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Abstract

Tanycytes are elongated hypothalamic glial cells that cover the basal walls of the third ventricle; their apical regions contact the cerebrospinal
fluid (CSF), and their processes reach hypothalamic neuronal nuclei that control the energy status of an organism. These nuclei maintain the
balance between energy expenditure and intake, integrating several peripheral signals and triggering cellular responses that modify the feeding
behaviour and peripheral glucose homeostasis. One of the most important and well-studied signals that control this process is glucose; how-
ever, the mechanism by which this molecule is sensed remains unknown. We along with others have proposed that tanycytes play a key role in
this process, transducing changes in CSF glucose concentration to the neurons that control energy status. Recent studies have demonstrated
the expression and function of monocarboxylate transporters and canonical pancreatic b cell glucose sensing molecules, including glucose
transporter 2 and glucokinase, in tanycytes. These and other data, which will be discussed in this review, suggest that hypothalamic glucosen-
sing is mediated through a metabolic interaction between tanycytes and neurons through lactate. This article will summarize the recent evidence
that supports the importance of tanycytes in hypothalamic glucosensing, and discuss the possible mechanisms involved in this process. Finally,
it is important to highlight that a detailed analysis of this mechanism could represent an opportunity to understand the evolution of associated
pathologies, including diabetes and obesity, and identify new candidates for therapeutic intervention.

Keywords: monocarboxylate transporters� glucose transporters� glucokinase� lactate�
feeding behaviour� tanycytes� hypothalamus� glucosensing

Introduction

Control of feeding behaviour and glucose homeostasis relies on the
cerebral capacity to integrate diverse peripheral signals, including lep-
tin, insulin, glucagon, ghrelin and glucose, that reflect the nutritional
and energetic state of the organism, as well as its ability to generate
responses that can regulate feeding behaviour, energy expenditure
and the metabolic activity of cells [1–5]. For several decades, it has

been known that brain function is glucose-dependent [6], and that
glucose modulates feeding behaviour [7]. In 1919, Anton Carlson
suggested that low plasma glucose concentrations could be a signal
for meal initiation and high glucose concentration could result in meal
termination [7]. Subsequent studies have shown that lesions in spe-
cifics areas of the brain, such as the ventromedial [8–10] and lateral
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hypothalamus (LH) [11] affect feeding behaviour. These findings led
Mayer in 1953 to propose the glucostatic hypothesis, which establish
a connection between blood glucose concentrations and appetite
[12]. This hypothesis indicates that rises in plasma glucose concen-
tration after a meal are sensed by hypothalamic neurons that respond
by triggering meal termination [12]. Currently, exist a great interest in
understand the precise molecular and cellular mechanism that control
the glucosensing. Given diseases such as diabetes and obesity can be
induced by a deregulation in this process.

Two different populations of glucose responsive neurons have
been identified in the hypothalamus. Neurons that increase their firing
rate and neurons that decrease their firing rate in response to rises of
glucose. These neurons are located in the ventromedial hypothalamus
(VMH) and the LH [13]. However, physiological glucose concentra-
tions in the brain parenchyma (1.4 mM in normoglycaemic rats and
3.3 mM in hyperglycaemic rats) never reach the concentrations used
in most studies to identify these glucose-responsive populations and
demonstrate their changes in firing rate [14–17]. Therefore, the effect
of physiological glucose concentration over the activity of the hypo-
thalamic glucosensing neurons remains a matter of debate [18, 19].
However, a proportional relationship between glucose levels in blood
and the cerebrospinal fluid (CSF) has been reported [20–22]. The CSF
is the only fluid in the brain, in which significant changes in glucose
concentration have been detected during hyperglycaemia, reaching
levels as high as 15 mM [23, 24]. Moreover, analysis of the hypotha-

lamic cytoarchitecture indicates that the nuclei involved in glucose
homeostasis are not in direct contact with the CSF; however, hypo-
thalamic ependymal cells (i.e. tanycytes), that cover the ventricular
walls, make contact with both the CSF and neuronal nuclei that con-
trol the feeding behaviour [25]. These background data, led us to pro-
pose that hypothalamic tanycytes are responsible, at least in part, for
sensing changes in glucose levels in the CSF and transduce this sig-
nal to neighbouring neurons, triggering a response in these cells. In
this review, we focus on information that supports tanycytic gluco-
sensing and possible mechanisms involved in this process.

Morphological characteristics of the
hypothalamic region

The hypothalamus can be divided into three zones: (i) the periventric-
ular zone formed by the preoptic area (POA), suprachiasmatic
nucleus (SCN), paraventricular nucleus (PVN), arcuate nucleus (AN)
and the posterior nucleus; (ii) the medial zone formed by the medial
PON, anterior hypothalamic nucleus (AHN), ventromedial nucleus
(VMN), dorsomedial nucleus (DMN) and premammillary nucleus and
(iii) the lateral hypothalamic area (LHA) formed by the lateral preoptic
nucleus, lateral hypothalamic nucleus, tuberomammillary nucleus and
supraoptic nucleus (Fig. 1A and B) [26]. The median eminence (ME)

A B

Fig. 1 A schematic representation of the hypothalamic nuclei and the distribution of tanycytes over the wall of the third ventricle (III-V). (A) Coronal
view of the approximate location of the hypothalamic nuclei and tanycytes. Ciliated ependymocytes (ep) line the dorsal wall of the III-V. The a1d-ta-
nycytes (a1d) and a1v-tanycytes (a1v) have long projections that make contact with the neurons of the VMN. a2-tancycytes (a2) have projections

to the AN and blood vessels. In a more ventral section of the III-V, the b1d-tanycytes (b1d) and b1v-tanycytes (b1v) make projections to the AN,

making contact with orexigenic and anorexigenic neurons and blood vessels. In the floor of the III-V, the b2la-tanycytes (b2la) and b2me-tanycytes

(b2me) are joined by tight junctions forming part of the median eminence (ME)-cerebrospinal fluid (CSF) barrier, and their projections make contact
with the fenestrated blood vessels of the ME. (B) Sagittal view of the distribution of the hypothalamic nuclei. Ep: ependymocytes; AN: arcuate

nucleus; VMN: ventromedial nucleus; DMN: dorsomedial nucleus; PVN: periventricular nucleus; DHA: dorsal hypothalamic area; PFA: perifornical

area; LHA: lateral hypothalamic area; SCN: suprachiasmatic nucleus; SON: supraoptic nucleus; POA: preoptic area; MB: mammillary bodies; ME:

median eminence; III-V: third ventricle.

1472 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



is located in the middle-basal hypothalamus and dorsal side borders
the infundibular recess of the third ventricle (III-V), making contact
with the CSF. Its ventral side borders the pars tuberalis of the pitui-
tary, making contact with the perivascular space of the portal capillary
system and the subarachnoid CSF [27]. The ependymal region of ME
is formed by b2-tanycytes with tight junctions that form a barrier
between the ME and the ventricular CSF, known as the CSF-ME bar-
rier [27–29]. However, the blood vessels of the ME do not form a
blood-brain barrier (BBB); thus, the ME is a circumventricular organ,
known to be ‘windows to the brain’. It has been recently reported that
the nutritional status of an individual modulates the permeability of
ME to circulation metabolic signals [30, 31]. Further studies are
needed to show whether metabolic signals are transferred directly
from the blood to AN neurons or transferred from fenestrated vessels
to the processes of b2-tanycytes, and subsequently CSF to quickly
generate an increase in glucose concentration at the infundibular
recess area proportional to that in blood (b1-tanycytes in contact with
AN neurons).

Hypothalamic tanycytes

A tanycyte is a specialized type of ependymal cell, localized in the
lower parts of the ventricular walls and the floor of the III-V. Tany-
cytes have an elongated morphology and are not ciliated [32], and
they are classified based on their distribution in the hypothalamic ven-
tricular wall [33]. Basal processes of a1-tanycytes project towards
the VMN, while those of a2-tanycytes project to the AN, forming an
interphase between the CSF and the neuronal nuclei that allows the
exchange of molecules [34]. b1-tanycytes line the infundibular
recess, and their basal projections reach the lateral regions of the ME
and the AN. b2-tanycytes cover the floor of the III-V and extend their
projections inside the ME.

To better understand the role of each population of tanycytes,
morphological studies and expression analysis of molecular markers
have identified the following subpopulations: dorsal and ventral a1-
tanycytes (a1d and a1v), a2-tanycytes, dorsal and ventral b1-tany-
cytes (b1d and b1v) and lateral (b2la) and medial b2-tanycytes
(b2me) [35–37] (Fig. 1A). The ventricular wall, which is comprised
of a and b1-tanycytes in the ventral region of the hypothalamus,
contains few subependymal astrocytes, indicating that tanycytes are
the main glial cell type present in this area [34, 38]. Moreover, b2-
tanycytes lying on the ME have privileged access, via fenestrated
capillaries [39], to nutritional signals carried by the bloodstream,
such as glucose and hormones [40, 41]. Furthermore, the basal pro-
cesses of tanycytes penetrate into the hypothalamic parenchyma,
contacting AN neurons that participate in the regulation of food
intake (FI) [25, 33].

Hypothalamic glucosensing

Supporting the glucostatic hypothesis, in vivo studies have demon-
strated destroying selected hypothalamic nuclei or regions, includ-
ing the VMH, induces hyperphagia and obesity, while the ablation

of the LHA, leads to hypophagia and loss of bodyweight [42, 43].
Electrophysiological studies in brain slices have demonstrated the
presence of hypothalamic neurons that can increase or reduce the
frequency of their electric activity as a function of increased
glucose [44] and lactate [45] concentrations and have been classi-
fied as glucose-exited (GE) and glucose-inhibited (GI) neurons,
respectively [13, 46, 47], located in the AN, VMN, PVN and LHA
[48–50].

Patch clamp recordings in mouse brain slices incubated with an
extracellular medium containing D-glucose have led to propose the
existence of two more neuronal populations: high glucose-excited
and high glucose-inhibited neurons [51, 52]. These studies indicate
that neurons can be directly or indirectly activated or inhibited by
glucose, and this metabolic substrate is not solely used as meta-
bolic substrate, but also as signalling molecules that correspond
with the energetic status of the organism, allowing the release of
hormones, neurotransmitters and/or neuropeptides that control FI
[53].

The AN has a central role in the integration of hormonal, nutri-
tional and neuronal signals derived from peripheral organs. For
example, the AN responds to peripheral signals, such as leptin and
ghrelin, and further controls secondary neuronal populations in the
PVN, DMN and LHA, which process information regarding energy
homeostasis [54–56]. The AN is composed of neuronal populations
with antagonistic functions, including neurons that inhibit FI through
the release of anorexigenic peptides (a-melanocyte-stimulating hor-
mone [a-MSH], a processing product of pro-opiomelanocortin
(POMC) and the cocaine- and amphetamine-regulated transcript)
[54, 57] as well as those capable of stimulating FI through the
secretion of orexigenic peptides (neuropetide Y [NPY] and the
agouti-related peptide) [58, 59]. Studies in brain slices showed that
40% of NPY neurons are GI neurons [60], but the identity of GE
neurons is not completely clear and could correspond to POMC-
positive neurons [61, 62]. This directly correlates with changes in
neuronal activity induced by variations in glucose concentration
related with the control of FI. In vivo studies showed that lateral in-
tracerebroventricular (i.c.v.) injection of glucose in mice mimics hy-
perglycaemia at 2 hrs after the injection, as detected by reduced
NPY and increased POMC mRNA levels, which was correlated with
the cessation of FI [63, 64]. Since AN neurons are not in direct con-
tact with blood or CSF [25, 33, 35, 36, 38, 65], an alternative path-
way has been proposed, which involves a metabolic interaction
between AN neurons and tanycytes via lactate [25, 34–36, 38, 66].
In situ studies using patch clamp analysis and single-cell extracellu-
lar recordings in brain slices of rats have shown that lactate can
increase the action potential frequency, of GE neurons from the
VMH [45, 67], suggesting that this monocarboxylate is required for
glucosensing in the brain. Similarly, in vivo studies have demon-
strated that i.c.v. lactate injections into the III-V decrease blood glu-
cose levels response that is disrupted when lactate or glucose is co-
injected with oxamate, an inhibitor of the lactic dehydrogenase
enzyme, confirming that lactate uptake in the hypothalamus is
essential for glucose homeostasis [68]. Similarly, lactate injection
through the carotid artery in rats led a transient increase in insulin
secretion [69].
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Neuronal-glial interaction in the
hypothalamic glucosensing

In the brain, neurons have higher energy requirements than glia, but
different reports show that glucose metabolism is slower in neurons
in cultures or that found in brain slices than glial cells under similar
conditions [70–74]. In addition, neurons do not have direct access to
glucose due to the presence of the BBB. Thus, nutrients need to pass
across the BBB, and this diffusion is driven by the concentration gra-
dient between the blood and the interstitial fluid through the glucose
transporter 1 (GLUT1) [18, 75]. An alternative scenario has been pro-
posed in which neurons use a substrate other than glucose to supply
their energetic demands, which is known as the astrocyte-neuron lac-
tate shuttle hypothesis [76]. Several studies support the hypothesis
of a functional coupling between glia and neurons mediated by lac-
tate, for instance in peripheral sensory organs, such as the retina, an
interaction between M€uller cells and photoreceptor neurons has been
shown [77], and in olfactory epithelia metabolic coupling between
olfactory neurons and their supporting glial cells, has been proposed
[78]. In vivo studies have demonstrated that alterations induced by
insulin-induced hypoglycaemia are completely prevented by lactate
infusion and that the brain oxidizes lactate in an activity-dependent
manner, suggesting that the brain prefers lactate over glucose even in
the presence of both substrates [79]. Moreover, interruption of lac-
tate uptake in the hippocampus generates amnesia that can be res-
cued by lactate but not with glucose, showing lactate is essential for
the establishment long-term memory formation [80]. Therefore, we
and other investigators have proposed that hypothalamic glucosen-
sing is mediated by a metabolic interaction between glial cells (i.e. as-
trocytes and tanycytes) and neuroendocrine neurons that control the
feeding behaviour [25, 36, 66, 81, 82]. The important metabolic,
structural and homeostatic functions of astrocytes have been exten-
sively reviewed [83, 84].

Glucose-exited neurons increase their electrical activity in
response to glucose through a mechanism similar to that of glucose-
induced insulin release in pancreatic b cells [19]. In response to
increased glucose concentrations, neurons increase their cytosolic
ATP concentration ([ATP]c), which inhibits KATP channels and induces
a change in membrane potential that, in turn, triggers the opening of
voltage-gated Ca2+ channels and the subsequent uptake of Ca2+ and
release of neurotransmitters, including neuropeptides [85]. Using pri-
mary cultures of hypothalamic neurons and glial cells, dynamic biolu-
minescence imaging analysis, which records [ATP]c in real-time,
revealed that glucose concentrations from 3 to 15 mM do not
increase [ATP]c to induce closure of KATP channels and the conse-
quent neuronal depolarization [70]. However, exposure of hypotha-
lamic neurons to 5 mM lactate (but not pyruvate) increased the
amount of [ATP]c (in a oligomycin-sensitive way) enough to generate
the closing of KATP channels. Exposure of primary cultures of hypo-
thalamic glial cells to extracellular glucose concentration ranging
from 3 to 15 mM significantly increased [ATP]c, which was not
observed with lactate [70]. These results suggest that lactate released
from neighbouring glial cells could activate hypothalamic GE neurons
in high glucose conditions. The participation of lactate in the

glucosensing mechanism and feeding behaviour is supported by
in vivo studies, in which i.c.v. injection of lactate into the III-V of the
hypothalamus mimic the effect of hypothalamic glucose administra-
tion, generating lower FI and a reduction of bodyweight [86].

Moreover, in primary cultures of tanycytes, that elevation of extra-
cellular glucose (from 2 to 10 mM) induced a rise in intracellular free
Ca2+ concentration, which was dependent upon ATP generated by gly-
colysis and subsequent release through hemichannels formed by
connexin 43 (HC-Cx43), but not by oxidative metabolism [87]. In situ
analysis in brain slices has shown that an acute application of glucose
or non-metabolizable analogs of glucose over tanycyte cell bodies
evoked robust ATP-mediated Ca2+ responses [88], suggesting that
the pancreatic b cell paradigm does not apply to these cells. However,
these studies showed that Ca2+ waves that depend on intracellular
stores) were dependent on ATP release and P2Y receptor activation
[87]. Thus, tanycytes may sense glucose by more than one mecha-
nism, which is determined by the subpopulation of tanycytes. Both
in vitro and in situ studies demonstrated that tanycytes sense and
respond to extracellular glucose via a rapid, glucose-activated signal
transduction pathway mediated by lactate and/or ATP. Future in vivo
studies will be required to determine whether tanycytes could sense
extracellular changes in glucose concentration and transmit them to
neurons via Ca2+ waves and/or the release of paracrine factors (e.g.
ATP).

MCTs and their participation in the
cerebral glucosensing mechanism

The monocarboxylate transporter (MCT) family is formed by 14 iso-
forms (MCT1-14), which use an electrochemical proton gradient to
translocate monocarboxylates (e.g. L-acetate, L-acetoacetate and DL-
b-hydroxybutyrate), in a stoichiometrical relationship of 1:1. Only
MCT1-MCT4 have been demonstrated by functional characterization
to be true MCTs; MCT8 is really a thyroid hormones transporter
(Table 1). The expression and distribution of MCTs have been
recently reviewed [89, 90]. Here, we focus on their localization and
relevance in the hypothalamus. MCT1 is expressed in lactate-produc-
ing (e.g. erythrocytes) and lactate consuming tissues (e.g. heart) [89,
91]. Monocarboxylate transporter 4 has been observed in lactate pro-
ducing tissues (e.g. skeletal muscle and astrocytes) [92, 93]. In con-
trast, MCT2 is expressed in cell types, which use lactate, and is
mainly restricted to neurons of different brain regions [94]. Mono-
carboxylate transporter 3 has not been reported in hypothalamus. The
expression of MCTs in the hypothalamus has been evaluated in only a
few reports. Monocarboxylate transporter 1 was first detected in pri-
mary cultures of hypothalamic neurons and glia by immunostaining
[70]. Monocarboxylate transporter 4 was immunolocalized to some
astrocytes and ciliated ependymal cells of the PVN [95], and MCT2
expression was detected in some neurons in the AN, DMH and the
AHN in rats that consumed a high fat diet [96]. A more detailed study
indicates that MCT1 is present in the endothelial cells and a and b-ta-
nycytes that line the ventricular walls and the floor of the III-V [36]. In
a-tanycytes, MCT1 is polarized in the ventricular cellular membranes
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and end-feet processes contacting the endothelial cells of the blood
vessels [36]. In b1v-tanycytes MCT1 is polarized to the apical mem-
brane and cellular processes that contact neurons from the AN (orexi-
genic area), blood vessels and the external region of the brain [36].
Monocarboxylate transporter 4 is also expressed in the hypothala-
mus, but it is mainly located in the lateral region of the AN (an anorex-
igenic zone), particularly in processes of b1d-tanycytes. Moreover,
MCT1 and MCT4 function have been corroborated by in vitro studies
using primary cultures of tanycytes and uptake of radiolabeled lactate.
Additionally, we demonstrated that tanycytes release lactate in the
presence of 5 mM glucose through MCT1 and MCT4 [36]. Further-
more, the coincident expression of MCT2 in orexigenic neurons [35]
and MCT1 in b1v-tanycytes [36] (Fig. 2A) led us to propose that
these glial cells regulate the activity of GI neurons, and that lactate
may inhibit these neurons, causing hyperpolarization via opening of
Cl� and/or K+ channels [51] (Fig. 2C). Moreover, the localization of
MCT4 in b1d-tanycytes [36] that contact GE POMC-reactive neurons
MCT2 positives [35] suggests that these cells could be metabolically
coupled through lactate (Fig. 2A). The lactate released through MCT4
and incorporated by neurons through MCT2 could increase ATP lev-
els, causing closure of K+ channels sensitive to ATP and increased

neuronal electrical activity [70] (Fig. 2B). This is also supported by
GE neurons in the VMH and NTS that respond to increase lactate con-
centrations [45, 97]. Therefore, it is feasible that lactate has a dual
role in the control of feeding behaviour, which is dependent upon the
subtype of neuronal and glial cells activated in the process.

The role of glucose transporters in
hypothalamic glucosensing

Two families of transmembrane transporters mediate the membrane
transport of glucose: the facilitative hexose transporters, GLUTs [98,
99], and the sodium-glucose linked transporters (SGLTs) [100].
Because the expression and distribution of GLUTs and SGLTs have
been extensively reviewed elsewhere [99, 101, 102], we will focus on
their expression and relevance in the hypothalamic glucosensing.

In vitro analyses detected expression of SGLT1, SGLT3a and
SGLT3b in cultured neurons and adult rat hypothalamus [103],
but in vivo studies have only shown SGLT1 expression in the PVN
[104]. Moreover, in vitro functional studies showed that 67% of GE

Table 1 Km values of MCT isoforms expressed in brain and their kinetic characterization

Protein/Gene
names

Substrates
Km for
lactate
(mM)

Km for
pyruvate
(mM)

Km for
D-b-hydroxy-
butyrate
(mM)

Km for
Acetoa-
cetate
(mM)

Expression in brain References

MCT1/SLC16A1 Lactate; Pyruvate;
Ketones bodies

7.7 1.0 12.5 5.5 Cortical, hippocampal and
supraoptic nucleus astrocytes;
Choroid plexus; ciliated
ependymal cells; endothelial
cells; pericytes; a and
b-tanycytes; oligodendrocytes;
activated microglial cells;
some populations of
hypothalamic neurons

[36, 70, 94,
155–163]

MCT2/SLC16A7 Lactate; Pyruvate;
Ketones bodies

0.74 0.08 1.2 0.8 Neurons of cerebral cortex;
Purkinje cells; ependymal
cells; subependymal astrocytes
of hypothalamus; orexigenic
and anorexigenic neurons of
hypothalamus

[35, 156, 159,
164–167]

MCT3/SLC16A8 Lactate 5.8 _ _ _ Choroid plexus basolateral
membrane

[168, 169]

MCT4/SLC16A3 Lactate; Pyruvate;
Ketones bodies

34 153 64 31 Bergmann glia; cerebellum,
hippocampus and corpus
callosum astrocytes; cerebral
cortex; ciliated ependymal
cells; a and b-tanycytes

[36, 93, 94,
155–157, 164,
170]

MCT8/SLC16A2 T2; T3; rT3; T4 _ _ _ _ Choroid plexus; amygdala;
hippocampus; olfactory bulb;
hypothalamus

[171–173]
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hypothalamic neurons are activated by a-methylglucopyranoside, a
non-metabolizable substrate of SGLT, and this effect was abolished
by phloridzin (SGLT antagonist) [103]. A possible non-metabolic
glucose sensing mechanism in the hypothalamus has been propose,
which involves GE neuronal activation in response to high glucose
generated by the inward current triggered by co-transport of two
sodium ions and glucose through SGLTs [105–107]. Supporting
experiments showed that i.c.v. administration of phloridzin enhances
FI in rats [107] and inhibits glucose-induced activation of GE neurons
in the VMH [45]. Therefore, the role of SGLTs in hypothalamic
glucose sensing needs to be examined in more depth, in particular
to define the sub-population of GE neurons that express it and the
physiological importance of this non-metabolic glucose sensing
mechanism in feeding behaviour.

Glucose transporter 1 and GLUT3 are the predominant GLUT
isoforms expressed in the brain, and are localized mainly in glia and
neurons, respectively [108–110]. In the hypothalamus, immunohisto-
chemistry analysis revealed GLUT1 expression in glial and endothelial
cells of the BBB in the VMH; however, it was not observed in neuronal
cells [111, 112]. Immunocytochemistry and in situ hybridization also
showed that GLUT1 is highly expressed in a and b1-tanycytes, with
intense immunoreaction in cell processes located throughout the AN

and in cell processes contacting the hypothalamic capillaries [34,
113]. Under normoglycaemic conditions, glucose levels in the brain
are similar to the Km value of GLUT1 (Km = 1–5 mM) [114, 115].
Thus, the normal supply of energy to the brain is not rate limiting;
however, several studies indicate that the energetic metabolism of
glucose is limited by the capacity to phosphorylate the incorporated
glucose by hexokinases [116, 117].

Glucose transporter 3 has an elevated affinity for glucose with a
reported Km of 1.4 mM [118]. Despite its high glucose affinity, which
normally implies a low transport capacity at high glucose levels, the
activity of this transporter is dependent on its catalytic constant or
Kcat, which is eightfold higher than astrocytic GLUT1 [119]. Therefore,
it is possible that neurons expressing GLUT3 could respond to high
glucose levels [120]. Within the hypothalamus, immunohistochemical
localization of GLUT3 was detected in neurons of the LHA, DMN and
PVN [112]. Although single-cell RT-PCR analysis revealed that GLUT3
as well as GLUT4 and GLUT2 are expressed in GI and GE neurons of
the VMN [121], it is important to mention that mRNA may not directly
reflect the amount, location or expression of these proteins; thus, it
remains necessary to demonstrate their protein expression.

Glucose transporter 2 is a low-affinity/high-capacity transporter
for glucose with a reported Km of 17 mM [25, 101, 122, 123]. Its

A

B

C

Fig. 2Model of cerebral glucose sensing based on the metabolic interaction between b1d-tanycytes or b1v-tanycytes and neurons. (A) Schematic

representation of the location of MCT4 (yellow) in b1d-tanycytes processes (purple), MCT1 (blue) in b1v-tanycytes processes (light blue), and
MCT2 (light green) in orexigenic (green) or GI neurons and anorexigenic (red) or GE neurons of the AN. (B) Schematic overview of the classical

model of glial-neuronal interaction based on the transfer of lactate proposed for cerebral glucose sensing between GE neurons and tanycytes. (C)
Scheme based on proposed interaction between b1v-tanycytes and GI neurons (orexigenic) compared to the increase in glucose concentration in
the CSF. III-V: third ventricle; b1d and b1v: tanycytes; GE: glucose-excited neurons; GI: glucose-inhibited neurons, CSF: cerebral spinal fluid; GK:

glucokinase; LDH: lactate dehydrogenase.
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association with the glycolytic enzyme, glucokinase (GK), allows an
efficient uptake capacity at high glucose concentrations, which make
GLUT2 and GK the ideal molecules that define a glucose sensor
[124]. Glucose transporter 2 mRNA was detected by in situ hybridiza-
tion in human hypothalamic tissues in the VMN and AN [125]. qRT-
PCR analysis and genetic reporter (eYFP mice) studies indicate that
GLUT2 is expressed in the LHA, VMH and DMH [126, 127]; however,
it is not expressed in neuronal bodies of the AN. NPY and POMC neu-
rons were, however, connected to nerve terminals positive for GLUT2;
astrocytes and ependymocytes were also GLUT2-positive [127]. Con-
tradictory results have been reported using conventional and electron
microscopy immunocytochemical analysis, which indicate that
GLUT2 is localized in the neuronal cell bodies of the AN and corrobo-
rate the expression of GLUT2 in nerve terminals, astrocytes and
ependymocytes near the III-V [128, 129]. Divergent results might be
explained by the different methodologies employed. However, both
in situ hybridization and immunocytochemical analyses have shown
that GLUT2 is expressed in ependymal cells, specifically in the apical
ventricular membranes of b1 and b2- tanycytes and was absent from
neurons, endothelial cells and other glial cells [25]. It should be noted
that the strategic localization of GLUT2 in the apical membrane of ta-
nycytes puts them in a privileged position to sense glucose variations
in the CSF. It is possible that a low expression of GLUT2 in the hypo-
thalamic nuclei exists, which has prevented researchers from obtain-
ing conclusive results via immunocytochemistry regarding the
expression or localization of GLUT2 in GE or GI neurons.

Studies performed in ripglut1; glut2�/� mice, showed that lateral
i.c.v. injection of glucose to mimic hyperglycaemia decreased NPY and
increased POMC mRNA levels, which correlated with the cessation of FI
[63]. In experiments using the samemice, stimulated glucagon secretion
was restored with the expression of GLUT2 by glial cells but not neurons,
indicating the importance of glial cells in the central regulation of gluca-
gon secretion [130]. Furthermore, selective destruction of tanycytes
through III-V injection of alloxan, a GK inhibitor and toxin that enters cells
through GLUT2, inhibits the counter-regulatory responses generated by
hypoglycaemia without damaging neurons in the AN, which again sup-
ports the involvement of tanycytes in the glucose sensing mechanism
[131]. Thus, in morphological and molecular terms, it is feasible to pro-
pose that tanycytes are functionally andmetabolically coupledwith hypo-
thalamic neurons that participate in the regulation of FI.

Participation of GK in hypothalamic
glucosensing

Cerebral glucose metabolism is limited by the capacity to capture it
via GLUTs and incorporate it into the glycolytic pathway through
hexokinase phosphorylation [116, 117]. An elevated Km for glucose
transport and the presence of GK (HK IV) imply cells could increase
their glucose uptake rate in direct proportion to extracellular changes
in glucose concentration. This property of GLUT2 and GK determines
their participation in the glucose sensing mechanism of pancreatic b
cells [45, 132–135]. Glucokinase catalyses the phosphorylation of
glucose to glucose-6-phosphate with low affinity (S0.5 5–15 mM) and

is not inhibited by its product under physiological conditions [125,
136]. Glucokinase is a product of one gene; an alternative promoter is
used in hepatic and pancreatic tissues, generating tissue-specific iso-
forms that differ in the first 15 amino acids [137]. In the hypothala-
mus, RT-PCR and in situ hybridization analyses have revealed the
expression of the pancreatic isoform of GK [45, 136, 138], which was
confirmed by immunoblotting and enzyme assays [66, 125, 136,
139–141]. However, the expression of non-functional isoforms of GK
produced by alternative splicing has been described in the hypothala-
mus and pituitary [136, 142, 143]. Western blot and immunohisto-
chemistry analyses in adult rats have shown the nuclear localization
of GK in b1-tanycytes in the euglycaemic condition, as well as its
expression by a small proportion of periventricular neurons [66].
However, in early development GK mRNA levels were strongly up-
regulated during the second post-natal week [144] and, GK was local-
ized in the cytoplasm of tanycytes but not in the nucleus [66]. Inter-
estingly, at the same stage a similar subcellular distribution has been
observed in hepatocytes [145]. Hepatic GK activity is regulated at the
post-translational level through interaction with GKRP, which func-
tions as an anchor protein, modulating GK activity and mediating its
nuclear translocation [146, 147]. Therefore, the data previously
described suggest that nuclear compartmentalization of GK in tany-
cytes may be associated with post-natal GKRP co-expression, which
may regulate GK activity in tanycytes in accordance with the meta-
bolic needs of the cell.

In the hypothalamus, isotopic in situ hybridization revealed GKRP
expression in the PVN as well as in periventricular glial cells [148].
Recombinant proteins obtained by cloning GKRP from highly
enriched primary tanycyte cultures have very high sequence identity
with hepatic GKRP [24]. However, different reports call into question
if hepatic GKRP can regulate the activity of pancreatic GK [148–150],
especially given that some studies failed to observe GKRP expression
in the pancreas [149, 150] with the exception of an alternatively
spliced GKRP variant expressed in b cells [148]. Recently, we per-
formed a comparative study of GK distribution in response to differ-
ent glycaemic conditions in the hypothalamus and liver. In the
hypothalamus, increased GK nuclear localization was observed in hy-
perglycaemic conditions; however, it was primarily localized in the
cytoplasm in hepatic tissue under the same conditions [24]. Different
reports have demonstrated that in liver GK interacts with GKRP in the
nucleus in an inactive state, in hypoglycaemia [145, 151–153]. Using
primary cultures of tanycytes the nuclear localization of GK and GKRP
increased in the presence of high glucose concentration, which con-
firmed the in situ results. Supporting these results, it has been
recently demonstrated that GK activity in the hypothalamus, and not
in other cerebral regions, is increased with fasting [154]. Thus, in ta-
nycytes, the GK/GKRP complex can act as a molecular switch to
arrest cellular responses to increased glucose.

Conclusions

We have described the role of metabolic coupling between tanycytes
and neurons in hypothalamic glucosensing, control of feeding behav-
iour and peripheral glucose homeostasis. The role of tanycytes in
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sensing glucose concentration in the CSF is illustrated by (i) the
expression of GLUT1 and GLUT2 in the membrane that makes contact
with the CSF, (ii) the expression of GK and GKRP, (iii) the evidence
that tanycytes produce ATP-mediated Ca2+ waves in response to
increases in extracellular glucose concentration and (iv) the data
showing that tanycytes release lactate using MCT1 and MCT4. Our
recent data show that orexigenic and anorexigenic neurons of the AN
highly express the MCT2 isoform involved in monocarboxylate
uptake. Thus, tanycytes are likely metabolically coupled with neurons
of the hypothalamus via monocarboxylates, where lactate acts as an
intercellular signalling molecule. Taken together, the possible role of
glia, and in particular tanycytes, in regulating feeding behaviour in the
hypothalamus has largely been underestimated. Further studies to
better explore this regulatory system will allow identifying the precise
deficiencies that are responsible for deregulation of these circuits in

common diseases, such as diabetes and obesity. Finally, in vivo
studies are necessary to demonstrate that the tanycyte-neuron inter-
action is required for hypothalamic glucosensing.
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