Summary: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common
cancer worldwide, with more than 500,000 new cases diagnosed annually. Surgical resection, chemora-
diotherapy, targeted therapy, and immunotherapy have been approved for HNSCC treatment. While
a minority of patients experience dramatic long-lasting and favorable clinical responses, the major-
ity of patients fail to achieve durable clinical responses. Thus, alternative options with improved
beneficial response are urgently needed. In HNSCC, over 90% of tumors overexpress the cell sur-
face epidermal growth factor receptor (EGFR). We previously produced a humanized recombinant
immunotoxin, hDT806, targeting tumor-specific overexpressed EGFR and/or the EGFRvIII mutant.
Here, we set out to explore the effects and mechanisms of hDT806 in treating HNSCC in both in vitro
and in vivo settings. We found that hDT806 exhibits a significant cytotoxicity in HNSCC through
disrupting EGFR signaling, transcription inhibition, and inducing apoptosis and DNA damage.

Abstract: Over 90% of head and neck squamous cell carcinoma (HNSCC) overexpresses the epidermal
growth factor receptor (EGFR). However, the EGFR-targeted monotherapy response rate only achieves
10–30% in HNSCC. Recombinant immunotoxin (RIT) often consists of an antibody targeting a tumor
antigen and a toxin (e.g., diphtheria toxin [DT]) that kills cancer cells. We produced a humanized
RIT, designated as hDT806, targeting overexpressed EGFR and investigated its effects in HNSCC.
Distinct from the EGFR-targeted tyrosine kinase inhibitor erlotinib or antibody cetuximab, hDT806
effectively suppressed cell proliferation in the four HNSCC lines tested (JHU-011, -013, -022, and
-029). In JHU-029 mouse xenograft models, hDT806 substantially reduced tumor growth. hDT806
decreased EGFR protein levels and disrupted the EGFR signaling downstream effectors, including
MAPK/ERK1/2 and AKT, while increased proapoptotic proteins, such as p53, caspase-9, caspase-3,
and the cleaved PAPR. The hDT806-induced apoptosis of HNSCC cells was corroborated by flow
cytometric analysis. Furthermore, hDT806 resulted in a drastic inhibition in RNA polymerase II
carboxy-terminal domain phosphorylation critical for transcription and a significant increase in the
γH2A.X level, a DNA damage marker. Thus, the direct disruption of EGFR signaling, transcription
inhibition, DNA damage, as well as apoptosis induced by hDT806 may contribute to its antitumor
efficacy in HNSCC.

Keywords: head and neck squamous cell carcinoma; HNSCC; EGFR; recombinant immunotoxin;
efficacy

1. Introduction

The predominant form of head and neck cancers develops from the mucosal epithelium
in the oral cavity, pharynx, and larynx, which is known collectively as head and neck
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squamous cell carcinoma (HNSCC). Globally, HNSCC accounts for >500,000 new cases
annually, while in the United States, ~37,000 new cases are diagnosed with HNSCC every
year [1,2]. The treatment approach to HNSCC patients is generally multimodal, involving
surgery, chemoradiotherapy, and immunotherapy. Despite the therapeutic advances that
have emerged in recent years, the 5-year survival rate of patients with advanced HNSCC
remains 55–65% [3], and the prognosis for patients with recurrent or metastatic HNSCC
is even poorer, with a median overall survival <1 year [4], highlighting the importance
of developing alternative treatment strategies for HNSCC. The epidermal growth factor
receptor (EGFR), a member of the HER/ErbB family of the tyrosine kinase transmembrane
receptors, regulates cellular activities including cell cycle progression, proliferation, anti-
apoptosis, and migration. In HNSCC, oncogenic EGFR alteration is one of the most notable
characteristics. About 90% of HNSCC tumors overexpress the EGFR and HNSCC patients
with a high expression of the EGFR have been associated with reduced survival and poor
prognosis [5,6]. However, the only FDA-approved EGFR-targeted monoclonal antibody,
cetuximab, achieves a response rate only at 10–30% as a monotherapy in HNSCC [7].
The evidence indicates that although the EGFR may serve as a valid target of therapeutic
interventions, there is an urgent need to develop novel EGFR-targeted therapies for better
efficacy in HNSCC.

Recombinant immunotoxin (RIT) represents a promising therapeutic for cancer ther-
apy. As a group of chimeric proteins, an RIT often comprises an antibody and a toxin
moiety such as diphtheria toxin (DT), which can be engineered to target a tumor antigen
and kill cancer cells. RITs have been approved for treating several types of hematopoietic
malignancies [8–12]. However, RITs are unable to achieve a satisfactory efficacy against
solid tumors due to difficulties including effectively delivering them into tumors and
killing cancer cells without harming normal tissues. Preclinical DT-based therapy has
been explored in various types of solid tumor, such as hepatocellular cell carcinoma [13],
glioblastoma [14,15], breast cancer [16], and lung cancer [17] for its potent cytolethal effect.
We previously developed a bispecific RIT targeting the overexpressed EGFR and EGFRvIII
variant on cancer cells [15], designated as DT390-HuBiscFv806 (hDT806), by fusing two
humanized single-chain variable fragments (scFv) derived from monoclonal antibody
mAb806 to the truncated form of DT. This bivalent RIT hDT806 was designed to leverage
the unique specificity of mAb806 to the open form of overexpressed EGFR and its mutated
form, EGFRvIII [18,19]. The EGFR mutant EGFRvIII is a tumor-specific cell surface marker
in malignant glioblastoma. In our published study [15], hDT806 showed a more remarkable
inhibition in glioblastoma cells with EGFRvIII expression versus without in glioblastoma
mouse xenograft models. hDT806 also showed cytotoxicity in a panel of HNSCC cells.
However, the in vivo efficacy and the mechanisms underlying this cytotoxicity of hDT806
in HNSCC remain unknown.

In the current study, we assessed the efficacy of hDT806 to treat HNSCC and explored
the mechanisms underlying the inhibition in cell proliferation and mouse xenograft tumor
growth by hDT806. Our data indicate that HNSCC cells are highly sensitive to hDT806,
while these cells have differential sensitivity to the anti-EGFR antibody cetuximab or the
EGFR-specific tyrosine kinase inhibitor erlotinib. The treatment of hDT806 disrupted
EGFR signaling and inhibited cellular transcription, leading to DNA damage, an apoptotic
response, and tumor growth inhibition in HNSCC.

2. Materials and Methods
2.1. Cell Culture

The four HNSCC cell lines used in this study, including JHU-011 (p53 mutated), JHU-
013 (p53 mutated), JHU-022 (wild type of p53), and JHU-029 (wild type of p53), were
obtained from Johns Hopkins University [20–22]. These cells were cultured in Roswell Park
Memorial Institute (RPMI) 1640 media (#21875034; Thermo Fisher Scientific, Waltham, MA,
USA) with supplements of 10% fetal bovine serum (FBS; #16140071, Thermo Fisher Scien-
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tific) and 1% antibiotic-antimycotic solution (#15240062; Fisher Scientific) and incubated at
37 °C in a humidified incubator with 5% CO2.

2.2. Cell Viability Assay

The Crystal Violet Assay Kit (#ab232855; Abcam, Cambridge, UK) was used for cell
cytotoxicity and cell viability studies, as previously described [22]. Briefly, the HNSCC
cells were plated 3000–4000/well in 96-well plates and treated with hDT806, cetuximab
(#A2000; Selleckchem, Houston, TX, USA), or erlotinib (#S1023; Selleckchem) following a
2-fold serial dilution. Five to seven days later, a crystal violet staining assay was performed
according to the manufacturer’s instruction to determine cytotoxicity and cell viability.
Optical density (O.D.) of each well was measured at 595 nm on a microplate reader. The
percentage of viable (attached) cells against the values of untreated control samples were
calculated to represent cell viability [23].

2.3. Flow Cytometry Apoptosis Assay

The FITC Annexin V Apoptosis Detection kit (#556547, BD Biosciences, Ann Arbor,
MI USA) was used for apoptotic cell death assessment. Cells were treated with vehicle or
hDT806 (20 nM) for 48 h, collected, and incubated with annexin V-FITC and propidium
iodide (PI) solutions in the dark for 15 min. a flow cytometry assay was performed on a BD
flowcytometer (BD Biosciences, San Jose, CA). Both the annexin V-positive and PI-negative
cells and annexin V-positive and PI-positive cells were regarded as apoptotic cells. FlowJo
software (FlowJo LLC, Ashland, OR) was used to analyze the percentage of apoptotic cells.

2.4. Western Blot Analysis

HNSCC cells cultured in six-well plates were treated with vehicle or hDT806 (20 nM)
for 48 h, harvested, and washed with PBS. The collected cells were homogenized in a
RIPA lysis buffer before centrifugation at 16,000× g for 20 min at 4 °C, as previously
described [22]. The protein concentrations of lysates were quantified, and 30 mg of lysates
was used for Western blot analysis. The antibodies against EGFR (#4267s), p-AKT (#9271),
total-AKT (#9272), p-ERK1/2 (#9101), total-ERK (#9102), poly (ADP ribose) polymerase 1
(PARP) (#9542), γH2A.X (#9718), H2A.X (#7631), RNAPII carboxy-terminal domain (CTD)
p-Ser2/5 (#13546), p-Ser7 (#13780), and RNAPII large subunit Rpb1 (#2629) were purchased
from Cell Signaling (Beverly, MA, USA). The antibody against β-actin (#47778 HRP) and
ErbB2 (sc-284) were purchased from Santa Cruz (Dallas, TX, USA). The antibody against
p53 (#OP03), caspase 3 (#c8487), and caspase 9 (#c7729) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Anti-rabbit or anti–mouse IgG secondary antibodies conjugated with
horseradish peroxidase (HRP) were used for specific protein bands detection with an ECL
system. ImageJ software (the National Institutes of Health, USA) was used for protein band
intensity analysis.

2.5. Quantitative Real-Time RT-PCR (qRT-PCR)

The RNeasy Mini Kit (#74106, Qiagen, Germantown, MD USA) was used for isolation
of total RNA from cultured cells following the manufacturer’s instruction. The NanoDrop
2000c spectrophotometer (ND-2000c, Thermo Scientific, Wilmington, DE, USA) was em-
ployed to measure RNA concentrations. RNA samples were stored at −80 °C. qRT-PCR
was performed in a total volume of 20 µL using 10 µL of 2× Luna® Universal One-Step
Reaction Mix (#E3005, New England Biolabs, Ipswich, MA USA), 1 µL of RT Enzyme
Mix (20×), 1 µL of 5 µM primer for each primer per reaction, 2 µL of the RNA dilution
(100 ng/mL), and water. The following primers were used: (1) For the EGFR gene: Forward,
5′-CCA GTA TTG ATC GGG AGA GC-3′; reverse, 5′-CCA AGG ACC ACC TCA CAG
TT-3′. (2) For the GAPDH gene: Forward, 5′-GGGAAGGTGAAGGTCGGAGT-3′; reverse,
5′-GGAGGGATCTCGCTCCTG-3′. The PCR cycling on a StepOnePlusTM Real-Time PCR
System (Applied Biosystems, Life Technologies, CA, USA) was performed as follows: A
reverse transcription step (55 °C, 15 min) and an initial denaturation step (95 °C, 1min),
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followed by 45 cycles of denaturation (95 °C, 10 s), extension (60 °C, 60 s), and a single
cycle of melting curve measurement step (95 °C for 15 s, 60 °C for 15 s, and 95 °C for 15 s).
The fold-change for the expression level of EGFR mRNA relative to GAPDH mRNA was
calculated using the 2−∆∆Ct method, as previously described [24].

2.6. Immunohistochemical Analysis

Immunohistochemistry analysis was performed on 5 µm formalin-fixed paraffin-
embedded tumor tissue sections. Anti-Ki-67 (#RB-9043-P0; Thermo Scientific, Fremont,
CA, USA) and anti-cleaved poly (ADP ribose) polymerase 1 (cPARP) (#5625, Cell Signal-
ing) were used as primary antibodies. Staining was performed by incubation for 5 min
with diaminobenzidine (DAB) using a DAB peroxidase substrate kit (Vector Laboratories,
Burlingame, CA, USA), as previously described [25].

2.7. In Vivo Xenograft Tumor Assays

All mouse experiments were conducted following Institutional Animal Care and Use
Committee (IACUC) guidelines and approved protocols. NOD scid gamma mouse (NSG)
mice (6- to 8-week-old) were used for xenograft studies. For subcutaneous xenografts,
5 × 106 JHU-029 HNSCC cells suspended in 200 µL medium containing 45% Matrigel
basement membrane matrix (#354234; BD Biosciences) were inoculated into the right flank
of mice. Treatment with vehicle or hDT806 was started when the median tumor size reached
approximately 80 mm3. hDT806 was administered via intratumoral injection at a dose of
12 µg/kg/mouse every other day. The tumor size was measured once every 2–3 days with
a caliper. After 26 days of treatment, mice with tumors were euthanized and the tumors
were dissected for analysis.

2.8. Statistical Analysis

All data are expressed as mean ± standard deviation. Student t test and one-way
analysis of variance (ANOVA) were used where appropriate for statistical analysis. All
tests were two-sided and p < 0.05 was considered significant.

3. Results
3.1. hDT806 Renders Potent Inhibition in Cell Viability and Proliferation of Human HNSCC
Cell Lines

Previously, we generated a bivalent recombinant immunotoxin, hDT806, targeting
EGFRvIII and overexpressed EGFR in cancers and demonstrated its high potency against
glioblastoma cells with EGFR and EGFRvIII overexpression [15]. Since about 90% of
HNSCC has EGFR overexpression [26], to test whether hDT806 exhibits efficacy against
human HNSCC, we evaluated the effects of hDT806 on the viability and proliferation of
four HNSCC cell lines: JHU-011, -013, -022, and -029 cells. All the four cell lines exhibited
a suppressed viability and proliferation response. As shown in Figure 1A, hDT806 dose-
dependently decreased the cell viability of the JHU-011 cells. In JHU-011, -013, -022, and
-029, the dose-response cell viability and proliferation experiments in these cells revealed
that hDT806 decreased cell viability with an IC50 value of 23.5, 4.9, 2.2, and 0.67 nM,
respectively (Figure 1B,C).
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Figure 1. Sensitivity of HNSCC cells to hDT806. (A) Dose-escalation effects of hDT806 on cell viability
in the JHU-011 HNSCC cells. The cells were exposed to vehicle or hDT806 with increased doses for
7 days. Data are shown of two duplicates. (B,C) IC50 of JHU-011, -013, -022, and -029 cells to hDT806.
Data of four independent experiments are presented as mean ± SD (n = 4).

The EGFR-specific tyrosine kinase inhibitor (TKI) erlotinib has been explored as an
antitumor agent in HNSCC [27] and shows a selective efficacy in HNSCC patients [28,29].
To assess whether hDT806 shares a similar cytotoxicity to erlotinib, we carried out a
parallel cell viability assay and measured the cytotoxicity of erlotinib in the same panel
of HNSCC cells. The four cell lines demonstrated varied responses to erlotinib treatment,
with an IC50 of 0.27 µM for JHU-011, 7.9 µM for JHU-013, 0.23 µM for JHU-022, and
43 µM for JHU-029, respectively (Supplementary Figure S1), suggesting that, while the
HNSCC cells only respond to erlotinib at a micromolar scale, they are exquisitely sensitive
to the EGFR-targeting hDT806 at a nanomolar scale. We also tested the four cell lines’
responses to cetuximab, the only FDA-approved anti-EGFR targeted therapy in the clinic.
Cetuximab treatment rendered an IC50 of 35.2 µg/mL for JHU-011, 50.5 µg/mL for JHU-
013, 101.4 µg/mL for JHU-022, and 103.3 µg/mL for JHU-029, respectively (Supplementary
Figure S2), indicating that JHU-029 and -022 are not very sensitive to cetuximab in the four
cell lines. Our data support the notion that hDT806 has an anticancer activity that is distinct
from erlotinib or cetuximab. For the JHU-029 cells that were not sensitive to either erlotinib
or cetuximab were highly sensitive to hDT806. Therefore, we employed JHU-029 to study
the mechanism of hDT806-induced cytotoxicity.

3.2. hDT806 Decreases EGFR Protein Levels and Disrupts Its Downstream Effectors in
HNSCC Cells

hDT806 was generated to capitalize the specificity of mAb806 to the overexpressed EGFR
and EGFRvIII variant [15]. It iss known that surface receptors can provide an efficient gateway
for the internalization of anti-receptor targeting immunotoxins and downregulate the recep-
tors [30]. To explore the mechanism of the inhibition of cell proliferation by hDT806, we first
assessed EGFR expression levels. Indeed, we found that 48 h treatment of hDT806 significantly
reduced EGFR protein levels by 39.5 ± 4.4% in the JHU-029 cells (Figures 2(Aa,Ca) and S3A),
and 54.6 ± 4.4% in the JHU-022 cells (Figures 2(Ba,Da) and S3B). Consistent with the down-
regulation of EGFR protein levels, EGFR gene expression was also affected and decreased
by 53.6 ± 0.9% in JHU-029 (Figure 2E) and 32.2 ± 0.9% in JHU-022 (Figure 2F) after treat-
ment with hDT806, respectively. Interestingly, another HER/ErbB family surface receptor,
ErbB2, was also affected by hDT806 treatment in HNSCC, showing a significant decrease in
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ErbB2 protein levels, by 65.8 ± 9.9% (Figures 2(Ab,Cb) and S3A) in JHU-029 and 40.2 ± 7.3%
(Figures 2(Bb,Db) and S3B) in JHU-022, respectively.
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Figure 2. hDT806 decreases EGFR and ErbB2 in JHU-029 and JHU-022 cells. (A–D) Total protein
extracts were prepared from the cells treated with vehicle or hDT806 (20 nM). Western blot analysis
was performed for EGFR (Aa), ErbB2 (Ab), and β-actin (Ac) in JHU-029 (n = 4) and EGFR (Ba), ErbB2
(Bb), and β-actin (Bc) in JHU-022 (n = 3) cells treated with vehicle or hDT806 for 48 h, respectively.
(C,D) Protein band intensities relative to the corresponding β-actin bands were quantified in JHU-029
(C) and JHU-022 (D) for comparisons between the vehicle-treated cells and the hDT806-treated cells.
(E,F) Total RNA extracts were prepared from the cells treated with vehicle or hDT806. Real-time
reverse transcription quantitative PCR analysis was performed to evaluate EGFR mRNA expression
in JHU-029 (E) and JHU-022 (F) cells treated with vehicle or hDT806 for 48 h (n = 4), respectively.
Data of three or four independent experiments are presented as mean ± SD.

Next, we analyzed the effects of hDT806 on EGFR downstream effectors in the JHU-
029 cells. The EGFR is activated by ligands including EGF and transforming growth
factor (TGFα and β), resulting in the auto-phosphorylation of the intracellular domain
with downstream activation of PI3K/AKT and mitogen activated protein kinase (MAPK)
pathways to elicit survival and proliferation. Western blot analysis revealed that both
the classic EGFR downstream effector AKT protein and extracellular signal-regulated
kinase1/2 (ERK1/2) protein of the MAPK pathway were disrupted by the treatment of
hDT806. As shown in Figure 3, we found a great decrease of 31.2 ± 9.5% in the level of
phospho-AKT by hDT806 (Figures 3(Aa,Ba) and S4A); however, the level of AKT protein
was not altered significantly (Figures 3(Ab,Bb) and S4A). To our surprise, ERK1/2 showed
a distinct response to the treatment of hDT806. The level of phospho-ERK1/2 increased
by 50.8 ± 17.3% in the hDT806-treated cells compared with that of the vehicle-treated
JHU-029 (Figures 3(Ca,Da) and S4B), while the level of ERK1/2 protein was significantly
suppressed by 40.8 ± 15.6% in hDT806-treated cells compared to vehicle-treated cells
(Figures 3(Cb,Db) and S4B).
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JHU-029 cells. (A) Total protein extracts were prepared from the cells treated with vehicle or hDT806
(20 nM). Western blot analysis was performed for p-AKT (a), AKT (b), and β-actin (c) in the cells
treated with vehicle or hDT806 for 48 h. (B) Protein band intensities relative to the corresponding
β-actin bands were quantified for comparisons between the vehicle-treated cells and the hDT806-
treated cells. Data of four independent experiments are presented as mean ± SD (n = 4). (C) Total
protein extracts were prepared from the cells treated with vehicle or hDT806 (20 nM). Western blot
analysis was performed for p-ERK1/2 (a), ERK1/2 (b), and β-actin (c) in the cells treated with vehicle
or hDT806 for 48 h. (D) Protein band intensities relative to the corresponding β-actin bands were
quantified for comparisons. Data of four independent experiments are presented as mean ± SD
(n = 4).

These results indicate that by targeting the EGFR on the HNSCC cells, hDT806 dis-
rupts EGFR signaling and its downstream effectors, which may lead to inhibition in cell
proliferation in HNSCC cells.

3.3. hDT806 Affects Transcription by Inhibiting RNA Polymerase II Phosphorylation in
HNSCC Cells

Since hDT806 reduced the EGFR mRNA transcript, we evaluated the effect of hDT806
on gene transcription. DT is known to kill cells by ADP-ribosylation on the unique diph-
thamide residue of the elongation factor eEF2, leading to a defect in translation elongation
and protein synthesis inhibition [31]. However, it remains less certain whether immuno-
toxin directly affects cellular transcription activity. During gene expression, the carboxyl-
terminal domain (CTD) of the RNA polymerase II large subunit Rpb1 undergoes sequential
phosphorylation on different residues by a set of CDKs [32,33]. To test whether hDT806
may cause disruption to protein synthesis by the affecting cellular transcription process,
we examined the effects of hDT806 on the CTD phosphorylation of Rpb1 in JHU-029 after
the cells were treated with vehicle or hDT806 for 48 h. After hDT806 treatment, the levels
of phosphorylation at the site of Rpb1 CTD Ser2/5 and Ser7 were reduced to 28.7 ± 3.5%
(Figures 4(Aa,Ca) and S5A) and 53.4 ± 7.6% (Figures 4(Ab,Cb) and S5A) of that with
vehicle treatment, respectively, while the level of Rpb1 remained unchanged in the JHU-029
cells (Figures 4(Ac,Cc) and S5A). These data indicate that hDT806 effectively inhibits RNA
polymerase II CTD phosphorylation to inhibit the transcription process without affecting
the RNA polymerase II large subunit Rpb1 in the HNSCC JHU-029 cells.
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Figure 4. hDT806 induces transcription inhibition and DNA damage. (A) Total protein extracts were
prepared from the cells treated with vehicle or hDT806 (20 nM). Western blot analysis was performed
for RNAPII CTD p-Ser2/5 (a), RNAPII CTD p-Ser7 (b), RNAPII large subunit Rpb1 (c), and β-actin
(d) in the cells treated with vehicle or hDT806 for 48 h. (B) Western blot analysis was performed for
γH2A.X (e), H2A.X (f), and β-actin (g). (C) Band intensities of p-Ser2/5 (a), p-Ser7 (b), RNAPII large
subunit Rpb1 (c), γH2A.X (e), and H2AX (f) were quantified relative to the corresponding β-actin
bands for comparisons. Data of three independent experiments are presented as mean ± SD (n = 4).

3.4. hDT806 Induces DNA Damage Responses in HNSCC Cells

The DNA damage response can be initiated following a variety of stress signals, such
as DNA-damaging therapeutic agents. The EGFR is known to steer the pathways related
to proliferation, DNA damage repair, and apoptosis in HNSCC [34]. The targeting of the
EGFR signaling pathway was found to decrease the repair capacity of DNA double-strand
break (DSB), the most deleterious type of DNA damage, in tumor cells [35]. It is known that
the phosphorylation of histone H2A variant H2A.X at Ser 139 (γH2A.X) is well correlated
with DSB and considered as the most sensitive marker for DNA damage [36]. We next
tested whether EGFR-targeted hDT806 induces a DNA damage response by evaluating
the γH2A.X level. After hDT806 treatment for 48 h, we found that the level of γH2A.X
was increased to 194.7 ± 37% (Figures 4(Be,Ce) and S5B) of that with vehicle treatment.
However, hDT806 treatment did not change the level of H2A.X (Figures 4(Bf,Cf) and S5B).
Thus, the data indicate that by targeting overexpressed EGFR, hDT806 treatment causes
DNA damage in the HNSCC cells.

3.5. hDT806 Activates Apoptosis Pathways and Induces Apoptosis in HNSCC Cells

Many anticancer drugs exert their cytotoxicity through DNA damage and apoptosis
induction [37]. Apoptosis is one of the mechanisms underlying cell proliferation control.
We proceeded to evaluate apoptotic events in the JHU-029 cells by flow cytometry analysis.
With the treatment of hDT806 for 48 h, we found that the apoptotic cells were significantly
increased from 5.8% with vehicle treatment (Figure 5(Aa,B)) to 10.7% with hDT806 treat-
ment (Figure 5(Ab,B)). Thus, the cytotoxicity of hDT806 may involve the ability of hDT806
to induce cell apoptosis.
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Figure 5. hDT806 treatment induces apoptosis in the JHU-029 cells. (A) Cells were treated with
vehicle (a) or 20 nM hDT806 (b) for 48 h and collected for annexin V and PI staining followed
by flow cytometric analysis for apoptotic cells in JHU-029. (B) The populations of apoptotic cells
were quantified for JHU-029. Data of four independent experiments are presented as mean ± SD
(n = 4). (C) Total protein extracts were prepared from the cells treated with vehicle or hDT806 (20 nM)
for 48 h. Western blot analysis was performed for PARP and cleaved PARP (a), p53 (b), caspase-
9 (c), active caspase-3 (d), and β-actin (e). (D) Relative band intensities of cleaved PARP/PARP (a),
band intensities of p53 (b), caspase-9 (c), and active caspase-3 (d) were quantified relative to the
corresponding β-actin bands for comparisons. Data of three independent experiments are presented
as mean ± SD (n = 3).

It is well known that apoptosis can be triggered by the extrinsic (the death receptor)
pathway and the intrinsic (the mitochondrial) pathway, with both converging upon the
activation of the caspase protease family, leading to the dismantling of the cell [38]. To
investigate the pathways involved the apoptotic events detected in flow cytometric analysis,
we performed western blot analysis to determine which apoptotic proteins were changed
upon the treatment (Figures 5C,D and S6A–C). In JHU-029, the levels of the proapoptotic
proteins we investigated were increased by hDT806 treatment, with the ratio of cleaved
PARP relative to PARP (cPARP/PARP) increased to 6.4 ± 0.9 folds (Figure 5(Ca,Da)), the
level of caspase-9 increased to 2.3 ± 0.6 folds (Figure 5(Cb,Db)), and the level of active
caspase-3 increased to 1.4 ± 0.1 folds (Figure 5(Cc,Dc)), of that in vehicle-treated cells,
respectively. The levels of p53 protein in unstressed cells are very low because it is tar-
geted for proteasomal degradation, and the TP53 gene is activated in response to many
stress stimuli such as oncogene activation and DNA damage [39]. Indeed, in our experi-
ment, the treatment of hDT806 increased the pro-apoptotic protein p53 to 3.7 ± 2.6 folds
(Figure 5(Cd,Dd)) of that of vehicle treatment, with the latter being low.

Consistent with the flow cytometry analysis, these results indicated that hDT806
treatment results in increased apoptotic proteins and triggers apoptotic cell death in HN-
SCC cells.

3.6. In Vivo hDT806 Administration Inhibits the Growth of JHU-029 Tumors in a Mouse Model
Involving Apoptosis Induction and Growth Inhibition

To investigate whether in vivo hDT806 treatment could recapitulate its anti-HNSCC
efficacy in in vitro settings, we proceeded to assess the effects of hDT806 treatment in
an HNSCC xenograft tumor model of JHU-029 in NSG mice (Figure 6A). hDT806 was
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administered via intratumoral injection. As shown in Figure 6B, the tumor volume of
the mice treated with vehicle continuously increased, while the tumor volumes of the
mice treated with hDT806 were stabilized 6 days after treatment, although the tumors
exhibited increased volumes at the late stage. Compared with the vehicle-treated mice, the
hDT806-treated mice showed a significant suppression of the tumor growth (Figure 6B)
as well as the tumor weight (Figure 6C). We did not observe a significant difference in the
body weight between the vehicle-treated and hDT806-treated mice during the course of
treatment (Figure 6D). The in vivo data support the notion that hDT806 effectively inhibits
the growth of HNSCC tumors in mice.
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Figure 6. Intratumoral injection of hDT806 treatment inhibits tumor growth of JHU–029 cells in
NSG mice. (A) A schematic diagram shows the treatment procedure. When the tumors reached an
average size of ~80 mm3, intratumoral injection of vehicle or hDT806 was administered for 26 days.
(B) Tumor growth curves plotted for the treatment with vehicle or hDT806. (C) Average weight of the
dissected tumors from NSG mice treated with vehicle or hDT806 after 26-day treatment. (D) Average
body weight of the mice treated with vehicle or hDT806 during the treatment course. hDT806
treatment reduces Ki67 (E,F) and increases cleaved PARP (G,H) in the JHU-029 xenograft tumors.
Scale bar = 20 µM. Data are presented as mean ± SEM (n = 4).

To explore the mechanisms of the hDT806-induced inhibition of tumor growth, we
examined cancer cell proliferation in the JHU-029 xenograft tumors. The effectiveness of the
treatment was validated by immunohistochemical analysis of the xenograft tumor tissues.
We measured crucial proteins for cell proliferation and apoptosis, Ki67 and cleaved PARP,
respectively. Without hDT806, numerous Ki67-postive cells were found in the JHU-029
tumor tissues. After hDT806 treatment, the Ki67-postive cells were significantly reduced
from 75 ± 4.7% in vehicle-treated to 30.3 ± 6.6% in hDT806-treated tumors (Figure 6D,E).
On the contrary, the number of cleaved PARP-positive cells was significantly increased
from 2.1 ± 0.3% in vehicle-treated to 7.2 ± 1.7% in hDT806-treated tumors (Figure 6F,G).
Thus, in line with our in vitro experiments, the in vivo results support the notion that
hDT806 inhibits tumor growth of the JHU-029 cells involving apoptosis induction.

4. Discussion

Here, we demonstrated the remarkable antitumor activities of the recombinant im-
munotoxin hDT806 to suppress HNSCC in both in vitro and in vivo settings. In four
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HNSCC lines (JHU-011, -013, -022, and -029), EGFR-targeted hDT806 effectively suppressed
the growth and proliferation of HNSCC cells with the IC50s ranging between 0.7–24 nM. In
an HNSCC xenograft model of JUH-029 cells that are insensitive to erlotinib or cetuximab,
the intra-tumor injection of hDT806 substantially reduced the tumor mass. These data
support the notion that EGFR-targeted hDT806 may exhibit a significant tumor-suppression
efficacy in HNSCC.

The development of recombinant immunotoxin therapy has been driven by its unique
features: its high specificity, extraordinary potency, effectiveness against quiescent non-
dividing cells, and the lack on any known cross-resistance with other agents [40]. DT
is known to be extreme toxic, to the degree that even a single DT molecule is enough
to kill one cell. Various types of cancer are known to have oncogenic EGFR alterations,
including EGFR overexpression, gene amplification, and tumor-specific mutation. For
example, glioblastoma harbors diverse EGFR genetic alterations, with the mutant EGFRvIII
as a tumor-specific surface marker [41,42]. Recognizing the unique specificity of mAb806
to overexpressed EGFR and EGFRvIII mutant [18,19], to steer the potent cytotoxicity of DT
specifically to cancer cells while sparing normal cells, we previously generated hDT806
by fusing an engineered DT fragment, DT390, with two single chain variable fragments of
mAb806 targeting overexpressed EGFR and/or EGFRvIII, and demonstrated the efficacy of
hDT806 in glioblastoma, especially those with EGFRvIII expression [15]. Of HNSCC, 90%
contains overexpressed EGFR [26]. Indeed, our current in vitro and in vivo experiments
showed a potent cytotoxicity of hDT806 in HNSCC cells. Among the earliest targeted
therapies that block growth signals, TKIs and monoclonal antibodies are two main classes
of EGFR inhibitors used in clinical settings. However, over the years, both have manifested
various primary and/or acquired therapy resistance mechanisms in different solid tumors,
dampening their efficacy. Erlotinib, the first FDA-approved EGFR-TKI for treating EGFR-
mutated non-small cell lung cancer and pancreatic cancer, shows efficacy in some HNSCC
patients [28,43]. Cetuximab is the only FDA-approved anti-EGFR targeted therapy in
HNSCC. In this study, we showed one particularly interesting result of JHU-029; although
the cells showed a primary resistance to erlotinib (IC50 = 43 µM) and insensitivity to
cetuximab (IC50 = 103.3 µg/mL) among the four HNSCC cells we tested, JHU-029 was
exquisitely sensitive to hDT806 treatment (IC50 = 0.67 nM). Our data provide a direct line
of evidence to support the potential of the immunotoxin hDT806 as an effective alternative
therapeutic agent in treating HNSCC.

In the current research, we demonstrated several integrative aspects of the cytotoxicity
of the bivalent, bispecific hDT806 targeting overexpressed and/or EGFRvIII to HNSCC
cells. Western blot analysis showed that hDT806 reduced EGFR protein levels and dis-
rupted the downstream effectors of EGFR signaling, including MAPK/ERK1/2 and AKT
proteins. The EGFR is known to regulate cellular activities including cell cycle progression,
proliferation, anti-apoptosis, and migration. The EGFR was found to regulate DNA damage
repair mediated via PI3K/AKT and ERK1/2 pathways in cancer [44]. In HNSCC cells,
hDT806-induced apoptotic cell death was revealed using flow cytometric analysis. We
further found that hDT806 treatment increased apoptotic proteins, such as the initiator
caspase caspase-9, the executioner caspase caspase-3, p53, as well as the cleaved PAPR. It is
well known that RITs based on DT or Pseudomonoas exotoxin (PE) inhibit protein synthesis
by ADP-ribosylation [30], and our research further showed that hDT806-triggered a drastic
inhibition in RNA polymerase II carboxy-terminal domain phosphorylation and a signif-
icantly increase in γH2A.X levels, indicating a direct transcription inhibition and DNA
damage imposed on HNSCC cells by hDT806. The in vitro growth inhibition and apop-
tosis induction by hDT806 in HNSCC were recapitulated in a mouse JUH-029 xenograft
model, in which treatment with hDT806 was shown to reduce Ki-67 and increase cleaved
PARP proteins using IHC analysis. Cancer is known for its hallmark biological alterations
acquired during the multistep tumorigenesis, including sustaining proliferative signaling,
evading growth suppressors, and resisting cell death, among others [45]. Together, our
data indicate that EGFR-targeted hDT806 inhibits cancer cell proliferation and suppresses
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the growth of xenograft tumors by interfering with multiple cellular processes, such as
the disruption of EGFR signaling, inhibition of transcription, DNA damage, as well as
apoptotic response.

We obtained the in vivo antitumor effects of hDT806 via intratumoral injection in the
mouse HNSCC model. This drug administration strategy may circumvent a potential
issue of the neutralizing antibody to RIT if hDT806 is administered in immunocompetent
mice. It is reported that after treatment is initiated, rapidly developed anti-toxin antibod-
ies bind to RIT to prevent it from killing tumor cells [40]. Since RIT produces complete
regression and prolongs survival, it has been approved by the FDA to treat several types
of hematopoietic malignancies [8–12,46]. However, RIT has only limited applicability for
solid tumors due to its inherent immunogenicity and toxicity. Several approaches have
been adopted to reduce immunogenicity, including approaches to prevent B cell activa-
tion by eliminating B cell epitopes [47], to prevent helper T cell activation by interfering
with major histocompatibility complex II presentation or T cell recognition [48–50], or to
suppress the host immune system [51]. While these approaches are effective, they fail to
completely eliminate the immunogenicity of RIT. The delivery of a gene encoding RIT
under a tumor-specific promoter has also been exploited to directly produce RIT in vivo
to avoid immunogenicity [52,53]. The main challenges associated with gene-based RIT
therapeutics are the efficient delivery and specific expression of RIT in all of the tumor
tissues. Thus, to exploit the potent cytotoxicity of DT-based RIT, the development more
effective delivery approaches in future research is needed for the prospective therapeutic
usage of RIT in the treatment of solid tumors, including HNSCC.

5. Conclusions

EGFR-targeted recombinant immunotoxin hDT806 exhibits significant antitumor activ-
ities in HNSCC, causing the direct disruption of EGFR signaling; hDT806 further induces
transcription inhibition, DNA damage, as well as apoptotic responses, which, in turn, may
contribute to the antitumor efficacy of hDT806 distinct from erlotinib or cetuximab.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology11040486/s1, Figure S1: Sensitivity of HNSCC cells to cetuximab (µg/mL); Figure
S2: Sensitivity of HNSCC cells to cetuximab (µg/mL); Figure S3: Analysis of hDT806 decreasing
EGFR and ErbB2 in JHU-029 and JHU-022 cells; Figure S4: Analysis of hDT806 disruption of EGFR
signaling and the downstream effectors, AKT as well as ERK1/2 in JHU-029 cells; Figure S5: Analysis
of hDT806 inducing transcription inhibition and DNA damage; Figure S6: Ananlysis of apoptosis
induced by hDT806 treatment in the JHU-029 cells.
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