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Multifunctional sequence-defined macromolecules
for chemical data storage
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Sequence-defined macromolecules consist of a defined chain length (single mass), end-

groups, composition and topology and prove promising in application fields such as anti-

counterfeiting, biological mimicking and data storage. Here we show the potential use of

multifunctional sequence-defined macromolecules as a storage medium. As a proof-of-

principle, we describe how short text fragments (human-readable data) and QR codes

(machine-readable data) are encoded as a collection of oligomers and how the original data

can be reconstructed. The amide-urethane containing oligomers are generated using an

automated protecting-group free, two-step iterative protocol based on thiolactone chemistry.

Tandem mass spectrometry techniques have been explored to provide detailed analysis of

the oligomer sequences. We have developed the generic software tools Chemcoder for

encoding/decoding binary data as a collection of multifunctional macromolecules and

Chemreader for reconstructing oligomer sequences from mass spectra to automate the

process of chemical writing and reading.
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Reliable data storage, already in the zettabyte (1021) range
and increasing, is one of the largest technological chal-
lenges of the digital age1. While current conventional sto-

rage devices are still able to cope with this increasing demand,
they occupy large floor areas in data centres, depend on ever rarer
elements and require a great deal of energy, a resource already
being stretched to the edge of current capacity. Encoding data at
the (macro)molecular level could overcome these drawbacks,
because physical maintenance is negligible, storage densities can
be dramatically increased and sources of elements (C, H, N, O) as
constituents of the information-containing macromolecules are
highly abundant.

DNA, carrier of genetic information and arguably nature’s
largest biopolymer, has already been used as a macromolecular
carrier of information, able to archive2–4, manage (DNA hard
disk)5 and encrypt data6–8 easily retrieved by well-established
read-out tools9. Moreover, immense storage densities can be
achieved, i.e. 106 times more information per mm3 than in hard
disk or flash memories10. For example, 200 megabytes of data,
including a high-definition music video and 100 books, were
recently stored on DNA that contained more than 1.5 billion base
pairs11.

Although the encoded information can be copied by DNA
replication, susceptible to errors, DNA holds serious practical
issues related to long-term stability and synthetic scalability12.
Indeed, DNA is sensitive to both hydrolysis and other degrada-
tion reactions, such as deamination and dimerization. These
issues could be overcome with synthetic sequence-defined poly-
mers if the backbone and side chains are chosen wisely. The
structure of DNA is also quite complex, and the four-letter
nucleotide code that makes up its ‘alphabet’ is limited compared
to the vast diversity of synthetic building blocks. Another
important issue hampering the large-scale use of DNA is the
limited availability, the latter mostly connected with the scarce-
ness of biologically available phosphorus in nature13. Although
recent research indicates that DNA is more stable than flash
memory and that the amount of silicon might not be able to cope
with the production of chips, it should be emphasized that,
compared to phosphorus, silicon is 300 times more easily avail-
able on earth and can be retrieved from more accessible miner-
als3. While producing DNA on a large enough scale is not
feasible, it has recently been proven that sequence-defined poly-
mers can be made on multigram scale with cheap compounds,
which shows the potential for further industrial upscaling14–16. In
addition, many types of polymers are known to remain fairly
stable over a very long period of time (decennia to centuries), and
their cost is significantly lower than that of DNA production,
even for tailor-made structures. Polymer chemists have recently
realized that the potential of data storage is not restricted to DNA:
recent progress in the field indicates that sequence-defined
macromolecular structures are equally applicable for data storage
purposes17,18. Therefore, they have been developing different
methodologies to achieve full control over the primary structure,
i.e. the order of monomers in a sequence of synthetic
macromolecules14,16,19–36. Moreover, synthetic carriers of digital
information can have significantly simplified structures regarding
backbone and chirality. In fact, the simplest constructs are atactic,
sequence-defined binary strings1. Compared to DNA, these
polymers, devised as digital information carriers, have very simple
molecular structures. However, in theory they are more robust,
and therefore potentially constitute the basis for future data
storage technologies.

Various synthetic approaches have been developed to make
sequences that can be easily read with well-known technologies
such as tandem mass spectrometry20,37–40. Lutz and co-workers,

for instance, stored digital information on sequence-defined
oligourethanes26,27, oligo(triazole amide)s28,29, poly(phospho-
diester)s30,31, oligo(alkoxyamine amide)s32,33 and oligo(alkox-
yamine phosphodiester)s34,35. In these sequences, digital
information is encoded using two monomers, resulting in the
binary representation commonly used by modern computer
systems. While these approaches usually store data in binary
form, recent synthetic approaches have attempted to expand the
number of functionalities that can be placed in the backbone or
side-chain16,20,40–42. After all, the amount of data that can be
stored in macromolecular chains depends on both the chain
length and the number of different building blocks, which
determine the base of the positional numeral system43. For
example, with 20 different building blocks (base-20), up to 8 × 103

trimers and 2.56 × 1010 different octamers can be made, and while
only 32 different pentamers can be made with 2 different building
blocks (base-2= binary), 3.2 × 106 pentamers are theoretically
possible through the use of 20 building blocks. Thus, the use of
sequence-defined structures with a large diversity of functional-
ities would allow for compact data storage on short macro-
molecular chains. The first examples of using multiple
functionalities for data storage have recently been reported by the
groups of Lutz35 and Meier44.

We recently reported on two approaches for the straightfor-
ward synthesis of multi-functional sequence-defined oligo(amide-
urethane)s by making use of thiolactone (Tla) chemistry45–47.
Although a range of chemical functionalities could easily be
inserted with both approaches, the one using acrylates, instead of
amines, to introduce side-chain functionalities was more advan-
tageous46. It resulted in longer high-purity sequences and made
use of an automated protocol (Fig. 1). Two different linkers, a
Tla-containing alcohol and an acid, were used to connect the
thiolactone moiety and solid support45,46.

For peptide chemistry and synthetic sequences, examples can
already be found of computational algorithms that revolutionized
sequence-order reading, database building and de novo identifi-
cation48–50.

Our research was inspired by the controlled fragmentation of
the prepared sequence-defined oligomers and the time-
consuming interpretation of the MS/MS-spectra to develop an
automated sequencing tool, called Chemreader. The algorithm is
first tested and improved by decoding a sentence written on oligo
(amide-urethane)s. Then, the power of this algorithm and pro-
tocol is further exemplified by encoding and decoding a QR
(Quick Response) code starting from short, multifunctional
macromolecular structures. Another algorithm, called Chemco-
der, is developed to automate the translation of binary data, such
as the QR code, to oligomers and vice versa (Fig. 1). To write both
human- and machine-readable information on oligomeric
structures, more than 15 different side-chain functionalities are
used.

Results
Read-out of the oligomers. In order to determine on the one
hand the fragmentation behaviour of the oligomers and on the
other hand the most suitable mass technique for the oligo(amide-
urethane)s analysis (electrospray ionization (ESI) or matrix-
assisted laser desorption/ionization (MALDI) tandem mass
spectrometry), a pentamer Z5 was first prepared starting from an
acid linker and analysed (Supplementary Tables 1, 2 and Sup-
plementary Figures 14–17). The fragments generated in the col-
lision cell of these mass spectrometers mainly resulted from a
controlled fragmentation on the urethane bond. As can be seen in
Fig. 2, the sequence can be fully read from left to right and vice
versa. In terms of potential mass range analysis for longer
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sequences, we decided to continue with MALDI-TOF/TOF MS/
MS. Although both positive and negative ion mode proved to
work in the past for a variety of sequence defined oligomers51,
only positive mode was used here because the signal-to-noise
ratio of MALDI-TOF MS signals is typically better in this mode.
While it has been shown that the same synthetic platform also
allows for modification of the oligomer backbone, the level of
functionalization has been restricted to the side-chain in order to
reduce the complexity of the resulting mass spectra (vide infra)46.

Following this initial study, six hexamers that were previously
prepared on an automated synthesizer starting from an alcohol
linker46 (H1-H6) were also deciphered with MALDI-MS/MS
(Supplementary Table 3-8 and Supplementary Figures 1, 18-35).
These hexamers were built with benzyl-, butyl- or tetrahydro-
furfuryl acrylate and contain repetitions in their sequences.
Although H2 and H5 have the same mass, the order of their
sequence could be easily determined and thus they could be
differentiated unambiguously. For sequence H5, a more detailed
analysis of the MS/MS spectrum was performed (Supplementary
Figure 32).

Development of Chemreader algorithm. Once we had proven
the easy read-out of these sequences, we explored their potential
to store data and developed an algorithm (Chemreader) that
automates the read-out process. Pentamer Z5 was used for the
initial development of Chemreader. The algorithm uses both
the masses of the collection of functionalities and the length of the
monomer sequence as input parameters. In a first step, the pro-
gram generates all possible fragments that could possibly be
formed. Subsequently, it searches for matching masses that are
obtained after MS/MS analysis. Finally, fragments are combined
to reconstruct the original sequence. If we inspect pentamer Z5 in
more detail (Fig. 2), fragmentation on the urethane bonds leads to
the fragments necessary to perform the automated sequence
analysis with the Chemreader algorithm. In all cases, both the

start-containing fragment (left fragment with the acid linker) and
the stop-containing fragment (right fragment with the thiolactone
ring) are present in the spectrum. Presence of these two frag-
ments makes it easy for the algorithm to unambiguously translate
the MS/MS spectrum into the exact pentamer structure. The
Chemreader algorithm has linear time complexity in the length of
the polymers and the number of building blocks (octamers with a
20-character alphabet are resolved in the order of milliseconds on
a standard laptop). A more detailed explanation of the algorithm
can be found in the Supplementary Methods (Supplementary
Figures 2, 3).

Writing and reading human-readable data. Next, we attempted
to write the question TO WRITE OR NOT TO WRITE ON
OLIGOS? on short oligomers. For this, the eight different words
are converted into individual oligomers, using acrylates as a
chemical alphabet to represent the individual characters. Com-
parable to previous research in which mass tags were added to
oligomers to indicate the position of a letter in a word52, the
position of the words in the sentence has been encoded to enable
the reconstruction of the words in the correct order. As a result,
the sentence is actually encoded as 1TO 2WRITE 3OR 4NOT
5TO 6WRITE 7ON 8OLIGOS? The sentence was written twice
using the two different linkers, showing the versatility of the α-
end groups used for writing the oligomers (Supplementary
Table 10–25 and Supplementary Figures 36–83). The acrylates
(19 in total, each with a different mass) correspond to the dif-
ferent letters, numbers and the question mark in the sentence
(Supplementary Table 9, Supplementary Figures 4–13 and Fig. 3).

Decoding the sentence requires knowledge about the alphabet
(acrylates used), the number of words and the length of each
word. Each word can be analysed separately. Given this
information, Chemreader can reconstruct the original sentence.
Only for the word 8OLIGOS?, one peak corresponding to the
smallest fragment was absent. However, due to the redundancy in
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This QR code leads to the Wikipedia page of Auguste Kekulé
(en.wikipedia.org/wiki/August_Kekulé)
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Fig. 1 Schematic representation of the QR code conversion. A QR code including a benzene structure, encoding the URL of the Wikipedia page of August
Kekulé, who was the first to understand the structure of benzene and made a proposal for its structure, is translated to and written on 71 different
sequences. Translation is done using the Chemcoder algorithm. The sequences are read afterwards by means of tandem MS and the Chemreader
algorithm. Given these sequences, Chemcoder is able to reconstruct the original QR code. Different building blocks in the sequence are highlighted: start
fragment (purple box); backbone (yellow boxes), stop fragment (green box) and the functionalities (grey and blue boxes)
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Fig. 2 Determining the sequence order. Tandem mass analysis (MALDI-MS/MS) of a pentamer Z5 with five different functionalities. In blue the read-out is
highlighted from right to left, in purple from left to right. The coloured arrows indicate the mass difference between two mass fragments and the
functionality that is responsible for this difference.
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overlapping fragments and the left-right and right-left recon-
struction of the data, the octamer could be correctly translated.
While encoding a human-readable sentence in sequence-defined
polymers provided a first proof-of-principle to demonstrate the
power of the Chemreader algorithm, the applied encoding
scheme is not scalable to larger text fragments due to variable-
length position encoding and to larger alphabet sizes (e.g. ASCII
or Unicode) as separate acrylates are needed for all characters in
the alphabet.

Writing and reading of machine-readable data. A second and
more ambitious challenge was the synthesis and analysis of dif-
ferent oligomers to encode a 33 × 33 QR code, corresponding to a
square grid containing 1089 pixels. With the ever-increasing use
of smartphones, QR codes have become a simple way of com-
municating short messages. In producing a sample QR code that
encodes the URL of the Wikipedia page of August Kekulé53, we
took advantage of the redundancy built into these codes—for
error correction purposes—to embed a visual representation of
the benzene ring. Kekulé was the first to understand the structure
of benzene and made a proposal for its structure (1865) during
his stay at Ghent University (1858–1867).

The black and white dots in a QR code represent bits (0 and 1)
in the binary numeral system. As such, a QR code is nothing
more than a two-dimensional bit string. To achieve the goal of
encoding the QR code in sequence-defined polymers, the bit
string was converted into a sequence of functionalities. To
automate the process of encoding and decoding bit strings as
collections of oligomers, a software tool called Chemcoder was
developed.

The general outline of the Chemcoder algorithm is schematically
represented in Fig. 4. The encoding of a QR code bit string is done
in a series of steps. In a first step, the bit string is converted into a
sequence of so-called flags (=side-chain functionalities). As this
sequence of flags is too long to be encoded in a single oligomer, it is
split into short fixed-length fragments. To give the last fragment the
same length as the other fragments, it occasionally has to be filled
with a non-coding spacer region (black region in Fig. 4). To enable
reconstruction of the original bit string from the collection of
fragments, an index is added to each fragment (purple region in
Fig. 4) as well as the total length of the original bit string (blue
region in Fig. 4). Decoding can only be done if the sequence of all
the fragments has been determined. In that case, Chemcoder
dereplicates the sequenced fragments and sorts them in their

original order based on the index, removes the non-coding index
and length regions, and glues the coding sections together into a
single bit string, from which the spacer region is trimmed using the
encoded length of the original bit string. The resulting bit string
corresponds to the original QR code. The Chemcoder algorithm has
linear time complexity in the length of the bit string (GB-sized files
are converted in the order of milliseconds on a standard laptop).

Apart from the bit string that needs to be encoded into a
collection of fragments, Chemcoder needs to be configured with
the maximal fragment length and the size of the chemical
alphabet (available flags). Depending on these settings, a different
number of oligomers must be synthesized: the longer the
oligomers and the more flags that can be used, the lower the
number of oligomers that needs to be synthesized. We have
chosen settings for Chemcoder such that the sample QR code is
translated (Fig. 4) into a collection of 71 short oligomers (1
monomer, 11 pentamers and 59 hexamers). The automated
protocol developed earlier allows for simultaneous synthesis up to
72 sequence-defined structures, which fits the 71 oligomers that
are needed here46. To write the QR code, these fragments were
synthesized using a library of 15 acrylate monomers (Supple-
mentary Table 26 and Supplementary Figures 84–225), which we
have labelled A, B, C… O to make them more human-readable.
After obtaining spectra from all 71 oligomers, Chemreader
reconstructed all fragments without errors, which were then
converted into the original bit string by Chemcoder, yielding the
original QR code.

As every oligomer had to be analysed separately, a future
challenge would be to combine techniques for the analysis of
much more complex samples, in order to guarantee a high data
density. An example, well known in the context of peptide
analysis, consists of the coupling of liquid chromatography to a
tandem ESI-MS/MS equipment to separate different oligomers in
the LC dimension and determine the sequence in the tandem MS
dimension54.

The storage capacity of sequence-defined oligomers based on
thiolactone chemistry was explored. It is possible for such
oligomers to directly contain digital information in a useful way
(QR code) while a controlled fragmentation on the urethane bond
allowed for an easy read-out of the oligomers. An algorithm,
called Chemreader, was developed to facilitate the read-out of
these sequences, which allows one to read the information stored
within sequence-defined structures in a fast and automated way
on a standard laptop. The Chemreader algorithm contributes to

Encode

=

= =

Decode

Fig. 4 Encoding and decoding of the QR code. Encoding scheme (left). The bit string representing the QR code is first translated into a pentadecimal
numeral system (base-20). The sequence of ‘flags’ is then cut into smaller pieces. In a final step, the position of each fragment (purple) and the length of
the bit string (blue) is added. The last fragment may be filled with a non-coding spacer (black); Decoding scheme (right). After determination of the
sequence of all fragments, they are dereplicated, sorted, trimmed and glued together. Finally, the sequence of flags is converted into the bit string that
reconstructs the original QR code
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solving the sequence-reading bottleneck of sequence-defined
polymers. In order to test the Chemreader algorithm, a sentence
in natural language was first successfully written and read,
followed by the more ambitious challenge of encoding a 33 × 33
QR code in 71 different, analysed oligomers. Besides, we
developed the software tool Chemcoder to quickly encode binary
data as a compact collection of oligomer fragments, and vice
versa. Both algorithms are extremely fast and highly configurable
for application on other sets of sequence-defined polymers. A
reference implementation is available open source on GitHub (see
section Additional Information for URL). We invite other groups
to apply them on their own data sets or make any modifications
for their own needs.

As the results obtained prove the possibilities for using these
mono-disperse, multi-functional oligomers in the field of data
storage, this study is another indication for the long-term
potential that sequence-defined polymers hold to real-world
applications and thus provides further validation for this rapidly
developing branch of macromolecular chemistry. Undoubtedly,
this will spark further research on the analysis and applicability of
sequence-defined polymers worldwide. One of the main research
challenges remains the further exploration of non-destructive
techniques for the read-out of the sequence order in complex
mixtures.

Methods
Instrumentation. 1H- and 13C-NMR (Attached Proton Test, APT) spectra were
recorded on a Bruker Avance 300 at 300 MHz and a Bruker Avance 500 at
500 MHz. Chemical shifts are presented in parts per million (δ) relative to
DMSO-d6 or CHCl3-d (2.50 ppm or 7.27 ppm in 1H- and 39.51 ppm or 77.24
ppm in 13C-NMR, respectively) as internal standard. All samples were analysed
with 2D-NMR techniques (COSY, HSQC and HMBC), which provided a full
assignment of the structures. All measurements were performed at 25 °C and
ACD/NMR Processor was used for the processing of all data. All spectra
including 1D 1H and 13C, 2D COSY, 1H-13C HSQC and 1H-13C HMBC were
recorded in a standard fashion with pulse programs available in the Bruker
library. An Agilent technologies 1100 series LC/MSD system equipped with a
diode array detector and single quad MS detector (VL) with an electrospray
source (ESI-MS) was used for classic reversed phase LC-MS (liquid chromato-
graphy mass spectroscopy) and MS analysis. Analytic reversed phase HPLC was
performed with a Phenomenex C18 (2) column (5 µ, 250 × 4.6 mm) using a
solvent gradient (0→ 100% acetonitrile in H2O in 15 min) and the eluting
compounds were detected via UV-detection (λ= 214 nm). High-resolution mass
spectra (HRMS) were collected using an Agilent 6220 Accurate-Mass time-of-
flight (TOF) equipped with a multimode ionization (MMI) source. Infrared
spectra were recorded with Attenuated Total Reflection (ATR) with a PIKE
Miracle ATR unit and a Perkin Elmer FTIR SPECTRUM 1000 spectrometer. IR-
software of Perkin Elmer was used for the analysis of the spectra. Automated
syntheses were performed on a 72-reactor block INTAVIS MultiPep CF Syn-
thesizer with open 5 mL reaction columns equipped with a vortexing unit (refer
to Supplementary Methods, Supplementary Figure 1). The speed of vortexing is
550 rpm. ESI mass spectrometry analysis was performed on a Synapt G1 HDMS
mass spectrometer (Waters). Samples were diluted in 50% acetonitrile/0.1%
formic acid in water and transferred into a 96-well plate. This plate was loaded
into an Advion Triversa Nanomate source. From each sample 3 µL was picked
with a conductive peptide tip and moved towards the D-chip plate. Typically,
1.3 V was applied on the chip, spraying the sample in the source area of the mass
spectrometer which was used in the Q-TOF mode. Tandem mass spectra were
generated by collision induced dissociation using Ar as collision gas at 30 eV
collision energy. For MALDI analysis, measurements were performed with
trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malonitrile (DCTB,
30 mg/mL in dichloromethane) as a matrix, Sodium trifluoroacetate (19 mg/mL
in acetone) as a cationizing agent, and oligomer samples were dissolved in THF
(4 mg/mL). Oligomer solutions were prepared by mixing 10 µL of the oligomer,
1 µL of the salt, and 10 µL of the matrix solution. Subsequently, 0.5 µL of this
mixture was spotted on the sample plate, and the spots were dried in air at room
temperature. 0.5 µL was spotted on a MALDI plate and loaded into the Sciex
4800 MALDI-TOF/TOF MS instrument equipped with an Nd:YAG laser (200
Hz, 355 nm) controlled by 4000 Series Explorer software version 3.5.3 (Applied
Biosystems, Germany). The instrument was operated in positive ion mode with
delayed extraction and an acceleration voltage of 20 kV with a grid of 15.6 kV.
Fragmentation (MS/MS) was performed in positive ion mode at 1 kV using the
no gas option. The 4700 Proteomics Analyser Mass Standard kit (Applied
Biosystems, Germany) was prepared according to the manufacturers’ recom-
mendation and used for external calibration before analysis (mass to charge

range from 800 to 4000 Da). MS/MS calibration was based on the precursor mass
of 1570.677 Da of Glu-fibrinopeptide B. Signals were considered as interpretable
if the error in m/z was not higher than 0.02 and the signal-to-noise had to be
higher than 5.

Materials. DMSO-d6 ([2206-27-1], ≥99.8%) and CHCl3-d ([865-49-6], ≥99.8%)
were purchased from Euriso-top. Acryloyl chloride ([814-68-6], 96%) was pur-
chased from abcr GmbH. Acetonitrile ([75-05-8], HPLC grade), 1,4-Dioxane
([123-91-1], HPLC grade), and Triethylamine ([121-44-8], 99%) were purchased
from Acros Organics. DL-Homocysteinethiolactone hydrochloride ([6038-19-3],
99%) was purchased from Haihang industry (Jinan City, China). Magnesium
sulphate hydrate [22189-08-8], ≥99%), Potassium carbonate ([584-08-7], ≥99%)
and Sodium bicarbonate ([144-55-8], ≥99.5%) were purchased from Carl Roth.
Trifluoroacetic acid ([76-05-1], Peptide grade) and 2-Chlorotrityl chloride resin
([42074-68-0], 100-200 mesh, 1% DVB, 1.6 mmol/g) were purchased from
Iris Biotech GmbH. Acetyl chloride ([75-36-5], ≥99%), Bromoacetyl bromide
([598-21-0], ≥98%), Butyl acrylate ([141-32-2], ≥99%), Chloroform ([865-49-6],
≥99.8%), Citronellol ([106-22-9], ≥95%), Dichloromethane ([75-09-2], ≥99.8%),
Diethylether ([60-29-7], ≥99.9%), N,N-Diisopropylethylamine (DIPEA, [7087-68-
5], 99%), N,N-Dimethylformamide ([68-12-2], anhydrous, 99.8%), Ethanolamine
([141-43-5], ≥99%), Ethyl acrylate ([140-88-5], 99%), Glutaric anhydride
([108-55-4], 95%), 1-Heptanol ([111-70-6], 98%), 2-Hydroxyethyl acrylate
([818-61-1], 96%), Isobornyl acrylate ([5888-33-5], technical grade), 2-
Mercaptoethanol ([60-24-2], ≥99%), Methanol ([67-56-1], ≥99.9%), Methyl acry-
late ([96-33-3], 99%), Phenothiazine ([92-84-2], ≥98%), 1-Propanol ([71-23-8],
99.7%), Propargyl acrylate ([10477-47-1], 98%), Pyridine ([110-86-1], ≥99%),
Tetrahydrofuran ([109-99-9], ≥99%) were purchased from Sigma-Aldrich and used
without purification, except isobornyl acrylate which was distilled. Benzyl acrylate
([2495-35-4], >97%), 2-Cyanoethyl Acrylate ([106-71-8], >95%), Cyclohexyl
Acrylate ([3066-71-5], >98%), Dibutyltin dilaurate ([77-58-7], >95%), N,N-Die-
thylacrylamide ([2675-94-7], >98%), 2-(Dimethylamino)ethyl Acrylate
([2439-35-2], >98%), 2-Ethoxyethanol ([110-80-5], >99%), 2-(2-Ethoxyethoxy)
ethyl Acrylate ([7328-17-8], >98%), 2-Ethylhexyl Acrylate ([103-11-7], >99%),
Isoamyl Acrylate ([4245-35-6], >98%), 2-Methoxyethyl Acrylate ([3121-61-7],
>98%), 1-Nonanol ([143-08-8], >99%) and Triphosgene ([32315-10-9], >98%)
were purchased from TCI and used without purification. Tetrahydrofurfuryl
acrylate ([2399-48-6]) was purchased from Polysciences and used without pur-
ification. Hydrochloric acid 36% p. (HCl, [7647-01-0]) was purchased from Chem-
Lab and used without purification. Solvents (CH2Cl2, CHCl3, DIPEA and pyridine)
for the chain extension of sequences, the synthesis of α-isocyanato-γ-thiolactone or
the immobilization of functionalized thiolactone linkers were distilled from CaH2

prior to use. Silicagel (ROCC, SI 1721, 60 Å, 40–63 μm) was used to perform
preparative column chromatography, eluting with technical solvents. The collected
fractions were analysed by thin layer chromatography (TLC-plates, Macherey-
Nagel, SIL G-25 UV254). The α-isocyanato-γ-thiolactone, the acid-functionalized
and hydroxyl-functionalized thiolactone linker, and 3,7-dimethyloct-6-en-1-yl
acrylate (citronellyl acrylate) were synthesized according to literature
procedures45,46,55,56.

Experimental procedures. Detailed experimental procedures are described in the
Supplementary Methods and are accompanied with reaction schemes when
appropriate.

Code availability. Both the algorithms can be found at https://github.com/
chemstore. The individual algorithms can be found at https://github.com/
chemstore/chemcoder and https://github.com/chemstore/chemreader.

Data availability
All relevant data are available within the paper and its Supplementary Information.
The algorithms can be found at https://github.com/chemstore. All other data are
available from the authors upon request.
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