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Abstract

Polymorphisms and somatic mutations in Flap Endonuclease 1 (FEN1), an essential enzyme 

involved in DNA replication and repair, can lead to functional deficiencies of the FEN1 protein 

and a predisposition to cancer. We identified a FEN1 germline mutation which changed residue 

E359 to K in a patient whose family had a history of breast cancer. We determined that the E359K 
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mutation, which is in the protein-protein domain of FEN1, abolished the interaction of FEN1 with 

Werner Syndrome protein (WRN), an interaction which is critical for resolving stalled DNA 

replication forks. Furthermore, although the flap endonuclease activity of FEN1 E359K was 

unaffected, it failed to resolve bubble structures, which requires the FEN1 gap dependent 

endonuclease (GEN) activity. To determine the etiological significance of E359K, we established 

a mouse model containing this mutation. E359K mouse embryonic fibroblasts (MEF) were more 

sensitive to DNA cross-linking agents that cause replication forks to stall. Cytological analysis 

suggested that the FEN1-WRN interaction was also required to for telomere stability; mutant cell 

lines had fragile telomeres, increased numbers of spontaneous chromosomal anomalies and higher 

frequencies of transformation. Moreover, the incidence of cancer was significantly higher in mice 

homozygous for FEN1 E359K than in wild-type mice, suggesting that the FEN1 E359K mutation 

is oncogenic.

Introduction

One way cancers arise is due to accumulation of varied types of genomic instabilities. The 

ability of cells to efficiently and faithfully replicate their genome is critical for maintaining 

the integrity of the genome and preventing tumorigenesis. However, the DNA replication 

machinery frequently encounters stress due to endogenous factors and environmental agents. 

These factors can cause DNA damage which if not repaired cause DNA replication forks to 

stall. Then, if the forks are not stabilized and repaired, they will collapse, resulting in the 

mutations and chromosomal rearrangements that are hallmarks of human cancers1–5.

Replication stresses due to endogenous factors include the presence of G-rich sequences and 

highly repeated regions that are difficult to replicate6–8. Moreover, replication of the 

telomeres are especially critical and they have specialized DNA-protein structures to protect 

the chromosome ends from inappropriately degrading or fusing9–13. Telomeres are an 

endogenous source of replication stress because they consist of hundreds to thousands of 

copies of G rich tandem repeats that can assemble into structures known as G quadruplexes, 

or G4 DNA, and cause the DNA replication forks to stall8, 12. Maintaining telomere integrity 

is essential; dysfunctional telomeres are usually repaired by inappropriate chromosomal end-

to-end fusions that eventually lead to polyploidy, translocations and cancers.

To counter replication stress, maintain genome stability, and prevent neoplastic 

transformation, various cellular mechanisms have evolved. Counteracting replication stress 

is partly dependent upon the structure-specific nuclease family, which contain proteins that 

remove damaged DNA blocking the replication forks and process the various DNA 

intermediate structures to properly restart stalled forks1, 14. Flap endonuclease 1 (FEN1), a 

founding member of the structure-specific nuclease family, possesses a gap-dependent 

endonuclease activity (GEN)15. FEN1 plays a critical role in maintaining the stability of 

different types of tandem repeat sequences including trinucleotide repeats, minisatellite, and 

rDNA tandem repeats 16–20. More recently, FEN1 was shown to maintain the stability of 

telomeres, which contain tandem repeats of “TTAGGG” 21–23. During lagging-strand DNA 

synthesis and Okazaki fragment maturation, long flap structures frequently occur in the 

microsatellite and minisatellite regions, and secondary structures form, such as hair-pin and 
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fold-back loops18, 20. These secondary structures, if not removed, can induce DNA strand 

breaks and DNA recombination. This in turn leads to alterations of the repeated units. The 

hairpin or fold back structures in the flap strand of an Okazaki fragment was previously 

thought to prevent FEN1 from threading through the ssDNA and inhibiting FEN1’s cleavage 

of the structure24. On the contrary, we found that FEN1 could directly clamp to DNA 

structure and employ its GEN activity to cleave the ssDNA region of the hair-pin, fold-back, 

or bubble structure19, 25, 26. The GEN activity of FEN1 cleaves the stalled replication forks 

to create DNA double-strand breaks, which initiates break-induced recombination needed to 

restarting the stalled replication forks. This function has been shown to be important for 

cells to counteract DNA damage-induced replication stress and promote the replication of 

telomeres, where replication machinery frequently stalls due to the intrinsic property of the 

TTAGGG repeats.

FEN1’s GEN activity alone is weak and strictly regulated, probably due to its potential to 

introduce double-strand DNA breaks, but its activity is greatly simulated by the interaction 

between FEN1 and WRN26. Previously, we showed when WRN binds to FEN1 it enhances 

FEN1’s ability to clamp the gap substrates and stimulates the cleavage at the ssDNA gap by 

GEN25, 26. A subsequent study revealed that amino acid residues E357, P358, and E359 at 

the C-terminal tail of FEN1 are critical for interaction with WRN 17. A fundamental 

question is whether FEN1 mutations that abolish GEN activity or its interaction with WRN 

impair the ability of the cell to counteract replication stresses that can lead to genome 

instability and cancer.

Here, we report the discovery that a FEN1 mutation at position 359, which mutates glutamic 

acid to lysine (E359K), was found in a breast cancer patient, whose family has a history of 

breast and other cancers developing relatively early in life (Figure 1). Biochemical 

characterization of E359K FEN1 revealed that this mutation abolished the GEN activity but 

retained FEN and EXO activities. Mouse cells homozygous for E359K FEN1 were more 

susceptible than WT cells to Camptothecin and UV, agents which cause replications forks to 

stall, and they also had more fragile telomeres, indicating a higher incidence of replication 

stress. Consequently, E359K mutant mouse cells displayed varied types of chromosomal 

aberrations and had a higher rate of cellular transformation rate. Moreover, E359K mutant 

mice had much higher incidence of cancer than WT mice. Altogether, the data suggest that 

FEN1 E359K disrupts FEN1/WRN interaction and GEN activity, which impairs the cell’s 

ability to counteract replication stresses. This results in telomere instabilities and 

chromosome aberrations that contribute to cancer development.

Results

E359K disrupts FEN1 binding with WRN

When screening for FEN1 mutations in a family who had a history of breast cancer (Figure 

1A) but who were wild type for the BRCA1 and BRCA2 genes, patient 211 was found to be 

heterozygous for an E to K mutation in FEN1 at position 359 (FEN1 E3509K) (Figure 1B). 

Intriguingly, E359K is located at the C-terminal end of FEN1 (Figure 2A), previously 

determined to be the major interaction site, which interacts with five different proteins 

including WRN17. Figure 2A shows a complex of FEN1 and WRN based on the crystal 

Chung et al. Page 3

Oncogene. Author manuscript; available in PMC 2015 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structures composed from previous literature 27–29 and molecular dynamics simulation. 

From the complex model refined by simulation, interaction region at the FEN1 C-terminal 

(336–359a.a) and at the N-terminal (~25a.a.) contacts attach the WRN protein firmly via 

residues E738, R740, R741, K742, T743, W761, E762, F763, E764, G765, L787, N788, 

L789, Q816, L860, N938, R940, L943, D944 and Y947 in WRN. Residue E359 in FEN1 

interacts closely with Y947, C946, S906, D944, H945 and F959. The average pair 

interaction energy of the E359 residue to the WRN protein is −43.6kcal/mol during the 10ns 

molecular dynamics simulation, which is lower than that of E359K mutation (−39.7kcal/

mol). This suggests that wild-type FEN1 binds to WRN protein more strongly than FEN1 

E359K.

FEN1 E359K has normal FEN activity but lower GEN activity compared to wild type FEN1

To characterize the functionality of FEN1 E359K, we tested if the mutation affected the 

nuclease activities of FEN1. In this study, 80-nt DNA double-stranded structures were used 

to assay FEN and GEN activities (Figure 2C and D). Our results showed that WT and 

E359K had similar intensities in 15% PAGE images as well as similar activities over a time-

course to assay the flap endonuclease (Figure 2C). In contrast GEN activity was drastically 

reduced in the FEN1 E359K samples (Figure 2D). Whereas the excision efficiency, as 

measured by band intensity, reached 92% in WT at 60 minutes, the last point in our time-

course assay, the excision efficiency for E359K reached only 33%. This suggests that the 

ability of FEN1 E359K to resolve bubble structures was significantly reduced and could 

affect its ability to resolve stalled DNA replication forks in the cell. We then investigated the 

impact of WRN on the GEN activity of WT and E359K FEN1. Interestingly, WRN 

stimulated the GEN activity of both WT and E359K FEN1 (Figure 2E).

Establishment of the FEN1 E359K mouse model

To determine the functions of the FEN1 WRN complex and the effect of FEN1 E359K on 

GEN activity in vivo, we constructed a FEN1 E359K mouse using a gene targeting approach 

(Figure 3A) that used methods previously described 30. The genotype of the E359K mice 

was confirmed by Southern blotting and DNA sequencing (Figure 3B, C). Homozygous 

E359K mice were generated and the expression of FEN1 in WT and E359K mice were 

found to be similar (Figure 3D).

E359K cells display defects in repair of DNA damage

Because the nuclease activity assays indicated that FEN1 E359K has greatly reduced GEN 

activity and cannot resolve bubble DNA structures in vitro, this could translate in vivo to an 

impaired ability to repair stalled DNA replication forks, which would subsequently induce 

DNA double-stranded breaks. To test if FEN1 E359K induces DSBs, we treated WT and 

homozygous FEN1 E359K (E359K) mouse MEF cells with CPT or UV radiation (Figure 4). 

The presence of DSBs can be determined by staining γH2AX, which arises due to the 

phosphorylation of histone H2AX during breakage31. In untreated WT and E359K cells, we 

saw little or no positive γH2AX staining (Figure 4A, B). In contrast, after UV or CPT 

treatment, γH2AX staining was present in both cell types but was significantly higher in the 

E359K cells compared to WT cells (P<0.05) (Figure 4B). The increased γH2AX levels were 
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confirmed by Western blotting and the difference observed between the WT and K359K 

cells was consistent with the immunofluorescence data (Figure 4C, D). The band intensity of 

γH2AX in CPT and UV treated E359K cells were much greater than those of the WT cells. 

The data revealed that E359K cells accumulated more DSBs than WT in response to UV and 

CPT treatment, but not when untreated.

FEN1 E359K cells spontaneously induce fragile telomeres

We suspected that any complications that occurred in DNA replication in FEN1 E359K cells 

would be especially apparent at the telomeres. Replication of telomeres requires intricate 

DNA repair mechanisms due to the presence of highly repetitive sequences and G-rich 

structures in telomere DNA12. It has been suggested that the interaction between WRN and 

FEN1 could play a role in maintaining telomere stability21. However, in previous studies the 

entire C-terminal of FEN1 was truncated to evaluate the FEN1-WRN relationship and such a 

large truncation introduces the possibility that interactions between FEN1 and other proteins 

were also disrupted. Here, we compared the structure of telomeres in WT and E359K cells 

using a FISH assay (Figure 5A) and determined that telomere fragility was 1.5 fold higher in 

E359K cells (4.3%) compared to WT cells (2.7%) (p=0.0009) (Figure 5B). Three replicates 

of thirty metaphase cells revealed one fragile telomere occurred per 37 telomeres in WT 

cells and one occurred per 23 in E359K cells, indicating that E359K cells have a higher level 

of spontaneous telomere fragility.

Chromosome-orientation fluorescence in situ hybridization (Co-FISH) was used to compare 

telomere fragility between leading and lagging strands of DNA synthesis. We found that 

fragile telomeres increased on both the leading and lagging strands in E359K cells (Figure 

5C, D). Telomere fragility on the lagging strand was 2.3% in E359K compared to 1.2% in 

WT cells (p=0.002), whereas fragility on the leading strand was 0.5% in E359K and 0.15% 

in WT cells (p=0.005). In addition, telomere loss was increased on both the leading and 

lagging strands (Figure 5E). Telomere loss for lagging strands was 0.85% in E359K cells 

and 0.45% in WT cells (p=0.0004), whereas telomere loss in leading strands was 0.75% in 

E359K cells and 0.3% in WT cells (p=0.007). Altogether, we concluded that telomeres were 

more fragile and more likely to be lost from both the leading and lagging strands in E359K 

cells.

FEN1 E359K cells spontaneously accumulate chromosomal breaks and become aneuploid

Chromosomal instability and aneuploidy are associated with accumulation of DNA breaks 

and cancer32. Increased numbers of stalled replication forks are correlated with genomic 

instability1, 14. Therefore, we compared the number of spontaneous chromosomal breaks 

that occurred in WT, WT/E359K, and E359K MEF cells. We showed that the heterozygous 

(WT/E359K) and homozygous (E359K) FEN1 mutant cells had significantly more 

chromosome breaks than the WT cells. The spontaneous chromosome breakage in WT, WT/

E359K, and E359K cells were 0.6%, 1.0% (p = 0.028), and 2.0% (p = 0.001), respectively 

(Figure 6A, B). Because γH2AX staining of DSBs revealed that the DSB level in inter-phase 

E359K cells was similar to that in the WT cells (Figure 4A, B), the accumulation of more 

chromosome breaks in metaphase E359K cells than in the WT cells is likely due to a defects 

in repair of the stalled replication forks.
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Because accumulated chromosomal breaks and fragile telomeres are associated with 

aneuploidy32, we also examined the cells for this phenotype and found that the average 

percentage of near-tetraploid aneuploidy in WT/ E359K and E359K cells were 9.6% (p = 

0.033) and 14.5% (p = 0.007), compared 6.6% for the WT (Figure 6C, D). Taken together, 

the data indicated that FEN1 E359K cells have higher levels of spontaneous chromosome 

breaks and aneuploidy than WT cells. Next, we investigated whether E359K-induced DNA 

damage spontaneously or in response to DNA damaging agents such as camptothecin (CPT) 

impacts the cell growth in vitro. We found under normal culture conditions, the WT/E359K 

and E359K cells had mild to moderate defects in cell growth (Figure 6E). Furthermore, we 

observed that WT/E359K and E359K cells were more sensitive to CPT, a chemical reagent 

that causes stall of DNA replication forks in cells. Upon treatments of WT cells with 10 μM 

CPT for 2 hrs, the number of WT cells increased by 10% per day. However, the number of 

WT/E359K live cells increased by only 1.7% per day, while the number of E359K live cells 

decreased 3% per day (Figure 6E). These data suggested that the E359K FEN1 mutation 

results in defects in the repair machinery of the stalled replication forks.

E359K cells have a high transformation potential

Our data indicates that E359K cells develop more chromosome breaks, have more fragile 

telomeres and are more likely to become aneuploid. We suspected that these cellular 

abnormalities would contribute to cellular transformation and lead to clonal expansion. To 

determine if the E359K mutation promoted tumorigenesis, we performed cellular 

transformation assays (Figure 7A, B). The number of colonies formed by E359K cells was 9 

fold higher than those of WT cells (p = 0.01), suggesting that E359K cells can develop 

aneuploid-associated cancer.

Spontaneous tumor incidence is much higher in E359K mice than wild type mice

In addition to evaluating frequency of tumorigenesis using cellular transformation assays, 

we evaluated spontaneous tumorigenesis in vivo in WT and FEN1 E359K mice and found 

that E359K mice were more susceptible to developing cancers compared to WT mice. 

Among 51 E359K mice between 14 and 20 months of age, 29 developed lung tumor, four 

developed liver tumors, four developed spleen tumors and one developed a thymus tumor 

(Figure 7C). In contrast, only nine out of 51 WT mice developed tumors, which were all in 

the lung. Altogether, 74.5% of E359K mice developed various types of cancers compared to 

only 17.6% of the WT mice (P<0.0001) and 56.9% of E359K mice specifically developed 

lung cancer. Overall, the data suggest that the FEN E359K mutation is oncogenic.

Discussion

Our current study identified that the E359K FEN1 mutation in a breast cancer patient who 

has a family history of breast and uterine cancers is an oncogenic mutation that promotes 

genomic instability and tumorigenesis. Furthermore, we have characterized the mechanisms 

underlying how this SNP promotes cancer. The robust 5′ flap endonuclease and 5′ 

exonuclease activities of FEN1 are required to remove the RNA-DNA flap structure during 

Okazaki fragment maturation33–35. FEN1 deficiency causes defects in DNA replication and 

cellular proliferation15, 30, 36. Complete elimination of FEN1 flap activity in mice results in 
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early embryonic lethality37, 38. Nevertheless, we have identified both heterozygous and 

homozygous FEN1 mutations in human lung cancers, breast cancers, and other cancers. A 

subset of these FEN1 mutations impairs the EXO activity and gap dependent endonuclease 

(GEN) activity. Yeast or mouse cells that have the E160D FEN1 mutation, which models 

EXO- and GEN- deficient human FEN1 mutations, display high frequencies of secondary 

somatic mutations and E160D mice have high spontaneous cancer rates39. This suggests that 

FEN1 mutation-induced mutator phenotype promotes cancer initiation and progression.

Our current data reveals a distinct mechanism by which the E359K FEN1 mutation 

promotes cancer development. The E359 is conserved in FEN1 of vertebrate animals and the 

E359K FEN1 mutation disrupts its GEN activity and the interaction of FEN1 with WRN, 

but it has little impact on the FEN and EXO nuclease activities. The FEN1-WRN interaction 

and GEN activity are critical for resolving stalled and collapsed DNA replication forks, 

which occur spontaneously during replication, and are also required for the correct 

replication of telomere sequences, which have high levels of secondary structure. 

Consequently, E359K mutant cells accumulated significantly more chromosome breaks than 

WT cells, especially at the telomeres and they are also more prone to developing 

aneuploidy. In contrast, the levels of chromosome breaks and aneuploidy that occur in FEN1 

E160D cells are similar to that of WT40. Chromosome breaks are a major cause of 

chromosome deletions, duplications and translocations, which can contribute to loss of 

heterozygosity, the activation of oncogenes, and the loss of tumor suppressor genes4, 5. In 

addition, aneuploidy has been linked to epigenetic alterations that promote the ability of 

cancer cells to evade cellular senescence and apoptosis pathways41. These molecular 

changes caused by the E359K FEN1 mutation are key molecular events during development 

of cancer in E359K mice.

Then, how does the E359K FEN1 mutation contribute to genome instability? We show that 

E359K disrupts the GEN activity of the FEN1 and its interaction with WRN. We originally 

determined that the GEN activity of the FEN1/WRN complex can process model DNA 

substrates resembling stalled DNA replication forks and showed that the GEN activity was 

critical for rescuing stalled forks in yeast cells26. Therefore, impairment of these two 

biochemical properties of FEN1 is likely to cause defects in DNA replication, especially 

under environmental stresses. We consider that a decrease in the GEN activity impair 

FEN1’s capacity to process stalled replication forks. Furthermore, it is plausible to implicate 

that disruption of FEN1/WRN interaction can impair the recruitment of FEN1 to stalled 

replication forks for proper processing of the fork in vivo, albeit it does not abolish the 

stimulation of the GEN activity of FEN1 in vitro. We previously demonstrated that the 

F343A/F344A FEN1 mutation, which abolishes only the FEN1/PCNA interaction, but not 

the PCNA stimulation of FEN1, abolished FEN1 localization into the replication sites during 

S phase30, 42. Likewise, disruption of the FEN1/WRN interaction may fail the proper 

processing of stalled replication forks. Supporting this suggestion, the E359K FEN1 cells 

display defective DNA replication at telomeres where replication forks frequently stall, and 

are much more sensitive to the fork stalling agents CPT than WT cells.

In this study, we found that E359K FEN1 mutant cells have significantly more fragile 

telomeres and telomere loss, which is indicative of stalled replication forks and replication 
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stresses occurring during telomere replication43, 44. It suggests the GEN activity of the 

FEN1/WRN complex is critical for promoting telomere replication, also likely by restarting 

stalled replication forks. These findings reveal a new function of FEN1 for maintaining 

telomere integrity. FEN1 was previously shown to localize to telomeres and is required for 

telomere stability in mammalian cells21. We subsequently showed that FEN1 forms a 

complex with telomerase23 to promote telomere DNA replication. It also maintains telomere 

stability in cells that lack telomerase, but undergo alternative lengthening of telomeres by 

the (ALT) pathway22. Our current data suggest that FEN1 in complex with WRN employs 

the GEN activity required to promote efficient telomere replication and suppress fragile 

telomeres.

Traditional and molecular cancer epidemiological studies limit the scope of genetic and 

environmental factors that initiate and accelerate cancer progression, employing statistics 

and, in certain degree, molecular biological approaches. In our specific case, the FEN1 

E359K mutation has only been reported in one patient in a breast cancer family. To resolve 

such limitations, we have used mouse models to study the effects of environmental and 

genetic polymorphisms factors, more closely mimicking the case in human. The E359K 

mice allow characterizing the E359K in FEN1 SNP from a patient in a French family who 

had a high propensity for developing breast cancer. In addition, we are able to understand 

the role of the GEN activity of FEN1 and its interaction with WRN in DNA replication and 

repair and in maintaining the genome stability. Our study suggests that possibly patients that 

develop both lung and breast cancers could be a potential carriers of this mutation, because 

our mouse model preferentially developed lung cancer rather than breast cancer. However, 

this could simply be a result of background genetic variation. There have been many other 

reports of different cancer types generated in mouse models when compared to human 

phenotypes 45.

Materials and Methods

Screening for FEN1 variants

The FEN1 gene was PCR amplified from DNA extracted from blood samples from patients 

who had a family history of breast cancer but were wild-type for the BRCA1 and BRCA2 

genes (DNA provided by Dr. D. Stoppa-Lyonnet, Institut Curie). Four different pairs of 

primers were used to generate four different amplicons (sequences available by request) 

using recombinant Taq Polymerase (Invitrogen): One amplicon spanned Exon 1 of FEN1 

(351 bp long, non coding exon), and the three others together spanned Exon 2 (containing 

the 1141 bp coding sequence of FEN1). PCR fragments were purified and sequenced on 

both strands with an ABI3130XL capillary sequencer (Perkin Elmer) using the Big Dye 

Terminator Sequencing kit, version 1.1 (Perkin Elmer). Sequences were analyzed with 

Seqscape software version 2.5 (ABI).

FEN1 Nuclease activity assays

The nuclease activity assays were performed as previously described 26. Briefly, the 

indicated amount of FEN1 protein was incubated with 0.5 pmol of flap, nicked, or gapped 

DNA substrates for varying time periods. Total reaction solution was 30 μL. Reactions were 

Chung et al. Page 8

Oncogene. Author manuscript; available in PMC 2015 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyzed by separating using 15% PAGE and the bands were visualized and analyzed using 

a phosphorimager (Amersham Biosciences, Piscataway, NJ).

Immunofluorescence staining

Immunofluorescence staining was performed as previously described30. Briefly, cells were 

grown to 80% confluence on coverslips in 12 well plates, then fixed with 4% 

paraformaldehyde and quenched with glycine. Cells were further permeabilized with 0.2% 

Triton X 100 and blocked in 3% BSA. Image iT FX signal enhancer was added to prevent 

signal fading. All antibodies (Ab) were diluted in 3% BSA. The γH2AX Ab (Abcam) was 

used at a concentration of 1:2000. Slides were washed with PBS and labeled with Alexafluor 

568 (Invitrogen). Nuclei were stained with 200 ng/ml of 4′, 6-diamidino-2-phenylindole 

(DAPI). Coverslips were mounted onto slides using SlowFade Gold antifade reagent 

(Invitrogen) and examined using a fluorescence microscope (Olympus).

Pull-down Assays

BSA, PCNA and WRN were immobilized on CNBR-Sepharose 4B beads (GE Healthcare) 

according to the manufacturer’s instructions. Briefly, 1ml of beads were swollen in 1mM 

HCL for 15 minutes. WRN, PCNA and BSA were re-suspended in coupling buffer (0.1 M 

NaHCO3, 0.5 M NaCl, pH 8.3) and incubated with sepharose beads overnight at 4°C. 

Unbound active groups were blocked using 0.1 M Tris, pH 8.0. Unbound protein was 

washed off with three alternating cycles of 0.1 M acetic acid/ NaCl pH 4.0 and 0.1 M Tris 

pH8.0. The protein density on the beads was 200 ng/μl. 10μl of the protein coupled beads 

were incubated with wild-type and mutant FEN1 overnight at 4°C. Beads were washed and 

boiled in 95° C SDS-PAGE sample buffer for Western blotting.

Generation of E359K mice and MEF cultures

E359K mice were generated according to a protocol that was previously described30. Mouse 

embryonic fibroblasts were isolated from the 129 S1 mice background on the 13th day of 

embryo development (E13). The embryos were disassociated in trypsin to produce MEF 

cells. All cell culture and chemical treatments were performed at 37°C in a 5% CO2 

incubator. Dulbecco modified Eagles medium (Invitrogen), supplemented with 10% fetal 

bovine serum (Invitrogen) and penicillin-streptomycin (Invitrogen) was used to culture the 

cells.

Metaphase spread analysis

Cells were treated with colcemid (0.1) μM for 5 hours, and then harvested by trypsinizing, 

and washed with PBS. The cells were treated with hypotonic KCl (75mM) and fixed in 

Carnoy’s solution. Fixed cells were dropped onto slides by pipetting and baked overnight at 

55°C. Slides were stained with Giemsa and analyzed under the microscope. A minimum of 

100 mitotic cells were analyzed for each sample.

Cell transformation assays

The focus formation assays were done according to a previously established protocol 46. 

Briefly, 1 x 105 MEF cells were plated in 10cm dishes and incubated for 30 days at 37°C. 
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Cells were then washed with PBS and fixed with cold methanol for 30 minutes. Giemsa was 

used to stain the cells overnight at room temperature. Stained plates were washed and dried 

prior to scoring the colonies. Images of plates were taken and scored using UVP 

VisionWorks LS software.

FISH and CO-FISH

Telomeric FISH and CO-FISH were performed as previously described 43. Cells collected 

during metaphase spread analysis were denatured and hybridized to a peptide nucleic acid 

(PNA) probe Alexa488-OO-(TTAGGG) at 37 C for 2 hours to label the telomeres. For CO-

FISH, cells were cultured in the presence of 10 μM BrdU and BrdC (3:1) for one population 

doubling before colcemid treatment. Slides containing metaphase spreads were incubated 

with Hoechst 33258 for 15 min, exposed to UV for 30 min, treated with ExoIII (Promega) 

for 10 min, and then hybridized to the PNA Alexa488-OO-(TTAGGG) and Cy3-OO-

(CCCTAA)3 probes at room temperature for 2 hours. DNA was counterstained with DAPI. 

Slides were then washed, dehydrated by washing in an ethanol series, and imaged using a 

Zeiss AxioImager M2 epiflourescence microscope.

FEN1 and WRN protein complex modeling

Computer assisted molecular modeling is used to decipher the protein-protein and DNA 

interactions to understand the role of complex cellular pathways. We used the computational 

docking program ZDOCK47 to identify interaction networks between FEN1 and WRN, as 

well as the hypothetical models of their ternary DNA complexes. The model for the 

FEN1/DNA complex was constructed by using protein three dimensional structure templates 

of 1UL128 and 3Q8K29. The homology model of the WRN protein was constructed by using 

PDB 1OYW 48 for the region of 540–1030 a. a. with a sequence identity of 36% using 

CLUSTALW for alignment and the SwissModel homology modeling program49, and by 

using PDB 3AAF27 for the region of 1031–1059a.a. together with the WRN/DNA complex. 

The FEN1/WRN/DNA complex was selected from 20,000 protein-protein docking poses 

calculated by ZDOCK software. This model was selected based on the docking score and 

consensus score of the distances of the possible FEN1 protein interaction region in C-

terminal (336–359a.a., which showed to contact PCNA in PDB 1UL1) to WRN protein and 

to WRN minimal binding motif in the model.
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Figure 1. The heterozygous point mutation in the FEN1 gene identified in a French family with a 
high incidence of breast cancer
(A) Pedigree of the family showing several individuals who had a breast tumor (black circle) 

or uterine tumor (half black circle). The crossed squares or circles indicates deceased family 

members. The black arrow indicates patient 211, who has breast cancer and from whom 

blood samples were obtained. The age at which cancer was diagnosed is shown under each 

patient. (B) Screening of FEN1 variant in patient 211. Four PCR amplicons of the FEN1 

gene were sequenced (top). A heterozygous variant G to A in Exon2 (on both DNA strands) 

changing glutamine into lysine (E359K) in the protein was detected in patient 211 (bottom). 

This variant could not be explored in other members of the family because blood samples 

could not be obtained.
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Figure 2. FEN1 E359K disrupts FEN1-WRN complex and GEN activity
(A) FEN1/WRN/DNA complex model. The FEN1 protein model is shown as blue/pink and 

E359 residue of FEN1 is in red. The blue region is the C-terminal interaction surface of 

FEN1 with the PCNA protein (pdb code 1ul1, 336–359a.a.). The WRN protein model is 

displayed as yellow/cyan. The cyan-colored part is the WRN minimal binding motif (949–

1059a.a.). DNAs is grey. The DNA molecule that interacts with FEN1 is adopted from PDB 

3q8k and the one that interacts with WRN is from PDB 3aaf. (B) Pull down assays of WT 

and E359K FEN1. (C) FEN activity assay with 0.1 ng of FEN1 proteins incubated with 1 

pmol flap substrates. (D) GEN activity assay with 20 ng of FEN1 proteins incubated with 1 

pmol gapped DNA substrates for varying time periods. (E) GEN activity assay with FEN1 
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(20 ng) and WRN (0 or 50 ng) proteins incubated with gapped DNA substrates (1 pmol) for 

varying time periods. Reactions were analyzed by 15% PAGE. Upper panels are substrates, 

middle panels are the representative PAGE images. Bottom panels are time-courses of the 

nuclease activities. Values are average of three independent assays.
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Figure 3. Knock-in of E359K FEN1 mutant in mouse germ line
(A) The expected restriction maps of the E359K targeting vector and different types of Fen1 

alleles. A DNA fragment containing the mouse G1075A Fen1 mutation (E359K in amino 

acid sequence) was generated by site-directed mutagenesis. It was then ligated into the gene 

targeting vector, PKO scrambler NTK (Invitrogen). The remaining copy of the Lox P 

sequence is located in the intron sequence, 200 bp upstream of the ATG start codon of the 

Fen1 open reading frame. (B) Southern hybridization of wild type (WT) and E359K (neo+) 

heterozygous (ED/+) embryonic stem (ES) cells. Genomic DNA isolated from ES cells were 

digested with Hind III or Xho I and detected with probes 1 and 2, respectively. Hind III and 

Xho I digestion products of WT and ED/+ ES genomic DNA are indicated. (C) Selection of 

mice homozygous for E359K. Fen1 alleles were amplified by PCR using tail genomic DNA 

as a template. (D) FEN1 expression in embryonic fibroblast (MEF) of WT and ED/ED mice. 

FEN1 and GADPH were detected by Western blot analysis using monoclonal antibodies 

against FEN1 and GADPH, respectively.
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Figure 4. E359K is susceptible to the DNA damaging agents, UV and Camptothecin
MEF cells were treated with a single dose of 60 J/m2 UV. Alternatively, the cells were 

treated with 10 μM camptothecin for 2 hours. γH2AX is stained in red; Blue, DNA 

counterstaining with 4′, 6-diamidino-2-phenylindole (DAPI). (A) The cells were stained for 

γH2AX. (B) Percentage of γH2AX-positively staining nuclei. Values are the mean ± SD of 

n = 3 independent experiments. * P<0.05 (Student’s T-test). Western blot analyses of 

γH2AX after UV (C) and camptothecin (D) treatments.
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Figure 5. Fragile telomeres in FEN1 E359K cells and WT cells
(A) Representative telo-FISH of metaphase WT and E359K MEF cells. Arrows indicate the 

fragile telomeres. (B) Percentage of fragile telomeres in WT and E359K cells estimated 

from FISH. Values are the mean ± stdev of three independent experiments (p= 0.0009, 

Student’s T-test). C) Representative images of CO-FISH. Telomere loss or fragile sites in 

the lagging and leading strands are indicated by arrows. (D) Percentage of fragile telomeres 

in lagging and leading strands calculated for WT and E359K cells. P=0.002 for lagging 

strands and p=0.005 for leading strands (Student’s T-test). Values are mean ± stdev of three 

independent experiments. (E) Percentage of telomere loss in lagging and leading strands for 

WT and E359K cells. P=0.0004 for lagging strands and p=0.007 for leading strands 

(Student’s T-test). Values are mean ± stdev of three independent experiments.

Chung et al. Page 19

Oncogene. Author manuscript; available in PMC 2015 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. FEN 1 E359K cells accumulate chromosome breaks
(A) Representative Giemsa-stained WT and E359K MEF metaphase cells. Arrows indicate 

chromosome breaks. (B) Percentage of chromosomal breaks in WT, WT/E359K, and E359K 

MEF cells. Values are the mean ± stdev of three independent experiments. *p = 0.028 and 

**p = 0.001 (Student’s T-test) (C) Representative Geimsa-stained WT and E359K MEF 

metaphase cells. n = number of chromosomes in the metaphase cells. Arrows indicate 

chromosome breaks. (D) Percentage of aneuploid WT, WT/E359K, and E359K MEF cells. 

Values are mean ± stdev of three independent experiments. *p = 0.033 and **p = 0.007 

(Student’s T-test). (E) Growth rates of WT, WT/E359K, and E359K MEF cells. The cells 

seeded in the 6-well plates were treated or untreated with CPT for 2hrs. After removal of the 

drug, the cells were washed and cultured in fresh medium for 4 days. The relative growth 

rate was expressed as the change in the cell number per day divided by the number of cells 

at day 0.
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Figure 7. The E359K mutation leads to increased cell transformation and a higher spontaneous 
tumor incidence in mice
(A) Image of transformed cell colonies. MEF cells were trypsinized and seeded onto a new 

dish (105 cells per dish) for the colony-focus formation assays. The cells were incubated at 

37° for 30 days before fixing with cold methanol and staining with Giemsa. (B) 

Quantification of transformed cells. Images were taken and scored using UVP VisionWorks 

LS software. Values are the mean ± SD over three experiments. * P=0.01 (Student’s T-test). 

(C) In vivo study of tumor development in E359K mice and in vitro transformation assays. 

Lymphoid tumor showed profound extramedullary hematopoiesis. Images were taken with 

200x magnification. (D) Percent tumor formation in lung, liver, and spleen of wild type mice 

(N=51) and E359K mice (N=51). Mice were evaluated between 14 and 20 months of age.
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