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Abstract: In this work, a TiO2-coated GaN nanowire-based back-gate field-effect transistor (FET)
device was designed and implemented to address the well-known cross-sensitive nature of metal
oxides. Even though a two-terminal TiO2/GaN chemiresistor is highly sensitive to NO2, it suffers
from lack of selectivity toward NO2 and SO2. Here, a Si back gate with C-AlGaN as the gate dielectric
was demonstrated as a tunable parameter, which enhances discrimination of these cross-sensitive
gases at room temperature (20 ◦C). Compared to no bias, a back-gate bias resulted in a significant
60% increase in NO2 response, whereas the increase was an insignificant 10% in SO2 response. The
differential change in gas response was explained with the help of a band diagram, derived from the
energetics of molecular models based on density functional theory (DFT). The device geometries in
this work are not optimized and are intended only for proving the concept.

Keywords: gas sensor; cross-sensitivity; gallium nitride (GaN); metal oxide; back-gate FET

1. Introduction

For a gas sensor to be widely accepted for Internet of Things (IoT) applications, it
must have high response, precise selectivity, quick response–recovery, low cost, small
size, low power, long operating life, and stable operation across various environmental
conditions. Unfortunately, no such gas sensor has yet been reported having all these desired
properties. Metal oxide-based sensors have been employed to detect toxic environmental
gases for several years [1]. They have the capability of providing all the above-mentioned
gas sensing properties except precise selectivity. This is because their sensing mechanism
generally involves the chemical interaction between the gas molecule and the oxygen
chemisorbed on the sensing surface [2]. Gas molecules having similar chemical properties
take part in this oxygen interaction, irrespective of the oxidizing or reducing nature of metal
oxides [3]. Thus, cross-sensitivity among different analyte gases is inevitable in a metal
oxide-based sensor device. For instance, the detection of NO2 and SO2 gas is hampered
due to cross-interference when emitted in a mixed condition from a stationary source [4].
Systematic variations in the parameters such as dopants, additives, operating temperatures,
bias voltage, grain size, and morphology have been adopted to achieve the necessary
selectivity among various analytes [5]. Although efforts have been made, the problem of
cross-sensitivity cannot yet be fully eliminated. This oxide-inherent cross-sensitive issue
of a chemiresistive sensor can be resolved by employing several techniques, including a
sensor array [6,7] and a field-effect transistor (FET) sensor [8].

Nanowires exhibit one-dimensional nanostructures that offer large surface-to-volume
ratio, suitable for gas-sensing applications [9,10]. In the past few years, several nanowire-
based gas sensors have been reported showing enhanced sensing performance in com-
parison to their bulk counterpart [11–13]. However, the analyte selectivity issue remains
a challenge to be resolved, especially for metal-oxide sensors [14,15]. In this work, back-
gate configuration was exploited in a GaN nanowire FET sensor for the differentiation
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of cross-sensitive gases. A Si back gate with C-AlGaN as the gate dielectric was formed
on a TiO2/GaN nanowire to develop the back-gate FET device. Electrical and gas char-
acterizations were conducted on the sensor devices in the presence of UV light at room
temperature. Then, gas response enhancement and the sensing mechanism were described
using an energy band diagram based on density functional theory (DFT) molecular models.

2. Experimental Details

Here, GaN nanowires were made from the Si-doped GaN epilayer using the top-down
fabrication process. They were developed on a silicon substrate with a combination of
industry standard stepper lithography and inductively coupled plasma (ICP) etching of a
GaN/AlGaN epilayer grown on a Si substrate. The nanowire size was observed as being
quite uniform. Having a length and a width of ~10 µm and ~400 nm, respectively. Subse-
quently, ohmic metal contacts composed of Ti (40 nm)/Al (80 nm)/Ti (40 nm)/Au (40 nm)
were deposited upon the nanowire. Next, a passivation layer of SiO2 was formed on the
nanowire device using the standard plasma-enhanced chemical vapor deposition (PECVD)
technique. Later, a functionalization window on the GaN nanowire was developed by
reactive-ion etching (RIE) of the SiO2 layer. A thin layer (5–10 nm) of TiO2 nanoclusters was
deposited on the nanowire surface by RF magnetron sputtering followed by rapid thermal
annealing (RTA). The fabrication details and process flow diagram of the nanowire-based
two-terminal device can be found in our previous papers [16–19]. The C-doped AlGaN
buffer layer (~200 nm) formed in between the GaN epilayer and the Si substrate was used as
the gate dielectric here to develop a back-gate FET configuration (Figure 1). This dielectric
layer was grown on top of the 300 µm thick Si substrate. To best of our knowledge, this
is the first back-gate bias study using AlGaN as a gate dielectric in GaN-nanostructured
devices. Finally, the fabricated FET device was placed and wire-bonded to a 24-pin ceramic
dual in-line package (DIP).
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Figure 1. Fabricated TiO2/GaN nanowire field-effect transistor (FET) sensor. FESEM image of the
two terminals. The TiO2/GaN device is shown on the top side.

All the current–voltage measurements of the FET device were performed using a
National Instrument (NI) PXI SMU system (Rockville, MD, USA) under an LED UV light
source having a wavelength of 365 nm and a power of 470 mW/cm2. The FET sensor was
inserted in a mini gas chamber made of stainless steel for obtaining gas responses. Then, a
mixture of NO2 or SO2 gas and breathing air was introduced into the chamber with a net
flow (air + gas) of 0.5 slpm. The device current response was collected by the NI PXI SMU
system and converted to a resistance value. Sensor response was evaluated as (Rg-Ra)/Ra,
where Rg and Ra are resistances in the presence of the gas–air mixture and air, respectively.
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3. Results and Discussion

The device properties of the fabricated GaN nanowires were discussed in detail in
our previous work [20]. Here, the nanowire depletion region thickness and, consequently,
its resistance was modulated by applying the back-gate bias voltage. Due to the thick
dielectric layer and substrate used in this study, the fabricated FET requires a relatively
high back-gate voltage, but it can be reduced by optimizing the thicknesses of the AlGaN
layer and the Si substrate.

Since Si-doped GaN nanowire exhibits n-type behavior, the developed nanowire-based
FET showed n-channel field-effect transistor characteristics operating in the depletion mode.
When a bias voltage is applied to a Si back gate, the drain-to-source current is modulated
within the GaN nanowire. Figure 2a demonstrates the drain current behavior with respect
to VGS varied from −30 V to +30 V at a step of 5 V. The drain-to-source voltage (VDS) was
kept constant at 1, 3, and 5 V. Figure 2b shows the plot of IDS vs. VDS for the GaN nanowire
FET device with VDS varied from 0 V to 10 V. The drain currents presented here are for
back-gate (VGS) voltages of −30 V, −15 V, 0 V, 15 V, and 30 V. The FET shows a typical
drain current saturation with knee voltage at about 5 V. The electron field effect mobility
(µ) was calculated using the following equation: [21,22]

µ =
gmL ln(4tox/d)

VDS2Πεoε
(1)

where the transconductance, gm, is the slope of the IDS/VGS plot for a particular VDS, L
and d are the length and width of the nanowire, respectively, tox is the gate dielectric
thickness, and ε is the series permittivity of Si and AlGaN. Maximum gm derived from
the plot was 0.07 µA/V at a VDS of 5 V, and the corresponding mobility was calculated as
112 cm2 V−1 s−1, which is close to the Hall measurement value of 105 cm2 V−1 s−1.
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The gas sensing data were obtained in dry air under UV light at room temperature.
The device was allowed to obtain a stable baseline signal by flowing dry air for 10 min
before exposing it to the analyte gas for 250 s. When the gas flow was turned off, the sensor
was kept for 10 min for baseline recovery without any purging. The normalized resistance
responses of the TiO2/GaN nanowire-based sensor device when exposed to 10 ppm of NO2
and SO2 gas are shown in Figure 3. Without any gate bias, the sensor acts as a two-terminal
resistor and exhibits a similar response magnitude for the two target gases. It is clearly seen
that, upon applying a positive gate bias of 30 V, the NO2 response was enhanced by almost
a 60% increase, whereas the SO2 response remains almost the same with only a marginal
10% increase. Thus, the selectivity of the FET sensor was improved for NO2 gas due to the
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lowering of cross-sensitive interference from SO2 gas. The change in sensor responses is
mainly attributed to the modification of the channel depletion region with gate bias voltage.
Consequently, the device’s Fermi energy level is shifted and the charge transfer between
gas and sensor surface is altered. We fabricated a total of five FET devices of the same type
and performed similar electrical and gas characterizations. It was observed that all of the
back-gate FET sensors exhibited similar differential enhancement of responses toward the
two analyte gases, indicating an insignificant device variability.
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4. Gas-Sensing Mechanism

The gas-sensing mechanism of the TiO2/GaN nanowire-based device was explained
with the help of an energy band diagram and a charge transfer process between the metal
oxide and the gas molecule. The charge transfer process between the metal oxide surface
and gas molecules controls the level of chemical interaction between them. It is well known
that direction and value of charge transfer in the adsorption system depend on the work
function of sensing material as well as the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) of the target gas. The charge transfer
continues to take place until equilibrium Fermi energy is reached within the adsorption
system.

A schematic of the energy band diagram showing the energy barrier between the
TiO2/GaN system and the gas molecule is shown in Figure 4. The Fermi energy of the
TiO2/GaN system and the HOMO and LUMO of NO2 and SO2 used here were obtained
from our previous study on molecular models of adsorption systems using first-principle
calculations within DFT [23,24].

Since the energy gap between the Fermi energy in TiO2/GaN and the LUMO is much
less than that of the HOMO, electrons from the sensing surface prefer to move toward the
LUMO of the gas molecule during adsorption. Here, the electrons are transferred from
the metal oxide to the gas molecule by the process of quantum tunneling, which can be
described by a single-step barrier concept [25]. It is well known that the probability of
charge transmission through the energy step increases exponentially with the decrease
in barrier height [26]. After applying the gate bias, the LUMO of NO2 was much closer
to the TiO2/GaN Fermi level than the LUMO of SO2. That means that the probability of
electron transfer between sensor and gas becomes comparatively higher in the case of NO2
adsorption. This increased charge transfer amount, on applying the gate bias, is reflected
in the form of a significant gas response change as shown in Figure 3a. Therefore, the
TiO2/GaN FET sensor becomes strongly selective toward NO2 against interfering gases
such as SO2, with the gate bias being another tunable parameter. The Fermi energy of the
two-terminal TiO2/GaN device without gate bias voltage, the HOMO and LUMO of NO2
and SO2 aligned to the vacuum level, as well as the absolute value of energy differences
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between the LUMO and Fermi energy (EF-LUMO) and energy differences between the
HOMO and Fermi energy (EF-HOMO) are shown in Table 1.
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Table 1. Fermi energy, molecular frontier orbital energies, and energy differences. EF-LUMO is the absolute value calculated
by EF (device)-ELUMO (gas). EF-HOMO is the absolute value calculated by EF (device)-EHOMO (gas).

Adsorption System Fermi Energy (eV) LUMO (eV) HOMO (eV) EF-LUMO (eV) EF-HOMO (eV)

TiO2/GaN −2.137 - - - -
NO2 - −2.890 −8.612 0.753 6.475
SO2 - −3.182 −7.015 1.045 4.878

5. Conclusions

In this work, we presented a GaN nanowire-based back-gate FET sensor device to
address the cross-sensitivity among interfering gases NO2 and SO2. By applying a back-
gate bias voltage to the Si substrate of a two-terminal TiO2/GaN sensor, selectivity toward
NO2 was enhanced. It was found that the NO2 response was improved by 60% as compared
to an insignificant 10% increase in the SO2 response, after applying the back-gate bias. The
differential gas response due to the back-gate bias was discussed with the help of an energy
band diagram and a charge transfer process derived from the DFT energy calculation of a
molecular model.
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