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Abstract

The medial prefrontal cortex (mPFC) and ventral striatum (VS), including the nucleus accumbens, are key forebrain regions
involved in regulating behaviour for future rewards. Dysfunction of these regions can result in impulsivity, characterized by actions
that are mistimed and executed without due consideration of their consequences. Here we recorded the activity of single neurons
in the mPFC and VS of 16 rats during performance on a five-choice serial reaction time task of sustained visual attention and
impulsivity. Impulsive responses were assessed by the number of premature responses made before target stimuli were pre-
sented. We found that the majority of cells signalled trial outcome after an action was made (both rewarded and unrewarded).
Positive and negative ramping activity was a feature of population activity in the mPFC and VS (49.5 and 50.4% of cells, respec-
tively). This delay-related activity increased at the same rate and reached the same maximum (or minimum) for trials terminated
by either correct or premature responses. However, on premature trials, the ramping activity started earlier and coincided with
shorter latencies to begin waiting. For all trial types the pattern of ramping activity was unchanged when the pre-stimulus delay
period was made variable. Thus, premature responses may result from a failure in the timing of the initiation of a waiting process,
combined with a reduced reliance on external sensory cues, rather than a primary failure in delay activity. Our findings further
show that the neural locus of this aberrant timing signal may emanate from structures outside the mPFC and VS.

Introduction

Impulsivity describes the tendency to make rapid decisions and
actions without planning (Evenden, 1999; Winstanley et al., 2006).
It is often present in attention deficit hyperactivity disorder (Solanto
et al., 2001; Sonuga-Barke, 2003) and may play a causal role in drug
addiction (Jentsch & Taylor, 1999; Dalley et al., 2011). Neurally,
impulsive actions and decisions are widely hypothesized to originate
from impaired connectivity and function of the prefrontal cortex and
subcortical structures involved in the timing and control of goal-
directed behaviour (Winstanley et al., 2006; Dalley et al., 2011; Kim
& Lee, 2011; Sato et al., 2012; Jupp et al., 2013; Merchant et al.,
2013; Simon et al., 2013; Hayes et al., 2014). Lesions of the medial
prefrontal cortex (mPFC) and ventral striatum (VS), including the
core and shell of the nucleus accumbens, are widely reported to dis-
rupt several forms of impulsivity in rodents, including the timing of
responses for delayed rewards (Pothuizen et al., 2005), anticipatory

responding (Robbins, 2002; Christakou et al., 2004), and discounting
of delayed and probabilistic rewards (Cardinal et al., 2001; Acheson
et al., 2006; Cardinal, 2006; Valencia-Torres et al., 2012).
However, few studies have investigated the relationship between

single neuron activity in these candidate brain regions and impulsiv-
ity. The mPFC has been implicated in a wide range of cognitive
control processes including working memory, attention, action–
outcome learning, reward, and conflict/error monitoring (Miller,
2000; Fuster, 2001; Euston et al., 2012). A common function pro-
posed for the mPFC is the temporal representation of behavioural
sequences (Bekolay et al., 2014). Such activity may underlie wait-
ing processes (Ollman & Billington, 1972; MacDonald & Meck,
2004), internal representations of time (Jin et al., 2009; Kim et al.,
2013), decision-making (Usher & McClelland, 2001; Roitman &
Shadlen, 2002; Gold & Shadlen, 2007), response value or action
restraint (Narayanan & Laubach, 2009; Jimura et al., 2013) and the
co-ordination of sequences of actions (Ma et al., 2014).
The VS has been described as a ‘limbic motor interface’ (Mogenson

et al., 1980) linking motivation to the selection (Nicola, 2006;
Humphries & Prescott, 2010) and invigoration (McGinty et al., 2013)
of behavioural responses. Single unit activity in the VS has been par-
ticularly linked to reward and reward-predictive cues (Shibata et al.,
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2001; Cromwell & Schultz, 2003; Setlow et al., 2003; Ishikawa et al.,
2008; Van der Meer & Redish, 2009; Lansink et al., 2012; McGinty
et al., 2013) and there is evidence that VS representations of reward
or task outcomes are dynamic and prolonged throughout delays
(Lavoie & Mizumori, 1994; Miyazaki et al., 1998; Van der Meer &
Redish, 2009; Van der Meer et al., 2010; Jimura et al., 2013).
In the present study we used a multi-channel microelectrode sys-

tem to record the extracellular activity of single units in the mPFC
and VS of rats performing a visual attention task. The five-choice
serial reaction time task (5-CSRTT) assesses attentional control over
behaviour and the capacity to suppress a pre-potent response until
the onset of a visual target stimulus (Robbins, 2002). We specifi-
cally investigated whether neural activity in these regions is modu-
lated by the delay period leading up to a response, when response
inhibition is required, and whether this activity differs between the
mPFC and VS in predicting an upcoming premature response.

Materials and methods

Subjects

Male Lister-Hooded rats (mPFC, n = 8; VS, n = 8; Charles River,
UK) were trained on the 5-CSRTT following the method of Bari
et al. (2008). Throughout all of the experiments rats were housed
under a reversed light cycle at 20 °C, with white lights off (red
lights on) between 07:00 and 19:00 h. Rats were food deprived to
85% of free feeding weight (17–19 g of standard laboratory rat
chow per day), and allowed access to water ad libitum. Rats were
housed in groups of four during training, but after surgery were sin-
gly housed to prevent cage-mates from damaging their implants. All
experimental procedures were carried out in accordance with the
UK Animals (Scientific Procedures) Act of 1986 and the Council
Directive 2010/63EU of the European Parliament on the protection
of animals used for scientific purposes, and approved by local ethi-
cal review at the University of Cambridge.

Behavioural apparatus and training

The 5-CSRTT is widely used to assess selective, spatially divided
attention and response inhibition during a pre-defined waiting period
(Robbins, 2002). Rats were trained in an operant chamber (Med Asso-
ciates, VT, USA) to wait for a fixed delay (5 s), before the brief pre-
sentation of a light stimulus (0.5 s) in one of five nose-poke apertures,
arranged in a curved array, which signalled to the rat in which aper-
ture to make a nose-poke response (Fig. 1A). Nose-poke responses
within a fixed time window (the limited hold, 5 s) were reinforced
with the delivery of a food pellet (45 mg Noyes Dustless pellets;
Sandown Scientific) to a food magazine located on the opposite wall
of the chamber to the nose-poke apertures, whereas responses before
the delay had elapsed (premature responses) or in the wrong hole after
a stimulus had been presented (incorrect responses) were punished
with a 5 s time-out period whereupon all lights in the operant
chamber were extinguished and the rat was unable to start a new trial.
Similarly, a failure to make a response (omission responses) was
punished with a 5 s time-out period. The end of the time-out was sig-
nalled by the house light and a light in the food magazine being reillu-
minated, after which time a new trial could be initiated by a nose-
poke in the food magazine. A behavioural session finished when
either a total of 100 trials (not including premature trials) were com-
pleted, or 30 min had elapsed. Behavioural experiments were con-
trolled by a PC running WHISKER software (Cardinal & Aitken, 2010),
with the 5-CSRTT controlled via a custom-written MATLAB program.

Microelectrode implantation

Rats of 7 months of age were implanted with either a single four-
shank 54-channel silicon probe targeting the left mPFC or a single
four-shank 64-channel silicon probe targeting the left VS. The left
hemisphere was targeted as delay activity has been reported in the
mPFC bilaterally (Narayanan & Laubach, 2006; Kim et al., 2013),
but the left nucleus accumbens core has been particularly implicated
in phenotypic high levels of premature responding in the 5-CSRTT
(Caprioli et al., 2014).
All surgeries were carried out using aseptic technique under iso-

flurane anaesthesia (Isoflo; Abbott Laboratories, UK), using standard
small animal stereotactic methods. Anaesthesia was induced with
4% isoflurane in 4 L/min O2, and maintained with 2% isoflurane in
2 L/min O2 delivered through a nose-cone. Peri-operative analgesia
[Carprofen (Rimadyl; Pfizer), 5 mg subcutaneous injection] and pro-
phylactic antibiotics [Enorfloxacin (Baytril; Bayer), 2.5% oral solu-
tion, 1 mL/100 mL drinking water)] were provided. All stereotactic
measurements were made relative to bregma in the flat-skull posi-
tion.
For mPFC probes, the shanks were 6 mm in length, either 50 or

70 lm in width (shanks alternated between 50 and 70 lm) and
15 lm in thickness. Shanks of 50 lm width had 11 electrodes,
whereas shanks of 70 lm width had 16 electrodes, located at the tip
of the shank in two rows. The electrode contact centres were spaced
20.6 lm apart horizontally, and 25 lm apart vertically. For record-
ings in the VS, 64-channel silicon probes were used (length 12 mm,
width 70 lm, 35 lm thickness, and 16 electrode contacts per
shank). The electrode geometry was the same as the mPFC elec-
trodes, but on each shank electrodes were split into two groups of
eight, with one group being at the tip of the electrode, and the sec-
ond group 2 mm higher up the shank (Fig. 1B).
Probes were implanted at the following co-ordinates relative to

bregma (in mm): mPFC: anterior/posterior +2.7, medial/lateral +0.5,
dorsal/ventral �3.0; and VS: anterior/posterior +1.7, medial/lateral
+1.9, dorsal/ventral �6.0 (Paxinos & Watson, 2007). The final loca-
tions of the probes are shown in Fig. 1C and D. A craniotomy
opened over the mPFC or VS and a durotomy was performed. The
probe, mounted on a stainless steel microdrive, was lowered into the
brain to the appropriate depth. Implants were anchored to the skull
with two T-shaped bolts inserted bilaterally in the parietal bone with
a further bolt over the midline cerebellum, posterior to lambda, act-
ing as an additional anchor and also as the recording ground. The
microdrive assembly was secured to the bolts and the implant was
encapsulated with dental acrylic (Simplex Rapid, Kemdent, UK).
At the end of the experiments, rats were overdosed with 1.5 mL

sodium pentobarbital (200 mg/mL; Dolethal, Vetoquinol, UK), and
perfused transcardically with 4% neutral buffered formalin. Brains
were removed and cryoprotected in 30% sucrose prior to being sec-
tioned on a freezing microtome (60 lm thickness), mounted on gel-
atin-subbed glass slides and stained with cresyl violet (Fig. 1C and
D).

Electrophysiological recordings

Neurophysiological and movement data were recorded using a wire-
less 64-channel recording system (Triangle Biosystems, NC, USA),
running NEUROWARE data acquisition software and Optimap online
video-tracking. Neurophysiological signals were sampled at 30 kHz,
and movement data were extracted from tracking two coloured
LEDs located on the recording headstage, sampled at 30 Hz, using
a Logitech C270 webcam. During the 5-CSRTT rats must wait for
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5 s after the initiation of a trial before a visual stimulus is presented.
During this waiting period rats typically leave the food magazine in
advance of the time of stimulus presentation and engage in ‘scan-
ning’ behaviour, where they look at the stimulus lights in turn, scan-
ning their heads between each aperture (Humby et al., 1999;
Robbins, 2002; Blondeau & Dellu-Hagedorn, 2007). The start of
waiting (‘wait-start’) was defined as the time that rats left the food
magazine, as measured using video tracking (Donnelly et al., 2014).
For some behavioural sessions the delay period on each trial was

varied pseudorandomly between 4, 5, 6, 7 or 8 s (uniformly distrib-
uted). These sessions were longer than standard 5-CSRTT recording
sessions (1 h, compared with 30 min), and the maximum number of
trials was increased from 100 to 200 trials (not including premature
responses), in order to capture sufficient responses at each delay for
analysis. A total of 56 standard 5-CSRTT recording sessions
(including 5390 trials with 4061 correct responses, 861 incorrect
responses and 468 premature responses) and seven variable delay
sessions (including 1151 trials with 620 correct responses, 194
incorrect responses and 337 premature responses) were analysed in
mPFC-implanted rats, and 65 standard 5-CSRTT recording sessions

(including 6036 trials with 4774 correct responses, 939 incorrect
responses and 323 premature responses) were analysed in VS-
implanted rats.
After each recording session, microdrives were advanced by at

least 125 lm. All spikes included in the analysis were recorded
from electrodes that passed through the mPFC or VS on sessions
where the electrodes were located in those structures. This was
based on the number of drive turns made and the estimated final co-
ordinates of the electrodes derived from histological examination.
Units were collectively analysed from sites throughout the regions
of the mPFC and VS rather than making distinctions between either
the dorsal and ventral PFC or the core and shell of the nucleus ac-
cumbens. We pooled cells in this way because it was difficult to
define the precise location of recording electrodes on each particular
recording session.

Data analysis

All data analysis was performed using custom written-MATLAB (The
Mathworks, Natick, MA, USA) and R (R Development Core Team,

A

B

C

D

Fig. 1. Task configuration and histological verification of microelectrode tracks. (A) Schematic of the 5-CSRTT and electrophysiological alignment events.
Correct (blue), incorrect (green) and premature (red) response trials are shown in different colours, which are consistently used throughout the remaining figures.
Trials began with a nose-poke response in the food magazine (Trial Start), which initiated a delay period of 5 s. In order to make a nose-poke response, rats
must leave the food magazine and turn to face the nose-poke apertures (Wait-Start). Rats then either wait successfully for the delay period, after which time a
0.5 s light stimulus is presented in one of the nose-poke apertures, or fail to wait and nose-poke before the stimulus light (Premature responses). A response to
the illuminated nose-poke aperture within 5 s is deemed to be a correct response and is rewarded with a food pellet in the food magazine. Premature and incor-
rect responses (where the rat successfully waits until the end of the delay period, but pokes in a non-illuminated aperture) lead to a 5 s time-out period during
which time a new trial cannot be started and no food pellet is dispensed. (B) Schematic representation of the silicon probe design used in the mPFC (left) and
VS (right) recordings. (C) Example of microelectrode tracks in the mPFC (left) and VS (right) with probe tracks highlighted with white arrowheads. (D) Recon-
structed electrode tracks projected onto coronal sections of the rat brain (Paxinos & Watson, 2007) for the mPFC (left column) and VS (right column). Elec-
trode placements were reconstructed from the most ventral point electrode tracks were observed and total distance travelled was estimated by the total number
of drive turns made during the recording sessions. Numbers indicate the position of the sections relative to bregma (mm).
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2009) scripts. Single unit activity was extracted from raw signals
using the KLUSTA suite of software tools (http://klusta-team.git-
hub.io/index.html; Kadir et al., 2014; Rossant et al., 2015). Raw
data sampled at 30 kHz had their common median subtracted to
remove common noise (Rolston et al., 2009) and were input into
SPIKEDETEKT. Features extracted from each detected spike were then
clustered using Masked KLUSTAKWIK. Clusters were manually refined
using KLUSTAVIEWA software.
Peri-stimulus spike rate histograms (PSTHs) were calculated rela-

tive to four task alignment events (Fig. 1A): trial start, wait-start,
nose-poking and magazine return. These alignment events were
selected in order to capture the key behavioural events occurring in
a 5-CSRTT trial: the nose-poke in the food magazine that initiates a
trial, the self-paced start of waiting/’scanning’ behaviour, the time of
behavioural responding, and the return of the rat to the food maga-
zine, either to receive a food reward, or to terminate a post-error
time-out period. We have previously demonstrated that the move-
ment parameters of rats at the wait-start and nose-poke events are
highly consistent, and particularly that the nose-poke event is consis-
tently preceded by a discrete initiation of movement on all trial
types (Donnelly et al., 2014).

The PSTHs were estimated using two methods. For the illustra-
tive examples shown in Fig. 2A and B, the PSTH was calculated
using Bayesian adaptive regression splines (Wallstrom et al.,
2008). However, the Bayesian adaptive regression splines method
requires multiple trials to give an effective estimate of the PSTH.
For quantitative analysis of spike firing rates where it was neces-
sary to have an estimate of firing rates on each trial, PSTHs were
calculated by binning spike times into 1 ms bins, and convolving
the binned data with Gaussian kernels (a kernel SD of 100 ms
was used). The firing rates were then converted to z-scores to
allow comparison between cells by subtracting the mean firing
rate of each cell over the whole session, and dividing by the SD
of the cell’s firing rate over the whole session. Mean and SD fir-
ing rates over the whole session were calculated as the mean and
SD of the reciprocal of all inter-spike intervals. In order to gener-
ate a dataset with sufficient spikes in peri-event windows for
meaningful analysis, cells with average firing rates of
< 0.5 spikes/s were excluded. Additionally, during some sessions,
rats made very small numbers of premature responses. For ses-
sions with < 4 premature trials, only correct and incorrect trials
were analysed.

A

B

C

Fig. 2. Putative models of ramping activity in relation to behaviour. (A) Possible models of delay activity in correct and premature responses on the 5-CSRTT.
Proposed firing rate models relative to the start of a trial. Ramping firing rates for correct and premature trials are represented as diagonal lines, with the time
of events as vertical lines, colour coded for trial outcome type. The time of the stimulus light is indicated as a vertical yellow line. Numbers indicate the firing
rate model associated with the pattern illustrated (see Results). (B) The same proposed firing rate models relative to the start of waiting. (C) Proposed firing rate
models relative to nose-poke responses. Note that this figure uses the example of firing rates increasing towards a threshold, but it would be equally valid to
consider firing rates decreasing from some tonic level.
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Principal components analysis (PCA) was performed using the MAT-

LAB function PCA. The average PSTH from correct trials was calcu-
lated for all cells, and combined in a matrix of dimensions ([number
of time bins] 9 [number of cells]), which was then used for PCA,
giving [number of time bins] principal components (PCs). The same
PCs were extracted from the average incorrect and premature trials
for all cells by matrix multiplication of the average PSTH for incor-
rect and premature responses for each cell with the PCA coefficients.
Cells that were predictive of trial outcome were identified by first

extracting features from PSTH windows using PCA; here the first
three PCs were used. These components were then used as indepen-
dent variables in a logistic regression model (fit using fitglm in MAT-

LAB with a binomial distribution) to predict the outcome of the
upcoming trial. Model classification performance was estimated
using the area under the receiver-operator characteristic curve
(AUC), calculated after leave-one-out cross-validation, where the
model was fit to every trial but one, and the model was then used to
predict the outcome of the left-out trial. The predicted and true trial
outcomes were then used to calculate the AUC using perfcurve in
MATLAB. The AUC was calculated for firing rates in a 1 s window,
advanced in steps of 0.1 s for all cells. Example cells were identi-
fied from cells with AUC > 0.5 (i.e. cells where the firing rate fea-
tures were able to provide above-chance classification performance)
in the window from 1 s before to the time of nose-poking.
Delay-ramping neurons were identified as cells meeting a criterion

of a significant linear regression (P < 0.05/[number of cells])
between the average firing rate on correct trials and time in the 3 s
prior to nose-poking, in PSTHs calculated relative to the time of
nose-poking, with a |r|-value > 0.5 (where r is the Pearson product-
moment correlation coefficient, from MATLAB function corr) and a |b|
value > 0.3 (where beta is the gradient of the least-squares regres-
sion line, from MATLAB function polyfit). Positive ramping cells were
identified as having a positive beta value, whereas negative ramping
cells had negative beta values.
The variables influencing the PSTH at each point in time were

estimated using a general linear model (GLM), fit using fitglm in
MATLAB, with firing rate as the dependent variable. GLMs were fit to
each time bin (100 ms bin size) for each cell, and the proportion of
cells with significant effects of the independent variables was tested
for significance (whether there were more cells with significant
effects of a factor than would be expected by chance) using a bino-
mial test, similar to the method of Schmidt et al. (2013). The thresh-
old for significance used was 0.05/[number of time bins], in order to
correct for multiple comparisons.

Results

In total, 897 cells with an average firing rate of > 0.5 Hz were recorded
in the mPFC, whereas in the VS the activity of 383 cells was recorded
(see Fig. 1C and D for final electrode positions). Rats with electrodes
implanted in the mPFC and VS did not differ in their behavioural per-
formance over the course of the recording experiments (all P > 0.05
for % accuracy, % correct response, % omissions, % premature, and
correct response and reward collection latencies, Table 1).
Four hypotheses were investigated to determine whether there

was ramping or delay activity during the waiting period of the 5-
CSRTT, which could be used to predict upcoming impulsive
responses. (1) Premature nose-poke responses occur earlier than cor-
rect responses, so ramping activity reaches a lower level at the point
when nose-poking occurs than that reached on correct trials. This
relationship assumes that the firing rate increase has the same gradi-
ent on correct and premature trials, and that ramping starts at similar

times for each trial. However, the occurrence of behavioural
responding is determined by some process occurring in addition to
ramping activity; if the triggering of a response was related to ramp-
ing reaching a threshold then premature responses could not be
explained by this model. (2) Premature responses occur when firing
rates reach a threshold, and ramping activity has a steeper gradient
until that threshold is reached than on correct trials. In both models
(1) and (2), the firing rate differences occur despite the rats starting
to wait (i.e. leaving the food magazine to engage in ‘scanning
behaviour’) at a similar time to trials ending in correct responses.
(3) Premature responses follow the same ramping gradient as correct
responses but rats start the waiting process earlier by leaving the
food magazine earlier. As in model (2) this model assumes that fir-
ing rates reaching a threshold value are involved in triggering a
response. (4) A hybrid model – the rat leaves the magazine earlier,
and also waits for less time than when a correct response occurs, so
having a slightly steeper gradient in firing rate ramping than correct
responses. These possible models are illustrated in Fig. 2A–C,
showing the model predictions as patterns of PSTHs relative to the
start of a trial and the wait-start and nose-poke events. We hypothe-
sized that delay-related single unit activity would begin at the onset
of waiting, based on our previous finding that changes in power in
the local field potential (LFP) gamma and theta frequency bands
occurred at this event and, in the case of the theta band, spanned the
period between wait-start and nose-poking (Donnelly et al., 2014).

Cells predictive of premature responses

In order to investigate whether the firing rates of individual neurons
in the mPFC or VS were predictive of upcoming premature
responses, features were extracted from the firing rate of each
neuron (using PCA) in a 1 s window before nose-poke responses

Table 1. Behavioural data

Mean SD T P

% Correct
mPFC 75.09 13.32 0.025 0.876
VS 74.53 10.13

% Accuracy
mPFC 81.63 10.05 0.319 0.581
VS 83.16 7.21

% Omissions
mPFC 8.61 8.11 0.096 0.761
VS 10.61 7.75

% Premature
mPFC 9.21 12.40 2.641 0.126
VS 5.07 5.55

Correct latency
mPFC 0.56 0.09 4.043 0.064
VS 0.64 0.16

Collection latency
mPFC 1.19 0.18 1.420 0.253
VS 1.26 0.21

Values were taken over whole behavioural recording sessions (mPFC,
n = 56; VS, n = 64). % Correct = no. of correct responses (C)/(C + no. of
incorrect responses (I) + no. of omission responses (O)); % Accuracy =
C/(C + I); % Omissions = O/(C + I + O); % Premature = no. of premature
responses/(C + I + O). Correct latency, the average time (in seconds)
between the illumination of the cue light and correct nose-poke responses;
collection latency, the average time (in seconds) between correct nose-poke
responses, and the rat returning to the food magazine to collect a reward pel-
let. T, t statistic for test for difference between mPFC and VS groups; P, p
statistic for the same test.
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Fig. 3. Trial outcome-predictive cells and population PCA. (A) Representative neuron recorded in the mPFC. PSTH aligned to nose-poking response for cor-
rect and premature responses (top). Coloured vertical lines indicate the median time to the preceding (Wait-Start, to left of time = 0) or subsequent (Return to
the food magazine, to right of time = 0) behavioural event, for each outcome. Raster plots for all trial types (bottom) are ordered by time in the recording ses-
sion from bottom to top. (B) Representative neuron recorded in the VS. (C) Distribution of AUC scores (a measure of predictive accuracy) in the window at
1 s before nose-poking for all cells recorded in the mPFC (magenta) and VS (light blue). The distribution of AUC scores did not differ between the mPFC and
VS (Wilcoxon Rank-Sum test, P = 0.024). (D) Top – proportion of mPFC cells with AUC > 0.5 in a 1 s wide moving window around the nose-poke event.
Bottom – mean of moving window AUC scores over the whole population of mPFC cells. Shaded area indicates SEM. (E) As D, for cells recorded from the
VS. (F) Proportion of variance explained by all PCs calculated from peri-nose-poke firing rates of all cells recorded in the mPFC. (G) Average firing rate of
cells with a positive or negative score on the first three PCs, with the population average of correct, incorrect and premature trials plotted separately. (H) Firing
rate patterns for all mPFC cells, sorted by score on PC1–3 and divided into correct, incorrect and premature trials. (I–K) As F and G, analysing cells recorded
in the VS.
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for all cells, which were recorded during sessions where rats made
more than five premature responses (mPFC, n = 784; VS, n = 116).
These features were then used as independent variables in a logistic
regression model to predict upcoming trial outcome (correct or pre-
mature responses). Cells with predictive firing rate patterns were
identified in the mPFC and VS (236/784 in mPFC, 34/116 in VS)
as cells with an AUC of > 0.5. Examples of predictive cells in the
mPFC and VS are shown in Fig. 3A (mPFC) and Fig. 3B (VS), and
the population distribution of AUC scores in this window is shown
in Fig. 3C. The distribution of AUC scores did not differ signifi-
cantly between the mPFC and VS (Wilcoxon rank sum test,
P = 0.25), suggesting that there was no difference in the proportion
of predictive cells between these regions.
The same analysis was repeated with a moving window across

the epoch around the nose-poke event (Fig. 3D and E). This analy-
sis indicated that the population mean AUC and proportion of cells
with an AUC of > 0.5 peaked when the rat returned to the food
magazine on correct trials, peaking slightly later in VS neurons,
compared with mPFC neurons.
However, the outcome prediction analysis provided no evidence

as to whether there were particular patterns or motifs in firing rate
behaviour in mPFC and VS cells, including delay or ramping activ-
ity. Therefore, to assess whether firing rate patterns that explained

large amounts of the variation in firing rates occurred in the popula-
tion of mPFC and VS neurons, PCA was applied to the average
peri-nose-poke PSTHs of correct trials over the population of cells
(Fig. 3F–K). The same features were then extracted from incorrect
and premature trials. For cells recorded in the mPFC, three PCs
explained over 85% of the variance in peri-nose-poke firing rates
(PC1-3 explained 43, 22 and 20% of variance, respectively),
whereas in the VS, three PCs explained over 81% (PC1-3 explained
37, 26 and 18% of variance respectively, Fig. 3F and I).
In both the mPFC and VS, both positive and negative ramp-like

activity were major determinants of firing rate, with ramping being
represented in PC2 and PC3 in the mPFC and PC1 and PC2 in the
VS (Fig. 3G and J). In both the mPFC and VS, changes in the firing
rate following nose-poking were also represented in the PCs. How-
ever, degrees of ramp-like activity appeared to be represented con-
tinuously rather than by individual cells with either very strong or
completely absent ramp-like activity (Fig. 3H and K).

Ramping neurons in the medial prefrontal cortex and ventral
striatum

Cells were identified for further analysis as having significant ramp-
ing activity as those whose firing rate in the 3 s preceding a correct

A B C D E

F G H I J

Fig. 4. Ramping activity in the mPFC and VS. (A) Mean population PSTH of mPFC cells with positive (top) and negative (bottom) ramping activity aligned
to the trial start. (B) Population PSTH of mPFC ramping cells aligned to the wait-start event. (C) Ramping cells in the mPFC aligned to the time of stimulus
light presentation (omission trials are shown in purple). (D) Ramping cells in the mPFC aligned to nose-poke event. (E) Ramping cells in the mPFC aligned to
magazine return event. (F–J) As A–E, for ramping cells recorded in the VS.
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nose-poke was linear with respect to time with |r| > 0.5, P < 0.05
(Bonferonni-corrected to the number of cells), and a |b|-value > 0.3
(to ensure ramping activity rather than consistent flat lines). These
criteria therefore did not constrain the time that neurons began their
ramping activity, or its end point. In total, 158/897 cells in the
mPFC met the criteria for positive ramping and 282/897 met the cri-
teria for negative ramping, whereas in the VS 81/383 and 112/383
cells met the criteria for positive and negative ramping, respectively
(Fig. 4, Table 2). The proportion of ramping cells did not differ
between brain regions (v22 = 2.31, P = 0.315, Chi-squared test).
Across the population of ramping cells, ramping activity appeared

to begin shortly before wait-start, and to reach a maximum (or mini-
mum) at the time of nose-poking (Fig. 4). In the mPFC on trials on
which rats made premature responses, ramping began earlier relative
to the start of the trial (Fig. 4A), but relative to nose-poking did not
have a steeper gradient or lower maximum (or minimum) compared
with correct responses. In the VS, negative ramping activity fol-
lowed a similar pattern, whereas this was less apparent in positive
ramping activity in this structure, although positive ramping activity
did reach its pre-ramp minima and post-ramp maxima earlier on pre-
mature trials. By contrast, whereas ramping activity began at a simi-
lar time for trials ending with correct and incorrect responses, firing
rates relative to incorrect nose-pokes (where rats respond after the
stimulus presentation but in the incorrect location) exhibited a left-
ward-shifted firing rate ramp.
In order to confirm that ramping activity was related to active

engagement in the task, PSTHs were also plotted relative to the time
that the stimulus light was presented, with trials divided into correct,
incorrect and omission outcomes. During omission trials, rats did
not make a nose-poke response, but the stimulus light was presented
(Fig. 4C and H). Ramping activity was not present on omission tri-
als in the mPFC and was reduced in the VS, suggesting that this
activity was correlated with task engagement.
Given that ramping activity aligned to the wait-start and nose-poke

events was similar for both premature and correct nose-pokes, with
similar gradients in firing rate increase and similar maxima, these data
suggest that, of the proposed models of firing rates, models 3 or 4 best
describe ramping activity preceding a premature response. Thus,
ramping activity may represent an internal time representation that
begins too early on trials that end in a premature response.

Relationship between behavioural variability and ramping
activity

As the 5-CSRTT is a self-paced task, rats are not instructed when to
leave the food magazine and start waiting. This potentially con-
founds averaged PSTH data as trials with different latencies to wait-
start are averaged together. Trials with different latencies might have
different peak firing rates, or firing rate gradients. Therefore, in
order to understand ramping activity during correct and premature
responses trials, the time that the rat spent waiting during each trial
was analysed.
Premature responses were associated with shorter latencies to the

start of waiting compared with correct responses [Fig. 5A–C, wait-
start latencies on premature trials were on average 0.763 � 0.04 s
shorter than on correct trials (mean � SE), t11408 = �19.22,
P < 0.001, linear mixed model], and also with shorter lengths of
time spent waiting (latencies from wait-start to nose-poking on pre-
mature trials were on average 0.558 � 0.04 s shorter than on cor-
rect trials, t11 408 = �13.35, P < 0.001). Additionally, the wait-start
latency correlated negatively with wait-start to nose-poke latency for
both correct trials (F1,8818 = 22659.39, P < 0.001) and premature
trials (F1,774 = 851, P < 0.001).
The effect of the wait-start latency on firing rate within each trial

was directly measured using a GLM for the firing rate of each cell,
using both upcoming trial outcome and wait-start latency as inde-
pendent variables. In order to provide an accurate comparison
between correct and premature trials, cells recorded during sessions
where fewer than four premature responses were made were
excluded from analysis (see Table 2 for total numbers of cells anal-
ysed). Across the population of ramping cells recorded in both the
mPFC and VS, there were no epochs between wait-start and nose-
poking where significant proportions of ramping neurons (either
positive and negative) differentiated between correct and premature
responses, or where there were significant interactions between the
wait-start latency and upcoming outcome (Fig. 5F, H, J and L).
Averaged firing rates in the same epoch are illustrated in Fig. 5E,
G, I and K. There were, however, large populations of cells whose
instantaneous firing rate correlated with the wait-start latency.
Relative to the start of the trial for cells recorded in the mPFC,

premature trials began ramping significantly earlier than correct tri-
als, in keeping with the behavioural data (Fig. 5E, G, I and K). For
the PSTH aligned to the start of the trial there were time bins with
significant proportions of cells with a negative correlation between
firing rate and wait-start latency, a significant, positively valued
effect of upcoming trial outcome and a significant, negatively valued
interaction between firing rate and ramping around the median wait-
start latency for correct trials. For positive ramping cells, a signficant
population of neurons exhibited a negative correlation with wait-
start latency preceding nose-pokes; trials with longer wait-start laten-
cies were accompanied by more rapid increases in firing rate
towards the time of nose-poking compared with those trials with a
short wait-start latency (where the rat spent longer waiting and
therefore suggesting that the firing rate increased more gradually).
The same pattern of response was observed for negative ramping
cells, but with the sign of the effect inverted. Similar patterns of
activity were also present in the VS, but with fewer recorded cells
with both correct and premature responses this analysis carried less
power to detect significant effects.
In order to investigate whether premature responses differed

from correct responses, the locations of correct, premature and
incorrect nose-pokes, as well as the stimulus light presentations
missed on incorrect trials were analysed (Fig. 5D). The proportion

Table 2. Total neurons recorded

mPFC VS

Total cells firing > 0.5 Hz
recorded under standard delay

897 383

Positive ramping cells 158 81
Negative ramping cells 282 112
Non-ramping cells 457 190

Total cells with ≥ 4 prematures
recorded under standard delay

784 116

Predictive cells 236 34
Positive ramping cells 137 (54) 23 (10)
Negative ramping cells 244 (80) 34 (11)
Non-ramping cells 403 (102) 59 (13)

Total cells firing > 0.5 Hz
under variable delay

211 –

Positive ramping cells 20 –
Negative ramping cells 33 –
Non-ramping cells 158 –

Numbers shown in brackets are the number of predictive cells falling into
each subgroup.
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of nose-pokes in each of the five holes was significantly different
for different trial outcomes (interaction between location and trial
outcome, F8,1620 = 4.104, P < 0.001, linear mixed model). Impor-

tantly, whereas the distribution of correct responses differed from
those of incorrect and premature responses (t1620 = 2.592,
P = 0.010 and t1620 = 2.145, P = 0.032 respectively), the distribu-
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Fig. 5. Analysis of 5-CSRTT behavioural variability and ramping activity. (A) Behavioural latencies during 5-CSRTT performance for all behavioural trials
across all mPFC and VS rats. Scatter plot of wait-start latency [the time (in seconds) between the start of a trial and the wait-start event (x axis)] against wait-
start to nose-poke latency (y axis) for correct, incorrect and premature trials. (B) Boxplot of wait-start to nose-poke latency for each trial outcome type. (C) Box-
plots of wait-start latency for each trial outcome type. (D) Distribution of the location of nose-pokes (expressed as a proportion of all of the responses of the
same type over a recording session) for correct, incorrect and premature responses, as well as the location that the stimulus light was illuminated on incorrect
trials. (E) Average population PSTH of positive ramping cells recorded in the mPFC aligned to trial start (left), wait-start (middle), and nose-poking (right). (F)
Proportions of cells with significant effects of wait-start latency (blue), upcoming premature outcome (outcomeP, green) or latency 9 outcome interactions (red)
on firing rate. For the effect of latency, positive values indicate a positive correlation between firing rate and latency; for the effect of outcome, positive values
indicate higher firing rates on premature trials compared with correct trials. Times when proportions of cells greater than chance were significantly affected by a
variable are highlighted with coloured shading. (G) PSTH of population average ramping activity for positive ramping cells recorded in the VS. (H) As F, for
positive ramping cells recorded in the VS. (I-L) As E-H, analysing cells with negative ramping activity in the mPFC and VS.
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tion of incorrect and premature responses did not differ
(t1620 = 0.379, P = 0.705).
Within each outcome type, correct nose-pokes were significantly

less likely in the four peripheral holes compared with the central
hole (all t < 0, P < 0.05). For comparison, on incorrect trials, the
missed stimulus light was significantly more likely to be in a periph-
eral hole compared with the central hole (all t > 0, P < 0.05). The
situation was more complex for incorrect and premature responses
with nose-pokes being significantly more likely in holes 1 and 4
compared with hole 3 (the central hole) for incorrect responses (all
t > 0, P < 0.05, with no difference in the proportion of responses
between hole 3 and holes 2 or 5, all P > 0.05). Premature responses
were significantly more likely in hole 4 compared with hole 3
(t432 = 2.332, P = 0.020), but there was no difference in the propor-
tion of responses between hole 3 and holes 1, 2 or 5 (all P > 0.1).
These results demonstrate that the distributions of incorrect and pre-
mature responses were similar, and both differed from correct
responses, suggesting that, whereas ramping activity (once initiated)
may be similar on premature and correct trials, the behavioural
responses selected differ between these trial types.

Effects of variable waiting periods on ramping activity in the
medial prefrontal cortex

Neurons in the mPFC have been described as tracking behavioural
strategies, encoding switches between rules used to guide behaviour
(Rich & Shapiro, 2009). The preceding analyses have demonstrated
that one feature of mPFC and VS neurons during 5-CSRTT perfor-
mance is ramping activity, which appears to peak at the point that
rats make a nose-poke response. However, in the standard imple-
mentation of the 5-CSRTT there is only one delay length presented
(5 s), so it is ambiguous as to whether the delay-related activity
peaks at the time that the rat anticipates the stimulus light occurring
or rather a ‘deadline’ for the time that a response should be made,
as predicted by some models of reaction time task performance (Oll-
man & Billington, 1972).
We hypothesized that, if the delay is made variable, and if the

deadline model describes ramping activity, delay activity should
reach its maximum at the longest possible delay, with delay activity
consequently being lower at nose-poking for trials with shorter
delays. Alternatively, ramping activity could peak either at the earli-
est time that a stimulus is presented, representing the time when the
rat most closely attends to the stimulus lights, or when the rat makes
a nose-poke response regardless of the distribution of possible
delays (Fig. 6A). We tested these predictions by randomly varying
the delay between 4, 5, 6, 7 or 8 s. Single units were recorded in
the mPFC in seven rats during a single session where the delay was
made variable (variable delay sessions). Behaviourally (Fig. 6B and
C), the proportion of premature responses increased as the delay
length increased during variable delay sessions (effect of delay,
F4,25 = 57.04, P < 0.001, linear mixed model). Relative to the 4 s
delay trials, the proportion of correct trials increased for 5 s delay
trials (t25 = 2.38, P = 0.025), was no different on 6 s delay trials
(t25 = 0.822, P = 0.042), and significantly decreased on 7 s delay
trials (t25 = �2.52, P = 0.018) and 8 s delay trials (t25 = �5.57,
P < 0.001). Incorrect responses also decreased as the delay period
increased (F4,25 = 6.61, P = 0.001).
However, the delay length did not affect the wait-start latencies

for correct (F4,610 = 2.186, P = 0.069) or incorrect (F4,184 = 1.513,
P = 0.200) trials, but the wait-start latency did differ between delays
on premature trials. Relative to trials with a delay of 8 s, trials with
a delay of 6 and 4 s had shorter latencies to wait-start

(t327 = �2.98, P = 0.003 and t327 = �2.65, P = 0.009, respec-
tively).
A total of 211 cells were recorded in the mPFC during the vari-

able delay sessions. Of these cells, 20 met the criteria for positive
ramping, whereas 33 met the criteria for negative ramping. These
proportions were significantly different to those observed in the
mPFC under standard delay conditions (v22 = 39.7, P < 0.001, Chi-
squared test). As occurred under standard delay conditions, ramping
began at the start of waiting, reaching a maximum (or minimum)
preceeding the earliest time of stimulus presentation, and remained
altered until the time of nose-poking (Fig. 7A, B, E and F). Similar

A

B

C

Fig. 6. Effect of variable delay intervals on behaviour. (A) Models for the
effect of variable delay on ramping activity. Model 1 – activity ramps
towards the latest possible time that the stimulus could be presented. Model
2 – activity ramps towards the earliest possible time that the stimulus could
be presented. Model 3 – activity ramps towards the time of the nose-poke
response. The possible times of the stimulus light are indicated as vertical
yellow lines. (B) Observed behavioural effects of variable delay; proportion
of responses at each of the offered delays. (C) Wait-start latency [the average
time (in seconds) between the start of a trial and the wait-start event] at each
of the offered delay periods.
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patterns were observed during premature trials. The effect of the
variable delay session on ramping activity was quantified by fitting
a GLM to the firing rate of each cell in successive peri-event time
bins, as before, with upcoming trial outcome, wait-start latency and
trial delay as independent variables (Fig. 7D and H). As observed
under standard delay conditions, there were no pre-nose-poke effects
of upcoming trial outcome, or trial delay. These results therefore
suggest that delay activity in the mPFC ramps towards the estimated
earliest time of stimulus presentation, perhaps therefore indicating
the time at which attention must be maximally directed towards
stimulus detection.

Discussion

The neurophysiological properties of single units recorded in the
mPFC (n = 897) and VS (n = 383) were analysed during sustained
attentional performance. Neural activity was recorded during ses-
sions on which the visual target stimuli were presented after fixed or
variable delays and showed a wide range of firing rate patterns,
including outcome-related changes in firing rate following nose-poke
responses (> 50% of cells in both the mPFC and VS), and delay-
related ramping activity that arose as rats first engaged in waiting
behaviour (as measured by the onset of behaviour where rats
scanned the response apertures) and persisted until a nose-poke
response was made (49.1% of cells in the mPFC and 50.4% of cells
in the VS). Intriguingly, on trials that ended prematurely, ramping
activity commenced earlier but reached the same peak rate at the
time of responding. A subpopulation of cells exhibited firing rate
patterns that could be used to predict upcoming premature responses

(30.1% of cells in the mPFC and 29.3% of cells in the VS) but, at a
population level, these predictive cells did not show a consistent pat-
tern of firing. Rather, individual neurons in the mPFC and VS
appeared to mainly encode trial outcome after a nose-poke response
had been made.
Ramping neural activity was observed in the mPFC and VS dur-

ing the waiting period, reaching a maximum (or minimum) at the
time of nose-poking. Importantly, this activity also occurred on trials
ending in a premature response and did not reach a lower peak or
have a steeper gradient on these trials. However, the onset of wait-
ing behaviour, and ramping firing activity, did begin earlier on pre-
mature trials, and notably reached a peak level at times when nose-
pokes were made, which on premature trials were by definition in
advance of the presentation of the light stimulus.
Although our GLM results provide support for model 3 (that

ramping activity began earlier on premature trials, but had the same
gradient as correct trials), our behavioural results demonstrated that
premature responses were associated with both shorter latencies to
wait-start and shorter waiting times before nose-poking. This would
therefore support model 4. It is possible, however, that the small
average difference in latencies between correct and premature trials
(< 1 s) and the small number of premature trials in the dataset
meant that small differences in firing rate gradient between correct
and premature trials could not be detected by the current analysis.
Despite this limitation, these results demonstrate that premature
responses are not associated with either a lower peak (model 1) or a
significantly steeper gradient (model 2) of ramping activity than cor-
rect trials. Additionally, we have previously demonstrated (Donnelly
et al., 2014) that wait-start latencies can be used to make informa-
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Fig. 7. Population activity of ramping cells in the mPFC recorded during variable delay sessions. (A) Population activity around three alignment events (from left
to right trial start, wait-start and nose-poking) for trials ending in correct responses recorded in positive ramping cells. Responses are divided by the delay of the trial
(represented as a rainbow colour scale). The median time of the next, or previous behaviour event is indicated as a vertical line in the same colour as the firing rate
for each delay. (B) As A, for premature responses in positive ramping cells. (C) PSTH of population average ramping activity for positive ramping cells (averaged
over all delays), aligned to trial start (left), wait-start (middle), and nose-poking (right). (D) Proportions of cells with significant effects of each independent variable
(see colour key for the colour of each variable, where outcomeP represents premature outcome) and firing rate. (E–H) As A–D, for negative ramping cells.
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tive predictions about the upcoming outcome of a trial. Therefore, if
the onset of ramping activity is determined by the start of waiting
behaviour, and the gradient of ramping is determined by the length of
time spent before waiting begins, given the differences in wait-start
latency between correct and premature trials, additional differences in
ramping activity between correct and premature trials may be unlikely.
In reaction time tasks such as those described by Ollman & Bil-

lington (1972), with a variable delay period, or in the human version
of the 5-CSRTT where faster responses obtain greater monetary
reward (Voon et al., 2014) it is economically favourable for the sub-
ject to respond as fast as possible. Combined with a degree of
uncertainty in the delay on such tasks it is possible that a falsely
detected stimulus might trigger a premature response. However, in
the 5-CSRTT there is a fixed, well-trained delay, five possible
behavioural responses, and a long opportunity to respond (i.e. the
limited hold period of 5 s) with a low probability of a premature
response. Consequently, we also investigated the effects of variable
pre-stimulus delays on neural activity associated with the various
trial types on the 5-CSRTT. As well as increasing premature
responses during the longer delays of 6, 7 and 8 s we found that
delay-related activity reached a maximum at the time of the earliest
possible stimulus presentation and remained altered until the time of
the nose-poke response. This suggests that the peak of ramping
activity during 5-CSRTT performance may reflect either the onset of
the time when a stimulus may be expected or a signal when to
selectively deploy attention to the response apertures. Such ramping
could also signal the times when maximum action restraint is
required or conversely when the subject should prepare to move.
Given the relative paucity of predictive cells found in this study in

the mPFC or VS, the neural locus of the decision to make a prema-
ture response on this task is unclear. Previous studies have found no
effect of neurotoxic or reversible lesions of the pre-limbic region of
the dorsal mPFC on premature responding (Chudasama & Muir,
2001; Murphy et al., 2012). Moreover, electrophysiological record-
ings during a T-maze task found that signals related to upcoming
actions were not present in the dorsal mPFC, but did occur in the sup-
plementary motor cortex (Sul et al., 2010). Recent evidence also sug-
gests that cells in the supplementary motor cortex are predictive of an
upcoming termination of waiting (Murakami et al., 2014). However,
outcome predictive cells have previously been described in the dorsal
mPFC during performance of a simple reaction time task and both
reversible inhibition and antagonism of dopamine D1 receptors in this
region have been reported to increase premature responding and
shorten time estimation (Narayanan & Laubach, 2006; Narayanan
et al., 2006; Parker et al., 2014). There is therefore mixed evidence
for a role of the dorsal mPFC in regulating waiting behaviour, which
could reflect differences in the tasks used in different studies, particu-
larly given the importance of sustained visual attention in 5-CSRTT
performance, in addition to time estimation.
One model of VS function suggests a role of this region in main-

taining responding over long delays (Nicola, 2006). VS lesions do
not cause marked increases in premature responding on the 5-
CSRTT (Christakou et al., 2004) but do impair performance on the
differential reinforcement of low rates of responding (DRL) task
where delays are typically longer and uncued (Pothuizen et al.,
2005; Fletcher et al., 2009). Therefore, it is possible that the VS
may be preferentially activated as delays are increased. Thus, elec-
trophysiological correlates of a failure to wait might only be
observed in the VS over longer delays.
The mPFC and VS may instead have modulatory roles in

5-CSRTT performance, signalling the time elapsed, as well as the
outcome of behaviour after it has been performed. We demonstrated

that LFP oscillations in these brain regions were also influenced by
the recent reward history of the rat during 5-CSRTT performance
(Donnelly et al., 2014), further reinforcing the view that multiple
sources of information on behavioural performance are integrated in
the mPFC and VS. However, the effect of previous reward history
could not be directly measured in the current study as relatively few
premature responses were made during the recording sessions. This
proportion would have been even smaller had premature responses
been divided into previously rewarded and non-rewarded responses,
thereby reducing the power of the analysis. Nevertheless, as we pre-
viously reported that the wait-start latency was influenced by previ-
ous trial reward history (Donnelly et al., 2014), the behavioural
consequences of previous trial outcomes have been included in the
present analysis.
Ramping or delay activity has been observed in brain structures

other than the mPFC and VS, including in the dopaminergic ventral
tegmental area (Totah et al., 2013) and serotonergic dorsal raph�e
nucleus (DRN) (Miyazaki et al., 2011a), regions that have reciprocal
connections with the mPFC and VS (Maurin et al., 1999; Carr &
Sesack, 2000; Joel & Weiner, 2000; Watabe-Uchida et al., 2012). In
the DRN, the firing rate of 5-HT neurons in the DRN increased dur-
ing a waiting period, but decreased in advance of a premature
response. Moreover, pharmacological inactivation of the DRN
increased premature errors, whereas optogenetic activation of the
DRN reduced premature terminations of waiting (Miyazaki et al.,
2011b, 2012, 2014). These data therefore suggest that the DRN 5-
HT system may be causally involved in waiting behaviour.
Pre-stimulus ramping activity has also been described in the ven-

tral tegmental area (Totah et al., 2013), and it has also been demon-
strated in a time estimation task that ramping single unit activity
and waiting-related low-frequency LFP oscillations are disrupted by
antagonism of dopamine D1 receptors in the mPFC (Parker et al.,
2014), suggesting that the ventral tegmental area dopaminergic pro-
jection to the mPFC is also involved in waiting or timing behaviour.
In the case of the 5-CSRTT, whereas dopamine D1 receptor agon-
ism in the pre-limbic mPFC has been shown to increase attentional
accuracy (Granon et al., 2000), increasing mPFC dopamine through
inhibition of its reuptake has not been shown to alter premature
responding (Economidou et al., 2012), so the precise role of mPFC
dopamine in this task requires further investigation.
In contrast with the present study, the firing of neurons relative to

the time of behavioural responses in both the DRN and ventral teg-
mental area has been reported to differ in advance of correct and pre-
mature responses (Miyazaki et al., 2011a; Totah et al., 2013). There
are several possible explanations for this discrepancy. Firstly, as
described above it is possible that the relatively short delays used in
the present study were not sufficiently long to place high demands on
action restraint, which may preferentially recruit VS activity.
Alternatively, it is possible that premature responses in our imple-

mentation of the 5-CSRTT do not result from a failure of a waiting
process and equally, incorrect responses may not result from a fail-
ure to deploy attentional resources at the time of stimulus presenta-
tion. Perhaps instead, under standard task conditions, where rats
have been extensively trained over many weeks, rats begin waiting
on a trial and, in addition to attending to the response apertures
(‘scanning’ behaviour), rats utilize a representation of time in the
mPFC and VS to focus attention at the expected onset of the stimu-
lus. If the rats have not correctly detected the stimulus light when
ramping activity reaches its peak, either due to early onset of wait-
ing, or due to failures in deploying visual attention to the nose-poke
apertures, this information may then increase the likelihood of rats
making a riskier ‘guess’ response to one of the nose-poke apertures.
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Premature responses might occur under these circumstances not
because of a failure to wait per se but because the timing process
begins too early, combined with a failure to use visual cues to guide
behaviour. This hypothesis would explain the failure to find any
major pre-response correlates of upcoming incorrect or premature
responses and the finding that premature and incorrect responses
were made in similar locations. Additionally, this view is consistent
with our recent observation that behavioural measures, especially
the wait-start latency, provide the best predictors of impending pre-
mature responses rather than neurophysiological signals in the
mPFC and VS (Donnelly et al., 2014).
In conclusion, the main findings of this investigation show that,

in a behavioural task involving waiting and selective visual atten-
tion, neurons in the mPFC and VS respond to rewards and errors as
well as delays. This delay-related activity did not substantially differ
between correct and premature trials but began earlier when rats
made premature responses. When the delay period was made vari-
able, delay activity ramped up (or down) to the earliest possible
time of stimulus presentation and remained altered until a nose-poke
response was made. These findings therefore suggest that premature
responses may not result from a failure in a waiting process but
instead from rats incorrectly timing the delay to the expected time
of stimulus presentation. Our findings imply that the neural locus of
the decision of when (and where) to make a premature response
may emanate from structures outside the mPFC and VS. Based on
recent empirical studies this integration may occur in the supplemen-
tary motor cortex (Murakami et al., 2014) and other structures
implicated in impulsivity, including monoaminergic systems in the
midbrain. Such research may be relevant to understanding the aetio-
logical basis of maladaptive impulsivity in attention-deficit hyperac-
tivity disorder and drug addiction.
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