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Abstract: As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area
Networks (WBAN) constitute one of the most prominent technologies for improving healthcare
services. WBANSs are made up of tiny devices that can effectively enhance patient quality of life
by collecting and monitoring physiological data and sending it to healthcare givers to assess the
criticality of a patient and act accordingly. The collected data must be reliable and correct, and
represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly
detection becomes a field of interest to ensure the reliability of collected data by detecting malicious
data patterns that result due to various reasons such as sensor faults, error readings and possible
malicious activities. Various anomaly detection solutions have been proposed for WBAN. However,
existing detection approaches, which are mostly based on statistical and machine learning techniques,
become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN.
Therefore, this paper proposed a model that employs the correlations that exist in the different
physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory
(ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the
big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure
and 99% accuracy were reported by the proposed model on different subjects of the datasets compared
to 64% achieved by both CNN and LSTM separately.

Keywords: anomaly detection; wireless body area networks; spatiotemporal correlation; convolutional
neural networks; long short-term memory; deep learning

1. Introduction

The accelerated development of the Internet of Things (IoT) has attracted attention
from stakeholders all over the world due to the combination of the physical world with
the virtual world through the Internet for communication and data sharing. IoT has been
defined as an interrelated system of mechanical and digital machines, computing devices
and objects that is capable of transmitting data over a network without involving human-
to-human or human-to-machine interaction. IoT becomes more prevalent every day in
many life aspects such as industrial sectors, financial sectors, and healthcare sectors [1].

In healthcare, IoT has improved the quality of care provided to patients. Indeed, people
can lead more comfortable lives as it guarantees their health and safety through continuity
monitoring. In addition, it supports a wide range of applications, from implantable medical
implants to Wireless Body Area Networks (WBAN). WBAN is composed of tiny devices
that are considered the most promising technologies for improving healthcare services.
These devices have enabled remote monitoring to enhance the overall quality of care
provided to patients in remote areas or medical facilities [2,3].
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Despite the merits, WBANSs are vulnerable to external attacks as sensor data are col-
lected from various locations and people. People with malicious intent may compromise
the sensors and insert malicious data that constitute anomalous readings, leading to incor-
rect diagnoses and inappropriate medication for patients and substantial financial losses
for any organizations that adapt the healthcare system [4,5]. Anomalies have emerged as a
serious issue in healthcare systems. These anomalies may also result from faulty devices
and erroneous readings of these devices.

Machine learning and statistical techniques have been used to detect anomalies in
systems in the past few years. Various researchers have studied the use of these techniques
to detect anomalies in healthcare systems and their findings support their effectiveness
as in [6,7]. However, despite their success, more research is needed to promote their
improvement concerning the speed of detection, type of anomalies, the correlation that
exists in the collected attributes, and dealing with big data.

In this light, this paper proposes an anomaly detection model that exploits the correla-
tion that exists in measured attributes of WBAN sensors and uses the hybrid ConvLSTM
deep learning technique. This model aims to detect anomalous data in WBAN and consider
the requirements of the learning process to identify anomalous behavior and provide a
reliable system against sensor faults and anomalous activities with an understanding of
the factors that impact patients and healthcare organizations. More specifically, it helps
to ensure higher detection accuracy and fewer error rates by exploiting the multivariate
spatiotemporal correlation between physiological data in WBAN. The contributions of this
paper are summarized as follows:

(1) Developing a method that can benefit from the spatiotemporal correlation among
physiological data and the contextual data to choose the most appropriate anomaly
detection strategy under a given condition (normal and abnormal ranges for
physiological data).

(2) Classifying the physiological data based on point anomaly (using the dynamic thresh-
olds) and contextual anomaly (using anomaly score).

(3) Developing an anomaly detection model based on the ConvLSTM deep learning
technique to detect both point and contextual anomalies. The proposed model fits big
data requirements and time constraints that are important features of the WBAN.

The rest of this paper follows the following structure: Section 2 explores related
works to anomalous detection systems in WBAN. Section 3 describes the design of the
proposed model and its components. Section 4 presents the experimental results and
analysis. Section 5 reports a comparative analysis with existing models while Section 6
concludes the paper and provides future research directions.

2. Related Works

Anomaly detection receives more attention in the (IoT) domain, especially for health-
care systems that generate massive data from WBAN. Many anomalies detection models
have been proposed for WBAN in the literature based on different mechanisms and are
analyzed in the subsequent paragraphs.

In [3], the study proposed an anomaly detection approach to evaluate the difference
between actual sensed data and predicted values that depend on historical measurements.
The approach was then applied to real physiological healthcare data. Experimental results
showed the effectiveness of the approach by achieving low false-positive rates and high
detection rates.

Using a Markov-based chain model, another study [6], evaluated the reliability of
WBAN by detecting the anomalies, patient health status, hardware failure rate, and tran-
sient fault correction method. The study proposed a metric for Mean Time to Failure
(MTTF) that provided better performance in analyzing the reliability in specification and
anomaly detection for WBANSs. The results showed a 95% detection rate and a lower
MTTF value of 43.01 s. Although the study showed a high detection rate as a reliability
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metric, the reliability metric is not enough to cope with some types of anomalies (i.e., fault
measurements and abnormal readings).

In [7], the study suggested a dynamic threshold approach to detect the sensor anomaly
and differentiate between true and false alarms effectively. This approach used a correlation
method to extract the features and estimated the sensor values using random forest algo-
rithms. The proposed approach was used to analyze past historical physiological data and
compare it with predicted sensed values. The error value was measured using a dynamic
threshold to identify the false and true alarms. The results showed a high detection rate
and a low false-positive rate. However, this approach exploits only the spatial correlation
between two sensors and ignored the temporal correlation. Although the random forest
achieved perfect results, its complexity invokes long training periods.

In [8], an approach was proposed to detect changes that occurred in data collected
by WBAN based on the Kalman filter algorithm. Authors claimed that this approach can
automatically detect any physiological change that occurred in WBAN. Nevertheless, the
Kalman filter has some downsides such as a larger computational complexity to obtain the
best results. In [9], the study suggested a framework for anomalous sensor data detection.
The framework was based on Hadoop Map Reduce-based parallel fuzzy clustering and data
compression. The results showed that the proposed framework achieved high accuracy
with fewer false alarms, which obtained an accuracy between 97% and 98%. This study
used a parametric statistical approach that involves high computational complexity.

In [10], the study proposed a framework that combined regression techniques and
random forest algorithm to detect anomalies in WBAN. This framework considered both
temporal and spatial correlations to detect anomalies. An accuracy of 96% was reported for
the proposed framework. However, the combination of random forest with regression is
not able to detect new forms of anomalies.

In [11], the study conducted an approach for detecting abnormalities changes such
as modifications, forgery, and insertions that occur in electrocardiogram (ECG) data. The
approach utilized the Markov model with different window sizes of abnormalities data
(5% and 10%). The results reported 99.8% of true negatives with the 5% and 98.7% of
true negatives with the 10% windows. This study just used one type of data for detecting
abnormality and emergencies. Despite the good performance of this model in terms of time
execution, it still has some limitations in terms of memory.

In [12], researchers proposed a new approach to detect anomalies in WBAN based on
Gaussian regression and majority voting. The proposed approach created a system that
can distinguish between real medical conditions and false alarms by using a real dataset.
Reported findings showed that this approach was effective in terms of high detection rate
and low false-positive rate. However, there were some limitations to this approach such as
high computation complexity, high false alarm, and bulky data samples.

In [13], the study suggested enhancing anomaly detection by adding a correlation
algorithm for various body sensor types. The suggested algorithm utilized thresholds to
detect anomalies. The results showed an improvement in various intersections between
analyzed medical signals. However, the study only considered one type of correlation that
exploits the spatial relationship between sensors and ignore the temporal correlation at each
sensor reading. Two subsequent studies in [14,15] measured the faultiness of the sensors
that cause high false alarms in healthcare systems. Both studies used dynamic sliding
window and weighted moving average to detect the abnormal sensor faulty measurements.
However, using the weighted moving average approach often overlooks the complicated
relationships that exist in the data.

In [16], the authors developed an anomaly detection method for WBAN to discard false
alarms caused by faulty measurements. The method used the spatiotemporal correlation
and a game-theoretic technique. In addition, it applied Mahalanobis distance at the Local
Processing Unit (LPU) for multivariate analysis. The proposed method proved superior
effectiveness in achieving low false alarm rates with high detection accuracy. A possible
weakness of the game-theoretic technique is that it cannot deal with new forms of anomalies.
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In [17], the study developed an anomaly detection model for medical WSN. The model
aimed to achieve a low false-positive rate with a high quality of detection. Moreover,
this model used a decision tree, linear regression and threshold biasing and was then
tested using a real physiological dataset. The empirical results of the study showed a
high performance where the false-positive rate was 4.5%. However, machine learning
algorithms impact inefficient performance when dealing with complex big data generated
by medical WSN. The authors in [18] proposed a shapelet-base (SH-BASE) approach
to detect anomalies. The experiment results revealed that SH-BASE achieved average
performance in sensitivity and accuracy. However, the drawbacks of this approach are poor
generalization capability and a high computational burden.

In [19], The work integrated the artificial neural network with ensemble linear regres-
sion to detect anomalies in WBAN. This work helped to create distinction in anomalous
data by classifying the physiological data and then applying regression to identify the
anomalous data. Experiments revealed that the proposed approach was able to reduce
false alarms by 4.2%. Moreover, linear regression has some certain limitations such as that
it cannot give feedback and sensitivity with anomalies.

In [20], the research proposed an anomaly detection system for WBAN based on
the data sampling approach with Modified Cumulative Sum (MCUSUM). The sampling
method was applied to increase the speed of detecting anomalies, while the MCUSUM
algorithm was applied to accurately detect anomalies. The results showed that the proposed
approach provided the lowest execution time and high energy efficiency of the sensors.
However, the approach cannot detect random anomalies in various physiological parameters.

In [21], the authors recommended an approach founded on the Markov model to
detect anomalies in WBANSs. The approach used forecasting data to lower the amount of
energy consumed in healthcare facilities. This approach aimed to determine whether a
system is operating normally or not. Moreover, when the system is operating abnormally,
the approach determines whether the anomalies are psychological. Experimental results
revealed that the approach had a low false alarm rate of 5.2% and achieved high detec-
tion accuracy. The demerit of the approach came from the fact that Markov models are
inappropriate regarding memory and computing time.

In [22], authors evaluated five machine learning approaches (random forests, local
outlier factor, isolation forests, support vector machines, and K-Nearest neighbors) in their
ability to detect anomalies in heart rate data. The best results were reported for random
forests and local outlier factor approaches, where random forests achieved 100% and the
local outlier factor 96.89% of correct rejection rate. Nevertheless, applying machine learning
algorithms may have drawbacks since the output depends on the input set to predict;
therefore, these algorithms are not effective when dealing with a new pattern of anomalies.

Recently, in [23], the authors proposed an anomaly detection approach for wearable
computing devices (WCDs) to measure the faulty and malicious data that might endanger
the patient’s life under monitoring. The approach used data classification methods for four
classification algorithms: FURIA, ID3, J48, and PRISM. The four algorithms have obtained
different results such that the FURIA outperforms other algorithms with 95.87% of the
true-positive rate and 0.5% of the false-positive rate compared to ID3 with 69.9%, J48 with
84.28%, and PRISM with 79.3% true-positive rate.

In [24], the study conducted a lightweight anomaly detection (LWAD) framework for
detecting anomalies in WBAN. The framework was based on distance correlation with a
statistical-based improvised dynamic sliding window algorithm for efficient prediction in
short-range. The validation of the framework was verified using three real-time datasets.
The proposed LWAD obtained a high detection rate of 99.65% for dataset 1 (DS1), 98.75%
for DS2, and 98.18% or DS3. The statistical techniques are faster and less complex, but
cannot deal with the normal data distribution and the dynamic nature of WBAN.

Based on the above discussion of the existing works, the following subsections analyze
them based on two aspects that are the anomaly-related factors, and the used techniques.
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(@) Anomaly-Related Factors

Table 1 summarizes and presents an analysis of existing anomaly detection models
for WBAN based on the anomaly type, correlation approach, threshold type, and the
consideration of fault measurements. In terms of anomaly type, the point anomaly refers to
utilizing individual attributes of the dataset, whereas multiple attributes are considered
together in the contextual anomaly approaches. In terms of the correlation approach, tem-
poral correlation corresponds to the readiness of a single node in time instants while the
spatial correlation corresponds to the readings of nodes compared with their neighboring
nodes [25]. Two types of thresholds are adopted that are dynamic and static. The dynamic
threshold is the prediction of a sensor value based on some historical dataset measure-
ments, while the static threshold is manually selected based on previous knowledge of
the field [3,26]. Finally, when only one of the attributes is found to be anomalous, the
measurement is considered faulty and is therefore known as fault measurement [16].

Table 1. Analysis of Existing Studies.

Study Point Contextual Correlation Thresholds M Fa:.ﬂz .
Anomaly Anomaly Temporal Spatial Static Dynamic gz?e;io; s
[3] v v X X v X v
[6] v X X X X X v
[7] v v v v X v v
[8] v v X v X v v
[9] v v X v X v v
[10] v X v v v X v
[11] v X v X v X v
[12] v X X X X X v
[13] v X v X v X v
[14] v X X v v v v
[15] v v X X X v v
[16] v v v v X v v
[17] v v v v X v v
[18] v X X X X X v
[19] v X v X X v v
[20] v X X v X v v
[21] v X v v v X v
[22] v X v X v X v
[23] v v v v X v v
[24] v X v X X v v

Looking at Table 1, the challenges in the existing techniques can be attributed to the
following grounds:

i Most existing studies focused on detecting point anomalies in sensor readings to
predict the next potential sensor value and compare it to the actual reading. Few
studies considered the case of contextual anomaly between various sensor readings.

ii. The temporal correlations play an important role in anomaly detection as the
various attributes of multi-variant data may show varying temporal correlations.
In addition, the attributes are characterized by frequent changes in data distributions
with time. Spatial correlations imply that the data values at a particular sensor
node are related to the data samples of the neighboring sensors nodes. As shown
in Table 1, most of the previous studies take the correlations separately, either
temporal or spatial. The optimal anomaly detection technique must incorporate
these correlations to achieve the following types of dependencies (between sensor
node characteristics, sensor node readings are dependent on time and their history,
and sensor node reading is dependent on its neighboring nodes).

iii. Some existing studies used static thresholds, which may not be sufficient for some
reasons; the threshold value of the physiological data is different from one person to
another, and it relies on the factors of the person’s lifestyle, age, and medical condi-
tion. Therefore, the static threshold will not efficiently work for health monitoring,
due to the slow error rate computation and response time. In addition, it is not able
to adapt to the continuous changes in medical environments and it requires much
effort since it is a manual process. Hence, using dynamic thresholds will be the
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optimal choice because they calculate value based on the input data (physiological
data). Consequently, the value will be appropriate and accurate with WBAN data.

(b) Techniques

Sensors are used in different healthcare monitoring applications, and the data are
growing extremely. Therefore, several techniques have been proposed in the literature to
improve the effectiveness of anomaly detection approaches in WBAN such as statistical or
machine learning techniques. However, such techniques have certain limitations. For exam-
ple, the statistical techniques cannot deal with the dynamic nature of WBAN and it serves
to choose the appropriate threshold value for evaluation. In addition, the non-parametric
statistical method is not suitable for real-time applications due to its computational burden.
Many of the current techniques use machine learning algorithms such as decision tree,
linear regression, artificial neural network, nearest neighbor and random forest. The use of
machine learning may not be the preferred option in a sensitive domain such as healthcare
that requires high accuracy and good performance. These algorithms have certain limita-
tions in dealing with complex and big data, slow computation, and expecting new patterns
of anomalies.

To conclude, existing studies have focused on designing techniques for anomaly
detection based on correlation with statistical or machine learning, but these techniques are
still insufficient to solve the issues. In this domain, detecting an anomaly in the healthcare
system requires more effort to understand the nature and importance of the data attributes.
Furthermore, a more accurate model that can deal with complex real scenarios is required.
In opposition, deep learning is an excellent candidate for overcoming the constraints of the
existing techniques mentioned above. Deep learning techniques are capable of learning the
inherent data characteristics that distinguish a normal data point from an anomalous one.
This approach identifies commonalities in the data and therefore facilitates the detection
of anomalies. It is also considered a cost-effective approach for detecting abnormalities
because it does not require annotated data for training the algorithms [27]. Furthermore,
the architectures of deep learning models are dynamic, allowing them to adapt to new
patterns. Therefore, it has the potential to outperform machine learning and statistical
methods in dealing with huge amounts of data collected by sensors in WBAN.

3. Proposed Model

The proposed model involves three phases: Data collection and preprocessing phase,
detection phase, and evaluation phase. The data collection and pre-processing phase are
used to collect the data by the different physiological sensors and clean the data before
applying the detection model. The detection phase is to distinguish between the normal
and anomalous data. This phase is divided into point anomaly detection and contextual
anomaly detection. The evaluation phase is to test the performance of the model. Figure 1
shows the workflow of the proposed model.

3.1. Data Collection and Pre-Processing Phase

Dataset: The dataset used in this paper is Multiple Intelligent Monitoring in Intensive
Care (MIMIC-I and II) [28], which contains detailed physiological data records recorded
from over 90 ICU patients called subjects. Notably, most researchers such as [23,29-31]
used the MIMIC dataset as a benchmark to test the viability of the proposed models. In this
paper, we test the proposed model using four subjects (1, 2, 3, and 4). The dataset has
7 features. These features represent the patient’s clinical condition and include Heart Rate
(HR), systolic Arterial Blood Pressure (ABPsys), diastolic Arterial Blood Pressure (ABPdjias),
Mean Arterial Blood Pressure (ABP-mean), Pulse, Temperature, Respiration Rate (RESP),
and Oxygen Saturation (SPO2) with timesteps and date. Table 2 and Figure 2 present a
sample of sensor readings for the dataset of Subject 1.
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Table 2. Sample of sensor readings for Subject 1 dataset.

Time and Date HR ABPSys ABPDias ABPMean PULSE RESP SpO2

14:07:00 10/11/15 77.6 157.4 66.1 100.5 77.9 23 97.4
14:08:00 10/11/15 77.3 149.2 62.6 95 77.6 22.2 97
14:09:00 10/11/15 76.1 150.5 62.4 95.1 76.8 22.3 97
14:10:00 10/11/15 73 158.4 65.4 99.8 74.3 22.2 97.4
14:11:00 10/11/15 75.6 152.4 63.3 96.7 76.4 22.4 97.5
14:12:00 10/11/15 75 154.3 63.4 97.1 75.4 22.2 97.5
14:13:00 10/11/15 75.2 150.3 62.1 94.7 76.7 22.1 97.6

HR

PULSE

SP02

ABPDIAS

—— ABPMEAN
RESP
[ T (19 L P T T
5000 10,000 15,000 20,000 25,000 30,000 35,000

Figure 2. Sensors readings for Data Subject 1.

Pre-processing: Normalization is a method often used as part of data preprocessing
and preparation for deep learning. Normalization aims to rearrange the values of numeric
columns in the dataset to utilize a common scale, without deforming variations in the ranges
of values or losing data. Moreover, the normalization is a demand of some algorithms
to model the data accurately [32]. For this paper, each column in the dataset samples is
normalized to be in a range between 0 and 1, using Equation (1).

N x(i) =X

x(i) = TSk @™

where x(7) is the dataset, X is one column in the dataset and S(x) is the number of the
data sample.

3.2. Detection Phase

This phase aims to detect anomalous readings in WBAN using a deep learning ap-
proach. Deep learning has been used in many aspects of applications primarily due to its
capability to automatically detect complicated features without having any field knowledge.
This automatic feature learning capability makes the neural network a perfect candidate for
time-series anomaly detection problems [33]. Therefore, the hybrid ConvLSTM technique
is used in this paper to detect the anomaly readings in WBAN. In addition, the ConvL-
STM is well in spatiotemporal relationships and both the input-to-state and state-to-state
transitions [33]. Finally, it is robust to changes as compared to other neural networks and
statistical models.

3.2.1. Long Short-Term Memory (LSTM)

Long Short-term Memory (LSTM) is a type of Recurrent Neural Network (RNN)
that is utilized to overcome the palace of RNN. LSTMs are qualified to handle long-term
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dependencies via substituting the hidden layers of RNN with memory cells [34], as shown

in Figure 3.
c(t-1) > > ¢ > c(t)
T tanh

v
—> h{t)

Forge;[gate: Inputitgate: ¢ T Outpugtgate: T

o o tanh o

h(t-1) /Q 4 4 4 4 J

x (t)

Figure 3. LSTM cell architecture.

In LSTMs, there are various gate units such as output gate (o), input gate (i¢), forget
gate (f;) with the activation function that is applied to LSTMs model and understands the
behavior of temporal correlations [34].The LSTM cell can be defined mathematically in
Equations (2)—(7) [32] Table 3 shows the shortcuts for the equations.

fe = o (Wi[he—1, X] + By) )

it = 0 (Wilht—1, X¢] + B;) ®)

¢ (1) = tanh(We # [he_1, Xe] + Be) @)
e =cCr_1 *fr+ip* g (5)

ot = 0 (Wo[hi—1,X¢] + Bo) 6)

hy = opxtanh (c¢) 7)

Table 3. Definition and description of the variables used in the LSTM model [32].

Variable Definition and Description
Wi the weights matrices of forget gate (f;)
hi_q The output from the cell at time t — 1
Xt the current input at time t
B¢ The bias in the forget gate
Wi the weights matrices of input gate (i)
B; The bias in the input gate
Wo the weights matrices of output gate (o)
Bo The bias in the output gate
Ct The cell state at time t
' The data stored in the new cell state c;
W the weights matrices of the new cell state c;
Bc The bias in new cell state c¢
h¢ The hidden states at sequential time t

3.2.2. Convolutional LSTM (Conv-LSTM)

The hybrid deep learning model convolutional LSTM (ConvLSTM) integrates two
architectures that are the convolutional and the LSTM techniques. ConvLSTM is a kind
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of recurrent neural network that captures spatial-temporal data [35]. The convolutional
component captures the spatial area data and LSTMs exploits the temporal area data.
However, the data in the form of time series from various sensors have a correlation with
each other that depend on space and time. Thus, ConvLSTM can be used as a significant
model for the time-series data anomaly detection problems [34].

The ConvLSTM determines the future state of a cell in the network via the inputs and
past states of its local neighbors through which both the temporal and spatial correlations
are captured and applied. This is achieved by replacing the matrix multiplication operation
utilized in standard fully connected long short term memory (FC-LSTM) with convolution
operation in the state-to-state and input-to-state transitions [35], as shown in Figure 4.
The ConvLSTM contains several gates (input gate, forget gate, and output gate) and data
flow can be expressed in Equations (8)—(13) with all the variables defined and described in
Table 4. In the equations, “® “ refers to the convolution operation, and “®” refers to the
Hadamard product. o is a sigmoid function utilized as the activation function used to the
weighted sum of the inputs of each gate [36]. Table 4 shows the shortcuts for the equations.

fi = o(Wyt @ X¢ + Wi @ He_1 + W © Ceq + By) ®)
it = 0(Wy ® X¢ + Wpi @ Hy_1 + Wy ©Ci_q + By) )
't = tanh(Wye ® X¢ + Whe ® Hy_1 + Bc) (10)
o =fOCq+t (11)
Ot = U(on & Xt + Who 02 Htfl + Wco © Ct + Bo) (12)
h¢ = o¢ © tanh(cy) (13)
‘::?\:\ -> > _____?_ ______________ = = ? e = B W B ¥

________

e i i e

Convolution Convolution Max pooling Convolution Convolution Max pooling

dddld,

Flatten

LSTM

Fully connected

Y Y

Classification Normal Anomaly

Figure 4. CNN-LSTM (ConvLSTM) Architecture.
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Table 4. Definition and description of the variables used in Conv-LSTM model [36].

Variable Definition and Description
Xt The input tensor at time t
Hi 4 The output tensor from the cell at time t — 1
h The output tensor from the cell at time t
Ciq The cell state at time t — 1
It The data that stored in the new cell state C;
Ct The cell state at time t
¢ Output of the forget gate and it controls the data that is forgotten in the old cell
t state C;_q
; Output of the input gate, it controls how much of the data
t 't will be stored in the new cell state c;
o Output of the output gate, it controls the data that is output
t h; from the cell.
Wy The convolution kernel used to the input tensor X; in the forget gate
Wi The convolution kernel used to the input tensor X; in the input gate.
W The convolution kernel used to the input tensor X; for create data ¢’y that will be
XC .
stored in the new cell state c.
Wio The convolution kernel used to the input tensor X; in the output gate
Wy The convolution kernels used to the input tensor H;_; in the forget gate.
Wiy The convolution kernels used to the input tensor H,_1 in the input gate
W The convolution kernel used to the input tensor H;_1 for create the data ¢’ that
he will be stored in the new cell state c;.
Who The convolution kernels used to the input tensor H;_; in the output gate.
Ws The weight that is used to the old cell state C;_; in the forget gate.
Wi The weight that is used to the old cell state C;_; in the input gate
Weo The weight that is used to the new cell state c; in the output gate.
B¢ The bias in the forget gate.
B; The bias in the input gate
Bc The bias for creating the data ¢t that will be stored in the new cell state ¢;
Bo The bias in the output gate.

3.2.3. Point Anomaly Detection

In this subphase, the data are classified based on the actual range of physiological
data; for example, the normal range of HR will be between 60-100, and if values are higher
or lower than the normal range this is considered an anomaly [23]. Table 5 describes the
range classification of all physiological data, and the process is described in Figure 5.

Table 5. Physiological data normal and abnormal ranges [23].

Physiological Parameter Normal Range Abnormal Range
Heart rate 60-100 <60 and >100
Pulse rate 60-100 <60 and >100
Reparation rate 12-30 <12 and >30
Sp0O2 95-100 <95 and >100
ABPDias 80-120 <80 and >120
ABPSys 90-120 <90 and >120
ABPMean 70-100 <60 and >110
Dynamic Threshold

To determine whether a sensor reading is point anomaly or not, the dynamic threshold
is used. Each threshold value for physiological attribute values is unique and varies from
subject to subject (it depends on some factors such as sex, age, and lifestyle). Moreover,
the same subject’s threshold value can differ due to differences in the subject’s medical
condition. Therefore, the static threshold value is not sufficient for a health monitoring
system as it does not measure the accurate error value of the subject in different instances.
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The Mean Absolute Error (MAE) [7,37] is utilized here to calculate the dynamic threshold
as shown in Equation (14).

[ The correlated Measurements

[One of physiological data (HR, pulse,etc,) >

Context
Anomaly

Point
Anomaly

Anomaly ]

[ Normal ] [ Sensor fualt ]

Figure 5. Process of calculating the point anomaly.

where x(t) is the actual data, X(t) is the predicted data, and n is the total number of
data instances.

Correlation Testing

This subphase aims to test the relationship between the physiological data parameters.
For example, consider two medical sensors: one for monitoring blood pressure and the other
for measuring pulse. In general, when blood pressure rises, so does pulse rate. Thus, for a
real medical condition, both sensor values must be abnormal; otherwise, if one sensor value
is abnormal but the other is not, it is a sensor fault. As a result, the context of a sensor is
taken into account to decrease the frequency of false alarms [29]. Two methods are used for
measuring data relationships (temporal and spatial correlation). The temporal correlation
at a single node location is caused by data value change over time. In contrast, the spatial
correlation at a single node location is a result of a comparison with neighboring nodes. The
combination between these two concepts is known as spatiotemporal correlation, which
is detected by several node locations owing to variations in data value over time and
place [25], as shown in Figure 6. Consequently, the proposed model in this paper uses both
methods temporal and spatial to find contextual anomalies in physiological data based on
the Pearson correlation coefficient [29]. The value of the correlation coefficient between
various sensors is calculated and represented in the form of a correlation matrix (Cyx)
given as Equation (15).

Corr(yiyr) Corr(yay2) -+ Corr(yiyn)

Corr(yayr) Corr(yaya) -+ Corr(yayn)
Correlation Matrix (Cyxn) = e e e (15)

Corr(yny1) Corr(yny2) -+ Corr(ynyn)

The Pearson correlation coefficients are expressed in Equation (16).

Zyﬂ/z yl Y y2

¢<Zy1 )(Zy Zﬂ))

(16)

C = Corr(y1y2) =
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Figure 6. Concept for spatial and temporal correlation.

3.2.4. Contextual Anomaly Detection

The values of physiological data may vary from one sensor to another depending on
physiological conditions. Therefore, the physiological data in the sensor are considered an
anomaly when compared with the other correlated data in another sensor. In this case, it is
important to use the anomaly score method to reflect normal and anomalous physiological
data [30]. The anomaly score is then compared with the standard deviation. The process of
calculation is explained in Figure 7.

If

The correlated
Measurements

Anomaly
score >
Standard
division

Anomaly ]
division

]_, Calculating Standard

=

Figure 7. Process of calculation the contextual anomaly.

Let X(p) refer to the time series collected and correlated measurements of physiological data.

X(p) ={x1,x2,...... , X5} (17)

An anomaly score of physiological data measurement X(p) represents the deviation
from the mean of the recent previous measurements [16]. The sensor Anomaly Score (AS)
is given in Equations (18)—(19).

LX(p) (18)

M =
ean N

Anomaly Score (AS) = w (19)
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To label the current measurement as an anomaly, the AS value should be greater than
the standard deviation of the past measurements [16]. The standard deviation (¢) is given

in Equation (20).
_ =
o= N (20)

where ) means “sum of”, x is a sensor value in the physiological data, u is the mean of the
physiological data, and N is the number of data instances. A comparison between AS with
standard deviation is done using Equation (21).

{ AS > o (anomaly), (21)

AS < o (normal)

3.3. Evaluation Phase

In this subphase, the proposed model performance is evaluated and compared with
selected recent and best existing models.

The classification models predict the class of each data instance, assigning a predicted
label (positive or negative) to each sample [38].

Four parameters are used to measure the performance of the proposed model using the
previous four categories, which are detection accuracy, recall, precision, and the F1-score.

The accuracy is a statistical assessment of how well a model predicts [39]; Equation (22)
shows how the accuracy metric is determined:

Accuracy = TP +TN
Y = TP+ TN+ FP + EN

(22)

Recall and precision are commonly used to assess the accuracy of a result [40], which
are properly described as in Equations (23)—(25).

TP
Recall = TP+ TN (23)
TP
Precision = ———— 24
recision TP + FP (24)

F1-score is a weighted average of recall and precision that is utilized when the data
are unbalanced [41]; Equation (25) shows how the F1-score metric is determined.

precision - recall
precision + recall

F1_score = (25)

4. Experiments and Results
In this section, the setup of the proposed model and the detailed results are presented.

4.1. Model Setup

This paper chooses the MIMIC dataset (2021) [28], a large-scale physiological data
dataset described in Section 3.1 The proposed model was implemented in Python with
Sklearn library and the assistance of other scientific computing libraries: Matplotlib, NumPy,
and Scikit-learn to implement various tasks, such as preprocessing and model selection.

Adam optimizer was adopted as the optimization algorithm for the ConvLSTM tech-
nique. The ConvLSTM contains 4-layers network with 2 layers of dropout [ (filters = 64 in
2 layers), (kernel_size = 1), (padding = “same” in 2 layers), (activation function = “Relu”),
(samples dimension of the 2-D tensor)]. The models are trained using a batch size of 30
with a different number of epochs. The dataset was split into training and testing datasets
using a ratio of 70:30 for train and test partitions, respectively.
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4.2. Results and Analysis

In this subsection, the results of point anomaly detection and contextual anomaly
detection are provided.

4.2.1. Point Anomaly Detection Results and Analysis

The physiological data reading is determined as a point anomaly if the classification
value exceeds the dynamic threshold; otherwise, it is normal physiological data. The
standard deviation of the MAE acts as a dynamic threshold based on the studies in [7,42].
Figure 8 shows the dynamic threshold for SPO2, RESP, Pulse, ABPSys, ABPMean, and
ABPDias physiological sensors. As shown, the value of the dynamic threshold is different
from one sensor to another. It further shows the point anomaly results for these sensors.
If the values are larger or smaller than the normal ranges of these parameters, they will be
considered anomalies.

To evaluate the ability of the proposed model to detect point anomalies at every data
point in the datasets, the loss rate metric is selected because the datasets are not labeled.
Figure 9 shows the loss rate for each physiological sensor in the datasets.

In Figure 9a,c,g the spike in the loss was showing an unusual behavior at 0.2 and
0.3 loss rates because this is the rate of normal behavior change, which means it changes
more than expected. As noted, the number of iterations at 15 and 25 did not fit with the
dataset. Therefore, the best scenario for iteration number was at epochs = 30. Hence, it can
be concluded that when the number of iterations increases the spike loss decreases and the
model is improved. In Figure 9a,d the data loss faults were showing unusual behavior at a
0.3 loss rate. The reason might be the exhibits sensing faults in that period. In Figure 9e,f
there are different loss rates. For example, in Figure 9e the loss was high at 0.4, while in
Figure 9f the loss was low at 0.08 which refers to the large or small number of anomalous
instances, respectively.

It can be concluded that the number of iterations plays an important role in decreasing
the loss rates. In addition, there is an inverse correlation between the loss and the number of
repetitions. With an increase in the number of repetitions, the loss rates decrease. Moreover,
it can be concluded that the reason for the appearance of the spikes is the nature of the
data itself such that the sensors containing more anomalies have more spikes. Thus, the
performance of the model was as expected because the structure of ConvLSTM is designed
to handle point anomalies issues.

4.3. Contextual Anomaly Detection Result and Analysis

To investigate the contextual anomaly detection results, we need to clarify the cor-
relation principle that plays a great role here. Two types of correlations are temporal
correlations that exist between each sensor reading and the spatial correlations that exist
among the different sensors.

The contextual anomaly detection approach uses the context principle, which depends
on the correlations between sensor readings and measures how these sensors related to
each other. For example, +1 refers to a complete positive correlation and +0.8 refers to a
strong positive correlation. Similarly, +0.6 refers to moderate positive correlation, whereas
0 means no correlation. When the values go below zero, it means that a negative correlation
exists. For example, —0.6 refers to moderate negative correlation and so on. Figure 10
shows the correlations between all physiological data in the MIMIC dataset. It indicates
that there exist various degrees of correlations between the sensors in the dataset, such
that ABPSys strongly correlates with ABPDias, ABPMean, and moderately with a pulse.
Such a relationship is useful when detecting context anomalies that cannot be detected in a
separate context.
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Figure 8. The value of the dynamic threshold and the respective point anomalies for various physi-
ological sensors: (a) SPO2 threshold. (b) SPO2 point anomaly. (c¢) RESP threshold. (d) RESP point
anomaly. (e) Pulse threshold. (f) Pulse point anomaly. (g) ABPSys threshold. (h) ABPSys point
anomaly. (i) ABPMean threshold. (j) ABPMean point anomaly. (k) ABPDias threshold. (1) ABPDias
point anomaly.

Contextual anomaly detection allows distinguishing between physiological anomalies
and sensor faults. The output of the point anomaly detector (discussed in Section 4.2.1)
with correlation acts as input to the contextual anomaly detector. If different sensors in a
collection of associated sensors exhibit point anomalies at the same time, it is most likely
a real medical condition. If the value of one sensor in a linked set is abnormal while
the other is not, it could be a sensor fault, which could result in a false alarm if it is not
properly handled.

To verify the performance of the proposed model, several performance measures are
used, which are accuracy, loss, recall, precision, F1-score, and the execution time. The model
was verified using 4 datasets (4 subjects) with different size and correlation ratios (a sample
with 0.25 correlation rate as in ABPDias and HR, a sample with 0.95 correlation rate as
in ABPDias and ABPSys, and a sample with full correlation in the dataset). As shown in
Table 6, the proposed model performs well with all 4 subjects in terms of accuracy, recall,
precision, and F1l-score, where the results ranged between 98% to 100% on all data of
different sizes. However, different values of loss rates (high and low) and also different
execution times were reported with the 4 subjects. The reason is due to the nature of the
data itself, i.e., in Subject 3, the majority of the features (physiological parameters) in the
data contained anomalies, which resulted in higher loss rates than usual.
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Table 6. Performance evaluation (different datasets with correlated ABPDias with HR sensors).

Subject No. Size Accuracy (%) Loss (%) Recall (%) Precision (%) F1-Score (%) Time (s)
Subject 1 11\/?; 99.30% 0.0018% 100% 98.25% 99.12% 86's
Subject 2 467 KB 99.59% 0.0063% 98.89% 99.58% 99.46% 48s
Subject 3 885 KB 99.89% 0.0023% 100% 100% 99.88% 63 s
Subject 4 1.03 MB 99.94% 0.0008% 100% 99.93% 99.96% 9 s

Similarly, based on the correlation relationships between ABPDias and ABPSys sensors,
the performance of the proposed model on the same 4 subjects is reported in Table 7. It is
clearly shown that on all subjects, better results in terms of accuracy, loss, recall, precision,
and F1-score are reported. In terms of execution time, Subject 4 took a bit longer due to its

large size.

Table 7. Performance evaluation (different datasets with correlated ABPDias with ABPSys sensors).

Subject No.  Accuracy (%) Loss (%) Recall (%) Precision (%)  F1-Score (%) Time (s)
Subject 1 99.90% 0.0066% 100% 99.94% 99.92% 47 s
Subject 2 99.97% 0.0053% 100% 100% 99.98% 87s
Subject 3 99.96% 0.0017% 100% 99.42% 99.95% 89s
Subject 4 99.94% 0.0036% 100% 100% 99.77% 145s

Physiological data are important indicators to assess the condition of the entire human
body. From this standpoint, considering all correlation relationships (whether strong or
poor) is also important. Therefore, the proposed model was also evaluated on several
subjects, taking into account all the correlation relationships in the data. Table 8 shows
that both subject 2 and subject 3 achieved excellent results in terms of accuracy, loss, recall,
precision, F1-score and execution time. However, subject 1 and subject 4 reported a slight
decrease in accuracy compared to subject 2 and subject 3. This is due to the nature of the

data that constitutes a large number of anomalies compared to subjects 2 and 3.

Table 8. Performance Evaluation (Different Datasets with Full Correlation).

Subject No.  Accuracy (%) Loss (%) Recall (%) Precision (%)  F1-Score (%) Time (s)
Subject 1 97.59% 0.1131% 99.40% 95.56% 97.59% 60s
Subject 2 99.91% 0.0112% 99.93% 99.87% 99.90% 60s
Subject 3 99.97% 0.0022% 100% 99.86% 99.96% 60s
Subject 4 97.69% 0. 028% 100% 94.05% 96.93% 60s
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The proposed model was able to detect the anomalies based on ConvLSTM with a
context anomaly score. In the experiment, to test the efficacy and robustness of the proposed
model, the data were collected from 4 different subjects with different data sizes. Clearly
shown in Table 8, the results of the proposed model made a significant improvement in
terms of loss rate, accuracy, recall, precision, F1-score, and time. All the subjects achieved
the same execution time (the 60 s). In Subjects 1 and 4, the accuracy and the Fl-score
reported around 97% and 96% respectively, while the recall and precision achieved 94% and
100% with low loss rates.

Similarly, for Subjects 2 and 3, the proposed model achieved accuracy and the F1-score
of 99%, while a recall and precision of 99% and 100% were also reported.

Consequently, the model proved that there is an inverse relationship between loss
rate and accuracy—when the loss rate has decreased the accuracy is increased. In addition,
there is a positive relationship between accuracy, recall, precision, and F1-score—when
the accuracy is increased, the recall, precision, and F1-score are also increased. Overall,
the proposed model obtained high accuracy and low loss such that it produces few errors
on just some amount of data, which is the perfect case. In addition, the model can detect
anomalies even in light of big data with the dynamic context changes of WBAN and
different dataset sizes and various conditions achieved with fewer time constraints.

5. Comparison with Existing Deep Learning and Machine Learning Techniques

Comparative experiments have been conducted with the best and the latest candidates
of deep learning and machine learning models in the following subsections. The parameters
of the deep learning methods used for comparison are presented in Table 9.

Table 9. Deep learning models” parameters.

Parameters LSTM Value CNN Value
Language Python Python
Libraries Pandas, Numpy, Scikitlearn, Pandas, Numpy, Scikitlearn,
Matplotlib and Keras Matplotlib and Keras
Train set 70% 70%
Test set 30% 30%
Input Layer 4 4

Rectified Linear Unit (ReLu),

Activation Functions . .
and sigmoid

Rectified Linear Unit (ReLu)

Dense Layer 2 2
Dropout 0.20 0.20
Optimizer Adam Adam
Number of Epochs 30 30
Batch size 72 72

For machine learning methods used in the comparison, a multiclass SVM with linear
kernel function, a multiple linear regression, a decision tree with gini criterion, and a
random forest with a penalty of 12 was used. For all models, the dataset is split into 70:30
for train and test.

A. Deep Learning Techniques

The proposed model in this paper uses a hybrid model that integrates convolutional
and LSTM techniques. This section compares the performance of both convolutional and
LSTM separately with the proposed model. As shown in Table 10, the proposed model
achieved the best results over convolutional and LSTM, while the convolutional model
obtained the lowest accuracy, recall, precision, F1-score, and high loss with less execution
time. Likewise, the LSTM model obtained higher accuracy, recall, precision, F1- score, and
higher loss with a long execution time. While the hybrid takes the benefits from both LSTM
and convolutional, it achieved good results in terms of accuracy, recall, precision, and
Fl1-score within less time. In summary, the combination between the convolutional and the
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LSTM makes the proposed model more accurate and faster in detecting anomalies in time-
series data. Due to the architecture of the convolutional technique that takes benefits from
local spatial observations, this allows the model to have fewer weights as some shared data.
Consequently, this process makes the model detect the anomaly with high speed. While
the cell of LSTM maintains old cell memory at the time, this process helps to understand
the behavior of temporal correlations with high accuracy.

Table 10. Comparison with deep learning models.

Model Subject Accuracy (%) Loss (%) Recall (%)  Precision (%)  F1-Score (%) Time (s)
Subject 1 46.14% 0.6602% 100% 46.14% 63.14% 21s
Convolutional  Subject2 68.30% 0.570% 100% 41% 58% 73s
onvolutional g, 00t 3 70.80% 0.5678% 99.93% 44.56% 61.63% 62s
Subject 4 36.53% 0.5896% 100% 36.53% 53.51% 40
Subject 1 76.25% 0.3649% 99.74% 46.07% 63.03% 90's
LSTM Subject 2 95.89% 0.1252% 98.63% 41.12% 58.23% 317s
Subject 3 94.45% 0.118% 100% 44.57% 61.66% 506 s
Subject 4 86.73% 0.279% 99.14% 36.36% 53.20% 480's
Subject 1 97.59% 0.1131% 99.40% 95.56% 97.59% 60's
Subject 2 99.97% 0.0022% 100% 99.86% 99.96% 60's
CNN-LSTM - gpject 3 99.91% 0.0012% 99.93% 99.87% 99.90% 60's
Subject 4 97.69% 0. 028% 100% 94.05% 96.93% 60's

B.  Machine Learning Techniques

In the literature, most anomaly detection studies for WBAN utilized various machine
learning models. Therefore, the proposed model will be compared with some existing
machine learning models such as Linear Regression (LR), Decision Tree classifier (DT),
Random Forest classifier (RF), and Support Vector Machine (SVM) The same random seed
is used in the model parameters to ensure that the training data are split in the same way
and that each algorithm is evaluated in the same way. The SVM uses a kernel to transform
the input data into the required form; the kernel has been called the kernel trick. The reason
behind selecting these algorithms is that they are used for classification purposes and are
suitable for the dataset pattern. Table 11 demonstrates the results of these models and it is
noted that the decision tree classifier and Random Forest classifier obtained a slightly higher
accuracy. Machine learning techniques appear to be not good candidates for detecting
the anomaly in light of big data generated by sensors due to the sensitivity to anomalies.
For example, in terms of the linear regression technique, the dataset that contains some
anomalies can damage the performance of a machine learning model drastically and often
lead the model to low accuracy. Any small modification in the dataset can cause a large
change in the structure of the decision tree, causing instability. The random forest classifier
requires a great deal of time for training as well as much computational power. In addition,
the SVM model is not suitable for large datasets. On the contrary, the proposed model,
which obtained optimum performance (by improving the accuracy that helps in reducing
the false alarm rates) in detecting anomalies, in the context of big data and sensor scalability
that makes the healthcare systems more reliable.
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Table 11. Comparison with machine learning models.
Model Subject Accuracy (%) Recall (%) Precision (%)  F1-Score (%)
Subject 1 95.50% 94% 97% 96%
IR Subject 2 96.17% 99% 94% 97%
Subject 3 93.33% 95% 93% 94%
Subject 4 88.78% 87% 96% 92%
Subject 1 99.92% 63% 71% 67%
DT Subject 2 100% 100% 83% 91%
Subject 3 99.88% 89% 99% 94%
Subject 4 100% 92% 76% 83%
Subject 1 99.92% 94% 97% 96%
RE Subject 2 100% 99% 94% 97%
Subject 3 99.91% 93% 95% 94%
Subject 4 100% 66% 94% 78%
Subject 1 61.82% 71% 63% 67%
SVM Subject 2 87.69% 100% 83% 91%
Subject 3 93.04% 99% 89% 94%
Subject 4 65.70% 66% 94% 78%
Subject 1 97.59% 99.40% 95.56% 97.59%
Proposed Subject 2 99.91% 99.93% 99.87% 99.90%
Model Subject 3 99.97% 100% 99.86% 99.96%
Subject 4 97.69% 100% 94.05% 96.93%

To summarize, as shown in Table 11, deep learning is a great option for overcoming
the constraints of machine learning models. It works with several processing layers to learn
data representation at various abstraction levels. Because deep learning models” design
is dynamic, they can adapt to new patterns. Additionally, it can efficiently analyze large
amounts of data in terms of accuracy, memory, and speed. As a result, it outperforms
machine learning on massive amounts of data.

6. Conclusions and Future Work

IoHT paradigm and WBAN will play a significant role in developing next-generation
healthcare applications and services. One primary concern is how to deal with anomalies,
as they are imperative in IoHT due to low cost and constrained sensors. Anomalies need
to be identified and appropriate action must be taken to maintain the reliability of smart
healthcare applications and services. In this paper, the proposed model takes leverage from
the ability of LSTM in benefiting from temporal dependencies that exist in sensor readings,
and the ability of convolutional neural networks to spatially examine the relationship
between more than one sensor. Experiments on the real world dataset for healthcare
vital signs called Physionet assure the ability of the proposed model in detecting both
point anomalies and contextual anomalies effectively and efficiently. The performance
evaluation and comparison with the state-of-art machine and deep learning models showed
the superiority of the proposed with an average prediction accuracy of 99% and an F1-score
of 98% in 60 s. As a future plan, an investigation of the effect of adversarial attacks on
the proposed model will be examined to show the robustness of deep learning techniques
against such attacks.
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