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Abstract
Breast cancer is a highly heterogeneous disease that is clinically classified into several sub-

types. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative

breast cancer (TNBC), and these two groups are generally studied together as a single

entity. Differences in the molecular makeup of breast cancers can result in different treat-

ment strategies and prognoses for patients with different breast cancer subtypes. Com-

pared with other subtypes, basal-like and other ER+ breast cancer subtypes exhibit marked

differences in etiologic factors, clinical characteristics and therapeutic potential. Anthracy-

cline drugs are typically used as the first-line clinical treatment for basal-like breast cancer

subtypes. However, certain patients develop drug resistance following chemotherapy,

which can lead to disease relapse and death. Even among patients with basal-like breast

cancer, there can be significant molecular differences, and it is difficult to identify specific

drug resistance proteins in any given patient using conventional variance testing methods.

Therefore, we designed a new method for identifying drug resistance genes. Subgroups,

personalized biomarkers, and therapy targets were identified using cluster analysis of differ-

entially expressed genes. We found that basal-like breast cancer could be further divided

into at least four distinct subgroups, including two groups at risk for drug resistance and two

groups characterized by sensitivity to pharmacotherapy. Based on functional differences

among these subgroups, we identified nine biomarkers related to drug resistance: SYK,

LCK, GAB2, PAWR, PPARG, MDFI, ZAP70, CIITA and ACTA1. Finally, based on the

deviation scores of the examined pathways, 16 pathways were shown to exhibit varying

degrees of abnormality in the various subgroups, indicating that patients with different

subtypes of basal-like breast cancer can be characterized by differences in the functional

status of these pathways. Therefore, these nine differentially expressed genes and their
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associated functional pathways should provide the basis for novel personalized clinical

treatments of basal-like breast cancer.

Introduction
Breast cancer is highly heterogeneous and most frequently occurs in females. This disease is
divided into several different clinical subtypes, including luminal A, luminal B, basal- and nor-
mal-like, based on differences in gene expression profiling and immunohistochemical indica-
tors. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative breast
cancer (TNBC). Therefore, basal-like breast cancer is usually described as a form of TNBC,
and these diseases are commonly studied together as a single group [1]. TNBC is an aggressive
subtype of breast cancer that is defined by the absence of ER, PR and HER2, and it is character-
ized by poor prognosis and rarely benefits from targeted therapy [2,3]. Effective targeted thera-
pies specific for TNBC currently do not exist, and treatment regimens for TNBC are limited
[4]. Hence, elucidating the mechanisms underlying resistance to adjunctive chemotherapy
drugs and identifying new biomarkers and potential therapeutic targets in TNBC patients
remain significant and challenging goals for modern clinical practice.

Drug resistance is commonly observed in TNBC patients and is more common than in
non-TNBC patients [5,6]. Studies have revealed numerous drug resistance mechanisms in
TNBC patients, and multiple genes and biological pathways have been implicated in this pro-
cess. For example, CD73 and CD133 have been shown to impact drug-mediated anti-tumor
immune responses, and IMP3 regulates the drug resistance proteins, ABCG2 and HSF1, as well
as autophagy related protein 7 (ATG7) [4,7–9]. The PI3K/AKT/mTOR pathways have also
been linked to drug resistance [10] through the regulation of multiple biological processes in
the human body.

To realize the possibility of personalized therapy in TNBC patients, much research has been
devoted to identifying personalized signatures by subdividing TNBC patients into subgroups
that present different molecular characteristics or prognoses. One of the most significant works
in this field was that of Lehmann and colleagues [3]. Lehmann et al. identified six TNBC sub-
groups using K-means clustering by amassing TNBC patient data from multiple platforms.
They demonstrated that TNBC can be divided into distinct subgroups, each of which has dis-
tinct molecular characteristics. However, whether chemotherapy response was significantly dif-
ferent between these six subgroups was not addressed in detail. To efficiently identify
prognosis signatures, Ke-Da Yul [11] treated the chemotherapy sensitive and resistant groups
as two independent subgroups of TNBC, eventually identifying seven gene prognosis signa-
tures. The purpose of this study was to integrate the main ideas of Lehmann and Ke-Da Yu to
take into account both heterogeneity among TNBC subgroups and personalized resistant bio-
markers in TNBC patients.

One commonly used method to identify important specific genes that mediate a given phe-
notype is to determine the gene expression signature of the case group and then compare this
with a control group. Genes that exhibit statistically significant differences in expression
between these two groups are then potentially linked to the phenotype of the case group. Con-
ventional variance test methods, such as t tests, Mann-Whitney tests, and the significance anal-
ysis of Microarray (SAM) approach [12], have numerous advantages for analyzing
homogeneous tumors. However, these methods are not suitable for highly heterogeneous
tumors such as breast cancer. In particular, conventional variance test methods lack the
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sensitivity to identify personalized drug resistance genes when comparing breast cancer
patients as a single group to controls. Indeed, potential specific biomarker genes are likely to
only exhibit significant differential expression within particular subgroups, where they could
play important roles in the individualized development of drug resistance [13,14].

To identify these personalized genes, we developed an algorithm to score the differential
expression of each gene between the sensitive group and the drug-resistant group and then ver-
ify significant genes via random perturbation. In addition to differentially expressed genes that
would have been identified using conventional variance tests, this new method can also effec-
tively identify personalized genes that are differentially expressed in specific subgroups of the
case group. Next, the identified genes were subjected to cluster analysis and enrichment analy-
sis. Finally, based on molecular correlations, basal-like cancer patients were divided into two
high risky subgroups and two low risky subgroups, and drug-resistance-related genes and path-
ways were identified for each subgroup. This analysis allowed us to quantify the degree of simi-
larity and specificity for the mechanisms of drug resistance between the different subgroups.
Each subgroup showed a specific set of differentially expressed genes and pathways, although
several common drug resistance genes and biological pathways were shared between multiple
subgroups. It is possible that these subgroups share the same terminal target, and certain drug-
related proteins may eventually be affected in all subgroups, despite the fact that different
upstream biological processes are involved. The nine identified genes represent potential bio-
markers and targets for personalized clinical treatment, and they may help to improve clinical
efficacy and reduce the side effects of anti-cancer drugs.

Materials and Methods

Discovery cohort
A total of 178 samples were downloaded from the expression profile dataset GSE34138 in the
GEO database, including 46 basal-like subtype patients (24 drug-sensitive patients and 22
drug-resistant patients), 68 luminal A subtype patients (four drug-sensitive patients and 64
drug-resistant patients), 44 luminal B subtype patients (six drug-sensitive patients and 38
drug-resistant patients), and 20 normal-like and Her2 type patients. As we aimed to study the
personalized resistant biomarkers for the Basal (HER2 negative) type of breast cancer, we
removed the 20 normal-like and Her2 type patients.

Validation cohort
To demonstrate that the resistant-related genes identified here have portability and repeatabil-
ity, we obtained a validation cohort from the GEO and EBI databases (GSE1456, GSE3494,
E-TABM-158). A total of 93 TNBC patients were screened based on ER, PR or HER2 status.
The validation data were normalized using RMAmethods and then integrated into one profile.
Considering that the chemoresistance-induced relapse ratio was highest during the first 3 years
[11], we treated patients with DSS Time (Disease-Specific Survival Time in years) values less
than 3 years as chemoresistant and those with DSS Time values greater than 3 years as
chemosensitive.

Extraction of differentially expressed genes
Data from breast cancer samples of the luminal and basal-like subtypes were first selected from
the expression profile dataset GSE34138. Due to intrinsic molecular variations between the
samples of these two subtypes, the 46 basal-like subtype samples and 112 luminal subtype sam-
ples were analyzed separately to maintain sample homogeneity. The two sets of expression
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profiles were normalized using the RMAmethod to eliminate inherent differences in the levels
of gene expression. All expression values were subject to Z-score corrections. In the normalized
expression profiles, samples that were sensitive to chemotherapy (CR) were assigned to the
sensitive group and those that were insensitive to chemotherapy (NOCR) were assigned to the
drug-resistant group. The normal range was defined based on the expression values of the sen-
sitive group (mean ± standard deviation). Effectively, this meant that the expression values of
the patients in the sensitive group were defined as fluctuating within the normal range and that
drug resistance was likely to occur when a patient expression values were outside that normal
range. The number of samples in the sensitive group was defined as n1 and the number of sam-
ples in the drug-resistant group was defined as n2, and the score of gene g was calculated for
expression outside the normal range for all drug-resistant groups using Formula 1.

Formula 1. Calculation of deviation score

score ¼
Xn2
i¼1

ðX2i � X 0Þ

where

X 0 ¼

Xmax if X2i > Xmax

X2i if Xmin < X2i < Xmax

Xmin if X2i < Xmin

ð1Þ

8>>>><
>>>>:

In this formula, X2i represents the expression value of gene g in patient I in the drug-resis-
tant group, and Xmax and Xmin represents the two limit values of the normal range. The raw
score of gene g was calculated using the cumulative sum of the scores for gene g in the n2
patients in the drug-resistant group.

After obtaining the raw score for gene g, the n1 samples in the sensitive group and the n2
samples in the drug-resistant group were subject to 10,000 random permutations, and the n1
samples were then randomly selected as the sensitive group, with the remaining n2 samples
counting as the drug-resistant group. Then, a new random score was calculated using Formula 1.
The above procedure was repeated 10,000 times to acquire the background distribution of scores
for gene g, which was then converted to a P value. A gene was considered to be significantly dif-
ferent between the groups when P<0.05.

Hierarchical cluster analysis
Cluster analysis was performed to examine the extracted genes with significantly different lev-
els of expression between patients with diverse outcomes in the luminal and basal-like sub-
types. Average linkage hierarchical cluster analysis using Pearson correlations was conducted
using the Cluster 3.0 program, and the data were visualized in Treeview [15,16]. The expression
profiling data were filtered and standardized using the Cluster 3.0 program, and the genes and
samples were standardized using the median center method. Centered correlation was used in
the similarity matrix, and hierarchical clustering was used for the cluster analysis. The analyses
were visualized as heat maps. As luminal type breast cancer can be divided into two subgroups,
luminal A and luminal B [17], the differentially expressed genes in luminal breast cancer
patients were extracted for cluster analysis to evaluate the efficacy of the proposed method for
subdividing this single breast cancer subtype into personalized subgroups. The basal-like type
of breast cancer was then analyzed to identify intrinsic subgroups.
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Allocation of subgroup-specific genes
Samples that had similar molecular expression profiles were clustered together using hierarchi-
cal clustering. In the drug-resistant group, patients in different subgroups may share similar
specific drug resistance mechanisms. By comparing the specific expression patterns in each
subgroup, candidate genes were allocated into each subgroup. Assuming a total of m subgroups
were obtained in the drug-resistant group and n subgroups in the sensitive group via hierarchi-
cal clustering, determination of whether a gene was differentially expressed in a specific sub-
group was made by calculating the mean value of this gene in the subgroups of the drug-
resistant group (x1, x2. . .xm) and the mean value of this gene in the subgroups of the sensitive
group (y1, y2. . .yn). The fluctuation range was then calculated based on the mean expression
values of the drug-resistant group and the sensitive group. If the mean value for a given gene
within the subgroups of the drug-resistant group was outside of the fluctuation range of the
sensitive group, this indicated that the gene was differentially expressed in the subgroups of the
drug-resistant group compared with the sensitive group; therefore, this gene was considered to
be specific for the drug-resistant subgroup. However, when the mean value of a given gene
within the subgroups of the sensitive group was outside the fluctuation range of the drug-resis-
tant group, this indicated that the gene was stably expressed in the sensitive group and that its
abnormal expression could lead to drug resistance; therefore, genes of this type were allocated
to the sensitive subgroup.

Identification of specific pathways and genes related to drug resistance
The corresponding specific gene set was obtained by allocating differentially expressed genes to
various subgroups based on their mean expression values. These subgroup-specific genes
exhibited significant differences in expression when compared with the sensitive group. Thus,
they represent candidate genes that may be involved in drug resistance mechanisms in the dif-
ferent subgroups, and research into the functions of these specific genes and the biological pro-
cesses they affect could be extremely useful for personalized clinical treatment. To analyze the
biological processes in which a specific set of genes are involved, functional enrichment analy-
sis was performed for the specific genes in each subgroup. KEGG pathway enrichment analysis
was completed using the molecule annotation system V3.0 [18], and pathways with P values
lower than 0.05 were considered to be statistically significant.

Pathway deviation score
Functional annotation analysis was conducted on the specific gene set of the subgroups in the
drug-resistant group. As specific genes exhibited different expression patterns in the different
subgroups, the corresponding functional levels also varied. Functional pathways exhibiting dif-
ferential expression levels in drug-resistant patients compared with sensitive patients could
provide important clues for the development of personalized therapies for breast cancer.
Hence, quantitative scoring of potential pathways was performed based on genes that were
enriched in each potential pathway.

Formula 2.

AðPÞ ¼ lgð1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ð �Xi � �YiÞ2

q
Þ ð2Þ

For pathway P, A(P) is the deviation score of the pathway, N is the number of differentially
expressed genes in this pathway, Xi is the mean expression value of gene i across the subgroups,
and Yi is the mean expression value of gene i in the sensitive groups. The normal deviation
level of pathway P in a given subgroup was obtained by calculating the decimal logarithm of
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the cumulative sum of the Euclidean distance of all genes in pathway P. Finally, functional
pathways in which specific differences were observed among the various subgroups and the
associated regulatory genes were identified by comparing the deviation of each pathway
between the different subgroups.

Resistant biomarker identification
We constructed the protein interaction network using resistance-related genes in common
between the functional pathways. The gene degree in network was calculated, which indicates
how many genes are directly linked to this gene. Genes with higher values have much more
impact on the network as a whole, and could therefore influence the expression of multiple
resistance-related genes, so therefore, we treated these genes as important resistance-related
biomarkers. The interaction information was integrated from the STRING, HPRD, BioGrid
databases. The degree of all nodes was converted using the base 2 logarithm.

Performance on the validation cohort
The discovery and validation cohorts were treated as the training and test set, respectively. All
of the identified resistance biomarkers were treated as features. We trained a decision tree
model on the training set and then evaluated the ability of the algorithm to distinguish between
patients with different prognosis in the test set using identified biomarkers. To eliminate differ-
ences among the platforms, data from the discovery and validation cohorts were treated with
discretization. For example, for gene i, the mean value of all samples was μ, and the standard
deviation was s. If the expression value of gene i was greater than μ + s, the expression value
was set as 1; if the expression value was lower than μ - s, the expression value was set as -1. All
other expression values were set as 0. The decision tree model was trained using the discovery
cohort and resistance biomarkers and was then used to predict outcomes (relapse and non-
relapse) in the validation cohort.

Results

Extraction of differentially expressed genes
We identified a total of 2047 luminal-related differentially expressed genes between the resis-
tant and sensitive patients through random perturbation analysis of the sample data, including
1149 downregulated genes and 898 upregulated genes. A total of 3020 basal-related differen-
tially expressed genes were obtained, including 2087 downregulated genes and 933 upregulated
genes. Different subtypes of breast cancer have diverse chemosensitivity and may require dif-
ferent chemotherapy strategies. Therefore, we extracted differentially expressed genes between
the resistant and sensitive groups in the luminal and basal subtypes, respectively. The compari-
son between the two subtypes is shown in Fig 1.

Fig 1 shows a comparison of the genes that were differentially expressed between the basal
and luminal-like breast cancer samples. Of these, 503 genes were found in common, account-
ing for 16% and 24% of the differentially regulated genes in the basal and luminal-like types of
breast cancer, respectively. Therefore, the genes in this intersection were stably expressed in
these two types of breast cancer and may be involved in the mechanisms of drug resistance
shared by multiple breast cancer subtypes. On the other hand, many drug resistance-related
genes were specific for only one of the two subtypes, as 84% of the basal-related genes and 76%
of the luminal-related genes were differentially expressed in only a single subtype. Therefore,
unique drug resistance mechanisms may exist in different subtypes of breast cancer. Identifying
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the specific mechanisms of drug resistance in these subtypes could provide the basis for person-
alized therapies in clinical practice.

Hierarchical clustering
To identify and validate the existence of different subgroups within a breast cancer subtype,
hierarchical clustering was performed using samples of luminal and basal-like breast cancer
based on the genes that were identified as differentially expressed in these two subtypes. As
there are two subgroups of luminal breast cancer, luminal A and luminal B [17], hierarchical
clustering was first performed with the 112 luminal breast cancer samples, based on the 2047
differentially expressed genes, to validate the ability of our method to distinguish specific sub-
groups within the same subtype of breast cancer (shown in Fig 2).

Fig 1. Comparison of differentially expressed genes (DEGs) in Basal and Luminal breast cancer (BC).
The left circle (blue) represents DEGs in basal type BC patients, and the right circle (orange) represents
DEGs in luminal type BC patients. The overlapping and unique DEGs in two types of BC are shown using a
Venn diagram.

doi:10.1371/journal.pone.0131183.g001

Fig 2. Hierarchical clustering of luminal breast cancer samples. A green-red heat map was used to visualize the clustering results. As illustrated, luminal
type BC can be divided into multiple subgroups, indicated with different colors. Both similarities and differences were present between the subgroups. The
red and green color key in the heat map represent up- and downregulated genes, respectively.

doi:10.1371/journal.pone.0131183.g002
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Fig 2 shows the clustering results for luminal breast cancer. The 112 luminal breast cancer
patients were divided into multiple subgroups based on similarities in the expression levels of
the differentially expressed genes. There were 27 patients in group 1 (blue), 89% of which had
the luminal A type of breast cancer. There were 14 breast cancer patients in group 2 (green),
86% of which had the luminal A type breast cancer. There were 18 breast cancer patients in
group 3 (yellow), 61% of which had the luminal B type of breast cancer. There were eight breast
cancer patients in group 4 (orange), 88% of which had the luminal A type of breast cancer.
There were seven breast cancer patients in group 5 (red), all of which had the luminal A type of
breast cancer. There were 21 breast cancer patients in group 6 (purple), 71% of which had the
luminal B type of breast cancer. Group 7 (grey) was the mixed type, which consisted of 16 sam-
ples, and 90% of the sensitive group samples were in this group. Detailed Luminal patients
labels in each subgroups were shown in Table 1.

As shown in the clustering results, nearly all of the samples in the sensitive group were clus-
tered in the same subgroup (group 7), indicating that the expression of these genes exhibited
significant gene expression differences between the sensitive group and the drug-resistant
group. In addition, the luminal A and luminal B samples were effectively separated and allo-
cated into different subgroups, demonstrating that the proposed algorithm based on differen-
tial gene expression was able to effectively identify and distinguish the different luminal
subgroups with high accuracy (minimum 61%, maximum 100%).

As this method could effectively distinguish between the luminal A and B subgroups, this
method was also employed for clustering analysis using the basal-like subtype breast cancer
samples to identify potential subgroups with different drug resistance mechanisms within this
subtype. The clustering results for the basal-like subtype are shown in Fig 3.

Fig 3 shows the clustering results for the basal-like subtype. A total of four subgroups were
identified, with group 1 in blue (12 samples), group 2 in green (9 samples), group 3 in orange
(11 samples), and group 4 in red (14 samples). The majority of the NOCR and CR patients
could be divided into different clusters based on differences at the molecular level. In addition,
both NOCR and CR patients could be further subdivided into two distinct subgroups, suggest-
ing that differential drug sensitivity is present even in the same clinical phenotype. Detailed
sample information is presented in Table 2.

As shown in Table 2, among the four subgroups of basal-like breast cancer, NOCR cases
were predominantly found in groups 1 and 2, which were designated as the drug-resistant
groups. CR cases were predominantly found in groups 3 and 4, which were designated as the
sensitive groups. Therefore, subgroups with distinct molecular profiles were present in both

Table 1. Subgroups of luminal breast cancer.

sub-group sample num luminal A luminal B CR dominant subtype

1 27 24 3 0 luminal A

2 14 12 2 0 luminal A

3 18 7 11 0 luminal B

4 8 7 1 0 luminal A

5 7 7 0 1 luminal A

6 21 6 15 0 luminal B

7 16 5 11 9 luminal B

Table l lists the seven subgroups identified through hierarchical clustering of luminal samples, where “sample num” refers to the number of samples in

each subgroup, “CR” is the number of sensitive samples in each subgroup, and “dominant subtype” is the dominant breast cancer subtype in each

subgroup.

doi:10.1371/journal.pone.0131183.t001
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the drug-resistant group and the sensitive group of basal-like breast cancer. Groups 1 and 2
provide evidence for variation in the molecular basis of drug resistance. Indeed, the patients
with drug-resistant basal-like breast cancer were divided into at least two different subgroups,
indicating the existence of significantly different drug resistance mechanisms. Importantly, this
result could explain why resistance to a given drug is only observed in a subset of breast cancer
patients with the same cancer subtype, whereas other patients with the same subtype remain
sensitive to that drug. Groups 3 and 4 consisted predominantly of drug-sensitive samples.
These groups belonged to the same class in the first round of cluster analysis, suggesting that
the sensitive group could also be further subdivided into subgroups based on similarities at the
molecular level. These subgroup-specific biomarkers could help to create personalized treat-
ments for patients with differential drug sensitivity. To identify these biomarker genes, we allo-
cated genes to subgroups based on expression differences among the subgroups.

Fig 3. The clustering results for the basal-like subtype. A heat map was used to visualize the clustering results for basal BC. Basal BC can be divided into
4 subgroups, indicated with different colors. CR and NOCR represent sensitive and drug resistant patients, respectively.

doi:10.1371/journal.pone.0131183.g003

Table 2. Subgroups of Basal BC.

sub-group sample num NOCR CR

1 12 7 4

2 9 9 0

3 11 3 8

4 14 3 11

Table 2 shows the distribution of NOCR and CR patients in the four subgroups. CR and NOCR represent

sensitive and drug-resistant patients, respectively.

doi:10.1371/journal.pone.0131183.t002
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Allocation of specific genes in the subgroups
Four different subgroups were identified among the basal-like breast cancer samples, including
two drug-resistant groups and two drug-sensitive groups. The differentially expressed genes for
basal-like breast cancer were allocated based on their mean expression values in the four sub-
groups to yield the specific gene sets for each of these subgroups. The number of genes identi-
fied for four groups were 1079, 1203, 1122, 1236, respectively (S1 Table). There were 819
common genes in the intersection of subgroup 1, 2, 3 and 4. The genes in the intersection
between these groups exhibited stable differential expression in the drug-resistant group and
the sensitive group; thus, they are likely to participate in the regulation of the shared mecha-
nisms underlying drug resistance or sensitivity in these different subgroups. However, genes
that did not overlap between these groups likely represent genes that are specific to a given sub-
group. These genes only exhibit differential expression in specific subgroups, and therefore,
they are likely to be involved in the specific mechanisms of drug resistance unique to each sub-
group of the drug-resistant group.

Functional annotation analysis of subgroup specific genes
To further study the drug resistance mechanisms that were shared by multiple subgroups or
were specific to a single subgroup, KEGG functional pathway annotation analysis was con-
ducted using the genes specific to groups 1 and 2, as well as the genes in the intersection
between these groups, as shown in Fig 4 (S2 and S3 Tables).

Fig 4. Pathway enrichment analysis. This figure depicts the results of the KEGG functional pathway
enrichment analysis with genes specific to subgroups 1 and 2, as well as the genes shared between these
subgroups. The pathways in the blue box represent the pathways enriched for the subgroup 1-specific genes,
the pathways in the green box represent those enriched for the subgroup 2-specific genes, and those in the
purple box represent those enriched for the common genes. Only the top five pathways with the highest
significance are listed in the figure; more detailed results are described in S2 Table.

doi:10.1371/journal.pone.0131183.g004
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Comparisons revealed that subgroup 1-specific genes were primarily involved in intercellu-
lar signal transduction processes, including the regulation of actin, cell adhesion, hematopoietic
cell linkage and leukocyte migration. Subgroup 2-specific genes were primarily involved in the
regulation of actin, focal adhesion, and the synthesis and metabolism of amino acids and
sphingomyelin. The pathways enriched in the genes that showed overlapping expression pat-
terns in the two subgroups were primarily involved in immune regulatory processes, including
antigen presentation, natural killer cell-dependent processes, cytotoxicity effects and cytokine
receptor signaling. These findings indicate that the genes that are misexpressed in different
subgroups of the drug-resistant basal-like breast cancer group are primarily involved in
immune regulation. Therefore, the immune response to chemotherapy agents is likely an
important driver of drug resistance. In addition, subgroup 1 and subgroup 2 differentially
expressed specific subsets of genes involved in similar pathways, such as actin regulation.
These findings indicate that in response to chemotherapy drugs, abnormal connections of the
extracellular matrix to intracellular cytoskeletal proteins, resulting from adhesion plaques or
actin irregularities, could lead to the blockage of drug absorption by target cells and contribute
to drug resistance. Furthermore, genes specific to subgroups 1 and 2 are also critical for pro-
cesses such as blood cell linkage, leukocyte migration and the metabolism of glutamic acid and
sphingomyelin, indicating that abnormalities in blood cell functions or glutamic acid and
sphingomyelin metabolism may be important biomarkers for the onset of drug resistance.

Similarly, functional enrichment analysis was also conducted for genes that showed similar
expression in subgroups 3 and 4. These genes were stably expressed in both sensitive groups,
although their expression levels were quite distinct from those observed in the drug-resistant
groups. With respect to the specific drug resistance mechanisms acquired by patients in sub-
groups 1 and 2, the genes in the sensitive group intersection may be involved in common drug
resistance mechanisms that regulate basal-like breast cancer and may in fact represent a com-
mon resistance pathway. The enrichment results are shown in Table 3.

As shown in Table 3, genes stably expressed in the sensitive group were enriched in path-
ways regulating intercellular interactions, including cytokine receptors, gap junctions, and
Notch signaling, as well as multiple other signaling pathways, such as STAT, GnRH and
MAPK. Among these pathways, the STAT signaling pathway was the most significantly
affected, with six genes being identified, including IL-4R, IL-15RA, STAT2, IL-2RA, CBLB and
CSH1. In addition to the STAT pathway, the GnRH [19] and MAPK [20] signaling pathways
were also identified as being related to drug resistance in breast cancer.

Table 3. Pathway enrichment of subgroups 3 and 4.

Pathway Count p-Value q-Value

Jak-STAT signaling pathway 6 1.41E-05 4.40E-04

Cytokine-cytokine receptor interaction 6 2.55E-04 0.003289

GnRH signaling pathway 4 4.61E-04 0.004927

Non-homologous end-joining 2 9.70E-04 0.008849

Purine metabolism 4 0.001703 0.014915

MAPK signaling pathway 5 0.002323 0.016957

Hematopoietic cell lineage 3 0.003097 0.020551

Gap junction 3 0.003737 0.024069

Nucleotide excision repair 2 0.009445 0.040375

Notch signaling pathway 2 0.010724 0.041937

Table 3 lists significantly enriched pathways. Counts represent the number of DEGs enriched in each pathway. The p values were calculated using the

hypergeometric distribution. Q values are the adjusted p values after FDR.

doi:10.1371/journal.pone.0131183.t003
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Calculation of pathway deviation scores
To study functional differences in the specific and common pathways in the various subgroups,
the specific and common pathways were integrated for subgroups 1 and 2, and the common
pathways were integrated for subgroups 3 and 4. The abnormal deviation scores obtained for
each of the 16 pathways in subgroups 1 and 2 and the sensitive subgroups 3 and 4 are listed in
Table 4. Pathways showing abnormalities in specific functions were identified by comparing
the scores of the two drug-resistant groups (subgroups 1 and 2) and the sensitive groups (sub-
groups 3 and 4), as shown in Fig 5.

As shown in the Fig 5, subgroup 1 exhibited abnormalities in Pathogenic Escherichia coli
infection, Natural killer cell mediated cytotoxicity, Hematopoietic cell lineage, Antigen pro-
cessing and presentation, and Cell adhesion molecules (CAMs), whereas subgroup 2 displayed
abnormalities in aminoacyl-tRNA biosynthesis, glutamate metabolism, Glycosphingolipid bio-
synthesis–ganglioseries and Non-homologous end-joining. Except for aminoacyl-tRNA bio-
synthesis, all of these pathways that were abnormal in the drug-resistant group have been
shown to be involved in the development of drug resistance [21–25]. However, a study by
Palaskas N. et al. in 2011 reported that genes related to basal-like breast cancer were highly
enriched in the functional pathway of aminoacyl-tRNA biosynthesis [26], indicating a close
relationship between basal-like breast cancer and irregularities in this pathway.

Resistant biomarker identification
A total of 118 drug resistance candidate genes were extracted from the 16 pathways related to
drug resistance. These genes exhibited significant differential expression in at least in one drug-
resistant subgroup or one sensitive group. Drug-resistant genes often exert their effects on
downstream functional pathways by inducing the abnormal expression of associated genes,
eventually leading to decreased sensitivity towards drugs. Therefore, to identify important

Table 4. Deviation scores of the pathways.

Pathway subgroup 1 subgroup 2 subgroup 3/4

Aminoacyl-tRNA biosynthesis 0.67 1.42 0.18

Antigen processing and presentation 0.84 0.65 0.14

Cell adhesion molecules (CAMs) 0.75 0.56 0.01

Cytokine-cytokine receptor interaction 0.7 0.59 0.06

Focal adhesion 0.71 0.82 0.57

Glutamate metabolism 0.67 1.42 0.18

Glycosphingolipid biosynthesis—ganglioseries 0.38 1.32 0.46

GnRH signaling pathway 0.53 0.86 0.64

Hematopoietic cell lineage 1.09 0.77 0.29

Jak-STAT signaling pathway 0.91 0.89 0.4

Leukocyte transendothelial migration 0.75 0.59 0.1

Natural killer cell mediated cytotoxicity 0.74 0.61 0.07

Non-homologous end-joining 0.27 0.81 0.31

Pathogenic Escherichia coli infection—EHEC 1.06 0.68 0.37

Purine metabolism 0.79 0.73 0.34

Regulation of actin cytoskeleton 0.88 0.59 0.3

Table 4 shows the deviation scores of each of the 16 pathways for the different subgroups that were calculated using Formula 1. Higher scores indicate a

higher degree of deviation from the normal levels of the pathway, suggesting more obvious abnormalities in pathway function.

doi:10.1371/journal.pone.0131183.t004
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drug-resistance genes, a PPI network was created for the 118 candidate genes and the 819 com-
mon genes based on protein-protein interaction, and the degree distribution was calculated for
the nodes. The degree of the nodes was converted using the base 2 logarithm, and the number
of nodes that were distributed at different intervals was statistically analyzed. As shown in Fig
6, the number of nodes with a degree distribution at intervals 1–4 in the network was the larg-
est, whereas the number of nodes (21) with a degree greater than 4 was the smallest. Finally,
genes that showed interactions with at least 25 drug-resistance candidate genes and common
genes were selected as important drug resistance-related biomarkers, which were the gene
nodes with a degree greater than 4.7 after logarithm conversion. A total of 9 important marker
genes were obtained at the end of the analysis, as shown in Table 5.

Table 5 lists the 9 genes and their corresponding degree distributions after logarithm con-
version. These genes are associated with multiple drug-resistance candidate genes or common
genes in the network, and therefore play important roles in the development of drug resistance.
Verification data were then used to test the effectiveness of these genes in determining the
prognosis of TN breast cancer patients.

Performance of the resistance biomarkers in the validation cohort
The discovery validation cohorts were both treated with discretization, and then we trained the
decision tree model using the expression of nine genes from the discovery cohort. The average
accuracy reached 83%, representing 95% accuracy for predicting recurrent TN patients and
47% accuracy for non-recurrent TN patients, as shown in Table 6. This result demonstrates the
nine identified resistant biomarkers are highly informative for the prediction of relapse due to
drug resistance to chemotherapies, although they were less effective for patients who were sen-
sitive to chemotherapies with no relapse. This difference was likely caused by sample imbalance
within the validation cohort. As the number of samples without relapse was significantly larger

Fig 5. Pathway deviation scores of the subgroups. Subgroups 1 and 2 were marked with blue and red
lines. To observe the deviation of subgroup 1 and subgroup 2 from the sensitive range, we also calculated the
deviation scores of subgroup 3 and subgroup 4, marked in green (the deviation scores were the same for
these two subgroups). The scores of the 16 pathways ranged from 0 to 1.6.

doi:10.1371/journal.pone.0131183.g005

Personalized Chemoresistance Genes of Basal-Like Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0131183 June 30, 2015 13 / 18



than with relapse (67 vs. 23), the accuracy was lower for the patients without relapse, which
had a large number of samples.

Discussion
Breast tissue is composed of highly heterogeneous epidermal cells, including luminal and basal
cells, and these two types of cells are considered to be the progenitor cells from which the breast

Fig 6. Degree distribution in the PPI network. The network was constructed using candidate genes and common resistance genes. The degree of a gene
represents the number of adjacent genes in the network that directly interact with that gene. The degree of all genes was converted using base the base 2
logarithm. Genes with a degree distribution of 4–6 were least common. These genes have a greater impact on the network and are considered to be
important drug-resistance markers.

doi:10.1371/journal.pone.0131183.g006

Table 5. Degree of resistance biomarkers.

resistant biomarker log(Degree)

SYK 6.11

LCK 6.11

PPARG 5.52

GAB2 5.17

ZAP70 5.13

PAWR 5

MDFI 5

CIITA 4.75

ACTA1 4.7

Table 5 lists the nine resistant biomarkers and their corresponding network degrees. All of these

biomarkers have large degree values, indicating they should have a larger impact on drug sensitivity

compared with other genes.

doi:10.1371/journal.pone.0131183.t005
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tissue originates [27]. These cell types have significantly different expression markers and
biological functions [28], and as a result, different subtypes of breast cancer have remarkably
different treatments and prognoses. Clinically, breast cancer is classified based on immunohis-
tochemistry, and most patients diagnosed with basal-like breast cancer (i.e., TNBC) are usually
treated with the same therapeutic regimen. However, although some patients are sensitive to
this treatment, others develop drug resistance and may suffer relapse. This phenomenon sug-
gests that breast cancers of the same subtype can exhibit markedly different responses to thera-
peutic agents due to variations at the molecular level. Thus, optimizing treatment outcomes
will require personalized therapies. Sensitivity to chemotherapy agents is primarily determined
by drug absorption, distribution, metabolism and excretion (ADME), as well as the function of
drug efflux pump proteins [29]. By contrast, lower correlations are observed between drug sen-
sitivity and histochemistry types. Therefore, the classification of TNBC patients based on func-
tional protein levels is an urgent clinical need. Personalized therapies based on the sensitivity
of the patients to chemotherapy are expected to improve efficacy and reduce unnecessary side
effects.

Among TNBC patients, both the drug-resistant and drug-sensitive groups could be further
divided into two subgroups, suggesting complex mechanisms underlying drug resistant to clin-
ical chemotherapies. In the two subgroups of the drug-resistant group, the abnormal functions
in subgroup 1 were primarily in pathways related to the immune system, such as natural killer
cell mediated cytotoxicity, antigen processing and presentation. By contrast, in subgroup 2, the
abnormal functions were enriched for pathways associated with the biosynthesis of cell mem-
branes and protein, such as aminoacyl-tRNA biosynthesis and glutamate metabolism. Finally,
9 resistant biomarkers were identified from these aberrant pathways and were validated using
the validation cohort, with the mean accuracy reaching 83%.

Central to this study was the use of subgroup-specific genetic markers to determine whether
TNBC patients are candidates for routine clinical chemotherapies. If a patient is predicted to be
resistant to chemotherapy using this model, other treatment methods should be considered to
improve prognosis, such as targeted treatments that avoids toxicity. On the other hand, in the val-
idation cohort, survival “over 3 years” or “less than 3 years” was used to indicate chemotherapy
sensitivity or resistance based on concept that non-pCR in TNBC is equivalent to recurrence or
poor survival [11]. Therefore, the model established in this study can not only predict the sensitiv-
ity of patients to chemotherapies, but it can also determine prognosis, such as risk for relapse.

Two drug-resistant subgroups were identified in this study. These two subgroups exhibited
significant differences at the functional level, indicating distinct mechanism of drug resistance
between these two types of TNBC patients. Therefore, for patients in subgroup 1, drugs that
improve immune functions might be considered to increase drug sensitivity and improve prog-
nosis. For patients in subgroup 2, inhibitors of aminoacyl-tRNA and glutamate synthesis could
be used to decrease the proliferative capability of tumor cells. As the 9 resistant biomarkers dis-
played high-level degree distribution in the PPI network, they broadly regulate multiple drug

Table 6. Classification report of the validation cohort.

precision recall f1-score support

Recurrence 0.95 0.64 0.77 23

Non recurrence 0.47 0.91 0.62 67

avg / total 0.83 0.71 0.73 90

Table 6 A decision tree model was used to predict outcomes in the validation cohort, and the average accuracy reached 83%. The precision, recall,

f1-score and support for recurrence and non-recurrence are also included in the classification report.

doi:10.1371/journal.pone.0131183.t006
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resistance-related genes and the corresponding downstream pathways. Therefore, these bio-
markers should provide new targets for clinical treatments.

This research is highly relevant, as most currently available methods determining breast
cancer treatments fail to consider heterogeneity when extracting differentially expressed genes,
although a few signatures have been developed to evaluate chemosensitivity of the TNBC
patients [30,31]. Therefore, we employed random disturbance to identify specific genes that
were only differentially expressed among subgroups to recover individualized chemoresistance
genes that would be missed by other methods, in which only the difference between drug-resis-
tant and drug-sensitive groups was examined. Two drug-resistant subgroups were identified
with significant differences at the functional level, and the functions of the genes that were mis-
expressed in each subgroup provide novel insights into the selection of clinical treatment strat-
egies. The nine-gene signature identified in this study can not only predict chemosensitivity,
but it can also be used to assess the survival length and the risk of relapse.

This study has several limitations. First, the sample size in the discovery cohort and in the
homogeneous validation cohort was limited. In particular, the discovery cohort had unequal num-
bers of samples of the two prognosis types (67 samples without relapse vs. 23 samples with relapse),
leading to a higher predictive accuracy in patients with relapse and a lower predictive accuracy in
patients without relapse. Second, the method used to standardize the data from the validation
cohort does is not applicable to all published data. For example, the same gene could show large
variance between different studies or when different detection methods were used. As a result, to
rule out variation in the data across platforms, the validation cohort in this study was selected from
the same platform (GPL96), and the data were standardized using the RMAmethod.

In conclusion, we identified two subgroups of chemoresistant TNBC patients and character-
ized their personalized abnormal functions. A nine-gene signature was proposed to classify
TNBC patients with diverse chemosensitivity and prognoses, and these genes were derived
from each resistant subgroup as personalized biomarkers. Therefore, these genes also represent
potential therapy targets. By monitoring the expression changes of these genes, it may be possi-
ble to optimize therapeutic strategies and dosage adjustments, which could minimize treatment
failure and side effects from overdoses. Although further validation and additional research are
required, this study points the way towards novel personalized therapeutic strategies.
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