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Abstract

Objectives

This study aimed to examine the potential of combining routine tuberculosis (TB) surveil-

lance and demographic and socioeconomic variables into the Geographic Information Sys-

tem (GIS) to describe the geographical distribution of TB notified incidence in relation to

distances to health services as well as local demographic and socioeconomic factors,

including population density, urban/rural status, and household poverty rates in Nam Dinh,

Vietnam. It also aimed to compare the conventional Generalized Linear Models (GLM) Pois-

son regression model and Geographically Weighted Poisson Regression (GWPR) models

in order to determine the best fitting model that can be used to investigate the relationship

between TB notified incidence and distances and the social risk factors.

Methods

The data of new and relapse patients with all forms of TB aged�15 years residing in Nam

Dinh (Vietnam) from 2012 to 2015 were collected from the Administration of Medical Ser-

vices’ (Ministry of Health of Vietnam) TB surveillance database. Data on the population and

household poverty rates from 2012 to 2015 were gathered from the Nam Dinh Statistical

Office. Distances between communes and the nearest TB diagnostic facilities in districts

were computed. The TB notified incidence per 100,000 population was denoted by indirect

age and sex standardized incidence ratio. GLM Poisson regression and GWPR were per-

formed to assess the relationship between distance and TB incidence.

Results

The average notified TB incidence level measured from 2012 to 2015 is 82 per 100,000 pop-

ulation (range: 79-84/100,000). The distance to the nearest TB diagnosis presents a
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negative effect on TB notified incidence. By capturing spatial heterogeneity, the GWPR may

be better at fitting data (corrected Aikake information criterion [AICc] = 245.71, residual devi-

ance = 221.12) than the traditional GLM (AICc = 251.53, residual deviance = 241.21)

Conclusions

GIS technologies benefit TB surveillance system. Distances should be considered when

planning methods of improving access for those who live far from TB diagnostic services,

thereby improving TB detection. Additional studies must confirm the association between

geographic distance and TB case detection and must explore other factors that may affect

TB notified incidence.

Introduction

Vietnam is among the 20 countries with the highest incidence of tuberculosis (TB) worldwide

[1]. The Vietnam National Tuberculosis Programme (NTP) was established in 1986 based on

principles which include Direct Observed Treatment and Short Course (DOTS) as recom-

mended by the World Health Organization (WHO) [2,3]. The NTP is divided into four levels:

central, provincial, district, and communal levels. At the central level, the National Lung Hos-

pital is responsible for the overall implementation and supervision of the program. The pro-

vincial level covers regional lung hospitals and TB and lung disease departments of general

hospitals. The district level oversees the provision of DOTS and follow-up treatment to

patients. The communal level covers community volunteers who support the district in case

detection, DOTS completion, and patient outreach to those are lost to follow-up. The Vietnam

NTP currently covers nearly all 708 districts and 11,162 communes (compared with 40% and

18% in 1986, respectively) [2,4].

The NTP has made efforts to reach the Millennium Development Goals by reducing TB

prevalence, incidence, and mortality by 4.6%, 2.6%, and 4.4%, respectively, every year from

1990 to 2013 [5]. Consequently, the incidence of TB declined from 375 to 209 cases per

100,000 population between 2000 and 2014 [6]. However, TB prevalence for Vietnam is likely

greater than the published figures. A national prevalence survey conducted in 2007 showed

that the TB prevalence in Vietnam is 1.6 times higher than that estimated by the WHO [7]. For

this reason, better surveillance and community-driven approaches applied at the subnational

level remain essential to achieve the arduous goal of depressing the TB prevalence rate in Viet-

nam to 20 per 100,000 the following.

Geographical Information System (GIS) is a computer-based system in which data that are

linked to geographic space (known as spatial data) can be input, managed, processed, and

retrieved. By considering “spatial-related aspects” (e.g., place, area or distance) it can provide

intuitive information in the fields of epidemiology, communicable disease control, medical

geography, environmental health, and health services planning in developing countries [8]. In

the realm of TB, GIS has proven its advantages to DOTS strategy development and is increas-

ingly being employed to identify the spatial patterns of TB observed at subnational levels and

biological, social and demographic determinants [9–11].

Distance or proximity to a health facility is an important factor that affects the performance

of health programs especially in developing countries [12]. The “distance decay effect”, a geo-

graphic term that reflects a significant decrease in the utilization of health services in correla-

tion with increasing distance from residential locations to healthcare providers, has been
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described in various studies and should be taken into consideration when planning services or

improving policies [13–16]. However, studies on the relationship between TB case detection

and distances to TB diagnostic facilities are limited. A recent study conducted in Ethiopia

found that longer distances to TB services are associated with lower TB notification rates [17].

Traditional global regression methods such as Ordinary Least Square and Generalized Lin-

ear Models (GLM) have been widely used in health studies [18,19]. However, such techniques

disregard potential spatial variations in relationships between mortality and morbidity rates

across space and therefore may generate biased results and conclusions. Local spatial variations

can serve as meaningful information that can have implications for healthcare policy makers.

From this issue, Geographically Weighted Regression (GWR) and Geographically Weighted

Poisson Regression (GWPR) methods have been developed. GWR and GWPR are relatively

new exploratory spatial data analysis techniques that incorporate non-stationary spatial struc-

tures of data into statistical models to generate local coefficients to elucidate spatial variations

in relationships between dependent variables and covariates. GWPR is an extension of GWR

and is used when dependent variables follow the Poisson distribution. GWPR was primarily

developed for modelling mortality rates at small scales and is increasingly being used to exam-

ine associations between disease risks, incidence rates, mortality risks and spatially varying

social factors [19–22].

In Vietnam, GIS has been rarely used in public health and epidemiological research. Given

the potential uses of GIS for the TB program, this study was aimed to explore the potential of

combining routine TB surveillance and demographic, as well as socioeconomic, variables into

GIS (1) to describe the geographical distribution of TB notified incidence in relation to dis-

tances to health services and the local demographic and socio-economic factors such as popu-

lation density, urban/rural status, and household poverty rates and (2) to compare the GLM

Poisson regression and GWPR models to fit the relationship between TB notified incidence

and distances and the given social risk factors.

Methods

Settings

The Nam Dinh province of Vietnam is located in the southern area of the Red River Delta,

covering an area of 1,676 km2 and supporting a population of approximately 1.83 million. The

province includes 10 districts with 35 urban and 194 rural communes [23].

The NTP in Nam Dinh is organized into 13 public facilities that deliver TB diagnostic ser-

vices (S1A Fig), including 1 provincial lung hospital and 12 TB units housed in 12 district hos-

pitals. The number of TB diagnostic facilities remained unchanged between 2012 and 2015.

The provincial lung hospital employs 25 physicians while each TB unit employs 3 staff. The

basic TB diagnostic services offered include smear sputum microscopy, tuberculin skin test,

and chest X-ray. Sputum cultures areperformed at the provincial lung hospital. Xpert MTB/

RIF assays have been available at the provincial lung hospital since 2015.

Study design and data collection

We conducted a geographic epidemiological study based on the existing surveillance data. The

dataset that contains the number of new and relapse patients with all forms of TB, notified in

Nam Dinh between 2012 and 2015 and aged at least 15 years aggregated by age and sex at com-

munal level was obtained from the TB surveillance database of the Administration of Medical

Services (Ministry of Health of Vietnam). Two datasets, the first dataset that contains the

names, administrative codes, and population stratified by age and sex and the second dataset

that contains administrative codes, household poverty rates (measured from the proportion of
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household in the communes living below the national poverty line) of all communes from

2012 to 2015 were collected from the Nam Dinh Statistical Office.

A base map that covers the communal-level layer of Nam Dinh province was provided by

the Vietnam National Remote Sensing Center and was projected to the World Geodetic Sys-

tem 84 Universal Transverse Mercator Zone 48N coordinate reference system [24]. This base

map contains the name, administrative code, and land area of each commune.

We joined three datasets to the base map by administrative codes of communes using Arc-

GIS (ESRI Inc., Redlands, CA, USA, version 10.3). Then we calculated the annual population

density of each commune from 2012 to 2015 by dividing the total population in the respective

year by its land area.

Statistical analysis

The notified incidence is measured as the number of new and relapse TB cases notified in a

given year per 100,000 population. The confidence interval (CI) of notified incidence was

obtained based on the assumption that the observed incident cases follow the Poisson

distribution.

The TB indirect age and sex standardized incidence ratios (SIR) of commune i from 2012

to 2015 were calculated using the formula:

SIR ¼ Oi=Ei

where Oi denotes the average number of TB cases notified in commune i during the study

period and Ei as the expected number of notified TB cases for commune i and is calculated

using the following formula:

Ei ¼
P

rsex;age � nsex;age;i

where sex � (male, female), age � (15–24 years, 25–34 years, 35–44 years, 45–54 years, 55–64

years, and 65+ years), r as the national sex-age reference TB incidence rates estimated from the

national notification rates reported by the WHO from 2012 to 2015 [25], and n as the average

mid-year population of each sex-age group of the commune i.

Variable selection

Previous studies showed that higher TB incidence are associated with overcrowding, poverty

and poor sanitation [26–28]. Several studies use local Gini index (representing the income dis-

tribution of residents) or income per capita and the Human Development Index to represent

the socioeconomic exploratory variables [29,30]. Unfortunately, these indicators are not avail-

able in Vietnam at the provincial level. We therefore used household poverty rates as a proxy

for the socioeconomic status of the communes.

Given that the observed and expected number of notified TB cases follows the Poisson dis-

tribution, the GLM can be written as follows:

lnðOi þ 1Þ ¼ lnðEiÞ þ b0 þ b1ðDENÞ þ b2ðPOORÞ þ b3ðDOMÞ þ b4ðDISTÞ þ εi ð1Þ

where β0 is the global intercept and βj (j = 1,2,3,4) are model parameters corresponding to

exploratory variables. We added a constant of one to the average observed number of notified

TB cases to mitigate problems related to counts of zero. DEN is the average population density

measured for 1,000 inhabitants per square kilometer. POOR is the average household poverty

rate measured as proportions of household living below the national poverty line. DOM is the

urban/rural setting of communes (urban = 1, rural = 0). DIST is the Euclidean distance in kilo-

meters, which is a straight line running from centroids of a commune to TB diagnostic

Effect of distance on Tuberculosis incidence
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facilities of the same district calculated using the Near tool in ArcGIS. ε is the error term of

commune i.

When applying GWPR, parameters are functions of geographical location ui = (uxi; uyi)

where (uxi; uyi) denotes two-dimensional co-ordinates of commune centroids:

lnðOi þ 1Þ ¼ lnðEiÞ þ b0ðuiÞ þ b1ðuiÞðDENÞ þ b2ðuiÞðPOORÞ þ b3ðuiÞðDOMÞ þ b4ðuiÞ

� ðDISTÞ þ εi ð2Þ

Parameters of regression models for each regression point are estimated based on nearby

observations, for which data on closer communes have a greater effect on results than data for

more distant communes. Geographic weights are identified from a kernel function such as the

Gaussian or bi-square kernel with fixed or adaptive bandwidth. The Gaussian kernel continu-

ously decreases from the centre of the kernel but never decreases to zero. The bi-square kernel

has an explicit threshold that assigns a weight of zero to observations made outside of the

bandwidth. If regression points are fairly regularly spaced in the study area then a fixed kernel

is a suitable choice. In contrast, an adaptive kernel is appropriate when the regression points

are irregularly positioned [18].

Calibration of GWPR models

We started with a traditional GLM (Eq 1) with all parameters fixed. A residual deviance test

was performed to assess the goodness of fit of the global GLM. Multicollinearity between inde-

pendent variables was analyzed from the variance inflation factor (VIF), and variables with

VIF>5 were considered to be collinear and were excluded from the model [31]. Variables with

a p value of<0.05 were considered statistically significant.

We used the GWR4 software to calibrate the regression equation presented in Eq 2. The

newest version of GWR4 provides the use of convenient algorithms for integrating both fixed

and spatially varying independent variables in the GWPR model (semiparametric or mixed

model). Adaptive Gaussian and adaptive bi-square kernels were used to estimate the parame-

ters due to the inconsistent in the observed distribution of sample points. We used the L to G

(local to global) variable selection option to find the optimal combination of fixed and geo-

graphically varying exploratory variables. A golden section search was opted to find the opti-

mal bandwidth. The corrected Aikake information criterion (AICc) and residual deviance

were used to measure the goodness of fit of the GWPR models and global GLM. A golden sec-

tion search and L to G variable selection routine both rely on the minimization of the AICc to

find the best fitting model. A model with a lower AICc of more than 3 denotes a better fit and

is considered statisticallysignificant. Further information on GWPR model settings can be

found in Nakaya et al. [19] and GWR for Windows [32].

Testing for spatial autocorrelations of model residuals

Spatial autocorrelation occurs when data for one location correlates with data for other nearby

locations through space. Moran’s I coefficient has been commonly used to assess spatial auto-

correlation [33]. Moran’s I ranges from -1 (data are perfectly dispersed) to 1 (data are perfectly

clustered). When Moran’s I reaches zero, there is no spatial autocorrelation. In the GLM Pois-

son regression, spatial autocorrelation is a commonly encountered issue when the model can-

not adjust for existing spatial heterogeneity. In GWPR, after accounting for non-stationary

effects, it is expected that the estimated errors of each observation should not be related to the

surrounding observations [18]. In this study we employed global and local Moran’s I values to

examine the spatial autocorrelations of observed the TB cases, and we used global Moran’s I to

test the spatial autocorrelation of residuals of the GLM Poisson regression and GWPR models.

Effect of distance on Tuberculosis incidence
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Futher information on global and local Moran’s I values was described by Tango [33] and

Anselin [34].

Ethical considerations

The study design was approved by the Administration of Medical Services (Vietnam Ministry

of Health) and the requirement for informed consent was waived due to the retrospective

nature of the study.

Results

TB notified incidence in Nam Dinh province from 2012 to 2015

Between 2012 and 2015, 6,036 new and relapse patients with all forms of TB, including smear

positive, negative, or extra-pulmonary were reported in the Nam Dinh province. In 2012,

1,488 cases were detected. The number of TB cases slightly dropped to 1,447 cases in 2013,

increased to 1,535 cases, and finally peaked to 1,556 cases in 2015. The notified incidence per

100,000 population of all TB forms marginally increased from 79 to 84 during this period. The

average value of TB notified incidence for this period was recorded as 82 cases per 100,000

population (95% CI: 78–86).

A summary of notified TB cases and SIR values of 229 communes is presented in Table 1

and S1A Fig. The absolute number of average notified TB cases within the study period varies

across the study area from 0 to 17 (median 6, interquartile range [IQR]: 4). The SIR ranges

from 0 to 5 with a median of 1.20 and an IQR of 0.6. Three communes consistently presented

no TB cases over the 4-year period. Global Moran’s I statistic showed that the observed rates of

TB incidence had positive autocorrelations or clustered patterns (Moran’s I = 0.56,

p< 0.0001). The local Moran’s I value shown in S1B Fig showed local clusters of notified TB

cases measured from certain TB diagnostic units.

Table 2 and Fig 1 provide a summary and the geographical distribution of population den-

sity, household poverty rates and distances to the closest TB diagnostic units. As can be

observed from Fig 1A and 1C, the urban population density was remarkably higher than that

of the rural area. However, the household poverty rate followed a heterogeneous pattern across

the study area (Fig 1B). However, most urban areas presented lower household poverty rates

than rural areas. Likewise, distances to the closest TB diagnostic units are undoubtedly shorter

for urban communes than for rural communes, as TB units are often found in urban areas of

districts (Fig 1D).

Table 3 shows that in the GLM Poisson regression model, the intercept and DIST are at a

significance level of 1%. The DIST has a negative effect on TB notified incidence; when the dis-

tance from a commune to the nearest TB unit of the same district increased by 1 km, the noti-

fied TB incidence decreased by a factor of 0.87. The goodness-of-fit test showed that the model

fits the data well. VIF exploratory variables showed that the GLM results are not biased by mul-

ticollinearity. However, residuals of the GLM Poisson model still exhibited positive spatial

Table 1. Summary of 4-year average TB notified incidence values for 229 communes.

Average notified TB cases Standardized Incidence Ratios (SIR)

Min 0 0

1st quartile 4 0.90

Median 6 1.20

3rd quartile 8 1.50

Max 17 5.0

https://doi.org/10.1371/journal.pone.0207068.t001
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autocorrelations (global Moran’s I = 0.09, p<0.05). These results suggest that a GLM Poisson

model cannot address unobserved spatial non-stationary relationships.

Table 4 shows that the GWPR model with a spatially varying intercept and independent

variables significantly lowers the AICc relative to the GLM model (249.52 and 251.52, respec-

tively). As spatial heterogeneity is captured in the GWPR model, the residuals do not show

spatial autocorrelations (global Moran’s I = 0.08, p = 0.07).

In Table 5 the GWPR shows slight but significant fit for the full local GWPR model with an

AICc improvement of 3.81 whereas the adaptive bi-square bandwidth is reduced from 229 to 66.

Spatial autocorrelation effects were also removed (global Moran’s I = 0.05, p = 0.2). All communes

had positive intercept. Population density became the local (varying) variable while other explor-

atory variables remained as global (fixed) variables. The coefficients of population density

observed were mostly negative values while those of other communes were positive but close to

zero. The 95% CI of the coefficient of distance did not contain the value of zero, showing that dis-

tance has a significant effect on TB notified incidence. By contrast, the 95% CI of the coefficient of

the household poverty rate and urban areas did not differ from zero, suggesting that the effect of

the two variables on response variables is not statistically significant.

Discussion

We used GIS to visualize the geographic distributions of TB notified incidence in relation to

social factors such as population density, household poverty rates and proximity to the nearest

diagnostic services in the same district. Local and semiparametric GWPR models were com-

pared to the conventional GLM Poisson model to find the best fitting model to investigate the

effect of social factors and distances on TB notified incidence.Obviously, the calibration of

GWPR models shows clear improvements in model fit relative to the global Poisson regression

model.

TB notified incidence marginally increased from 79 to 84 per 100,000 population while the

number of TB diagnostic services did not increase. However the overall population of the

province of Nam Dinh slightly increased during the study period (2% annually on average).

This finding shows that the NTP, which mainly relies on passive case findings, was successful

at maintaining the coverage of basic TB diagnostic services.

According to the results of the semiparametric GWPR model, distances to TB diagnostic facili-

ties have significant negative effect on TB notified incidence after adjusting for household poverty

rates, population density and urban domiciles. This may be the case because communes posi-

tioned farther away from TB diagnostic facilities enjoy less or no access to such services, thus hin-

dering case detection. While TB units are located in urban areas, the fewer TB cases detected in

urban communes imply that TB cases are detected in rural communes surrounding urban com-

munes. Evidence suggested that distance is recognized as an important barrier to health service

access [35]. A study conducted in Ethiopia also showed that when the distance from the nearest

TB diagnostic unit increases by 1 km, the notification rate of smear-positive pulmonary TB

Table 2. Summary of descriptive statistics of population density, household poverty rates and distance.

Population density

(1000 inhabitants/km2)

Household poverty rates (%) Distance

(km)

Min 0.51 0.85 0.24

1st quartile 0.85 2.82 2.88

Median 1.10 3.78 5.13

3rd quartile 1.41 5.17 7.70

Max 33.33 7.86 18.81

https://doi.org/10.1371/journal.pone.0207068.t002
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decreases by 0.25 per 100,000 inhabitants. Several studies showed that a longer distance to TB ser-

vices may lead to delays in the delivery of initial healthcare consultations [36–38]. Population

Fig 1. Spatial distribution of exploratory variables.

https://doi.org/10.1371/journal.pone.0207068.g001
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density was found to spatially vary across the province, suggesting that the association between

TB incidence and population density could be masked by latent differences in socioeconomic sta-

tus and lifestyle of geographic areas. Previous studies suggested that TB incidence is likely corre-

lated with numerous biological and socioeconomic factors and especially with sanitation, HIV

prevalence, child mortality, and smoking and diabetes rates [27]. Moreover, TB incidence should

likely depend on the actual burdens of TB and on the effectiveness of TB case detection activities.

These factors distribute unevenly across geographic regions and are difficult to confine. Therefore,

this topic calls for further investigations.

GIS serves as an effective tool for TB programming in visually investigating trends of TB inci-

dence and its relations to social and spatial factors. In combination with GIS, GWPR techniques,

which allow regression parameters to vary spatially, exhibit superior performance when applied to

the global GLM Poisson model in examining non-stationary effects of social and spatial predictors

on TB incidence. Given the advantages of using GIS for TB programming, we strongly suggest

that GIS programs be applied to TB surveillance systems to converge TB-specific data with more

detailed social and demographic features and variables related to the performance of TB pro-

grams. These data would be useful in calibrating predictive models and in offering policy makers

insight into the spatial patterns of TB and its determinants and therefore, plan locally adaptive

interventions, improving the effectiveness and efficacy of Vietnam NTP.

This study presents several limitations. First, as the analysis was based on the existing data of

other institutions, we could not control the data collection process or the validation of measure-

ments. Second, as data were analyzed at the communal level, relationships found between geo-

graphic distance and TB notified incidence cannot be inferred to an individual level. Third, this

study was also sensitive to “scale effects”, an aspect of the Modifiable Areal Unit Problem that can

change results when data are aggregated by geographic boundaries of different levels. Forth, the

Euclidean distance used for the analysis is not an actual travel distance. Travel distances and

Table 3. Summary statistics of the GLM Poisson regression model.

Variable Coefficient Standard Error t-value p-value Variance inflation factor

Intercept 0.37 0.1 3.7 <0.001

DEN -0.0008 0.0004 -0.20 0.85 1.59

POOR 0.02 0.2 1 0.33 1.17

DOM(urban) 0.12 0.08 1.5 0.14 1.52

DIST -0.024 0.028 -0.88 <0.001 1.26

Corrected Aikake information criterion: 251.53

Residual deviance: 241.21. Goodness-of-fit test: p = 0.2, Degree of freedom: 224

https://doi.org/10.1371/journal.pone.0207068.t003

Table 4. Summary of the local GWPR model.

Variable Minimum Mean Standard Deviation Maximum

Intercept 0.30 0.32 0.02 0.35

DEN -0.01 -0.002 0.006 0.017

POOR 0.03 0.03 0.02 0.05

DOM(Urban) -0.02 0.04 0.01 0.07

DIST -0.16 -0.14 0.02 -0.09

Bandwidth size: 229

Corrected Aikake information criterion (AICc): 249.52

Residual deviance: 233.41. Goodness-of-fit test: p = 0.2, Degree of freedom: 221

https://doi.org/10.1371/journal.pone.0207068.t004
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lengths of time patients need to travel from residential locations to TB facilities could differ

between urban and rural areas and between different topographical and transportation scenarios.

Nevertheless, our study can contribute to the literature on geographic distance and on its relation-

ship to TB case detection and may stimulate further research on this topic.

To the best of our knowledge, this is the first study to combine TB surveillance, demo-

graphic and socioeconomic data in GIS and to use GWPR to analyze the geographic distances

to TB diagnostic services and other social risk factors and their relationships with TB incidence

in Vietnam. Our findings could assist policy makers at the provincial level in mobilizing

resources and in expanding the NTP to provide proper diagnostic services by improving trans-

portation systems, opening additional clinics or initiating outreach to remote areas.

Conclusions

GIS technologies benefit TB surveillance system as a tool to scrutinize the association of TB-

specific and sociodemographic characteristics of population. Distances to closest TB diagnostic

facilities were found to be a major factor influencing TB notified incidence. Hence, distances

should be considered when planning actions to improve access to those who live far from TB

diagnostic services, thereby improving TB detection. Additional studies must confirm the

association between geographic distance and TB case detection and must explore other factors

that may affect TB notified incidence.
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