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Recent advances in the biology and drug 
targeting of malaria parasite aminoacyl‑tRNA 
synthetases
Sameena Khan*

Abstract 

Escalating drug resistance in malaria parasites and lack of vaccine entails the discovery of novel drug targets and 
inhibitor molecules. The multi-component protein translation machinery is a rich source of such drug targets. Malaria 
parasites contain three translational compartments: the cytoplasm, apicoplast and mitochondrion, of which the 
latter two are of the prokaryotic type. Recent explorations by many groups into the malaria parasite protein transla-
tion enzymes, aminoacyl-tRNA synthetases (aaRSs), have yielded many promising inhibitors. The understanding of 
the biology of this unique set of 36 enzymes has become much clearer in recent times. Current review discusses the 
advances made in understanding of crucial aaRSs from Plasmodium and also the specific inhibitors found against 
malaria aaRSs.
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Background
Plasmodium falciparum causes the most lethal form of 
malaria and is the world’s largest killer with  ~  438,000 
deaths and more than 200 million infections annually [1]. 
While the 2015 Nobel prize in physiology celebrates the 
triumph over deadly malarial and worm parasites, drug 
resistance among pathogens of bacterial and eukaryotic 
origin, including malaria parasites and worms is inevita-
ble. The current situation is worsened by the increasing 
drug resistance in malaria parasites, even to mainstream 
drugs in clinical use, such as artemisinins [1]. Vaccination 
programmes have not been successful yet, which makes 
it urgent to find new molecular scaffolds to design effi-
cient anti-malarials [1]. The highly complex progression 
of the parasite through its life cycle depends on its vary-
ing its proteome to fit different cellular milieus of vector 
salivary gland, gut, human blood stream, hepatocytes 
and erythrocytes [2–4]. A dynamic proteome presents 
problems for selecting multistage targets as reflected in 
the inefficacy of many drugs in clinical use on the liver 

stage. In this direction, housekeeping pathways, such as 
protein translation, are attractive drug targets as they are 
not only vital but also active in all stages [5].

The malaria parasite contains three genomes; nuclear, 
apicoplastic (a relic chloroplast) and mitochondrial 
and all three genomes require dedicated translational 
machineries to function [5]. Protein translation machin-
ery provides a diverse collection of proteins to be tar-
geted and malarial aminoacyl-tRNA synthetases (aaRSs) 
have received the most attention for drug targeting in the 
last half-decade [5, 6]. aaRSs catalyze the first reaction of 
protein biosynthesis by combining a specific amino acid 
to cognate tRNA molecules in a two-step reaction (Fig. 1) 
[7]. Generally, there are 20 different aminoacyl-tRNA 
synthetases in a protein translational compartment, spe-
cific to one of the twenty amino acids [7–9]. Depending 
on the architecture of the active site and mode of tRNA 
binding, aaRSs are divided into two structural classes, 
with 10 enzymes in each class [7–9]. aaRSs are one of the 
most ancient enzymes and over the course of evolution, 
have appended additional domains to their core struc-
ture to perform additional non-canonical functions [10, 
11]. These functional expansions range from splicing, 
cytokine-like function to roles in DNA damage response. 
Molecular details, structures and a fundamental 
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understanding of workings of aaRSs, including their 
moonlighting functions, are available in great detail and 
discussed in many reviews [7–11].

Protein translation ensures a high fidelity by quality 
checks at several steps [12, 13]. Proofreading at the ami-
noacylation step to discriminate between cognate amino 
acid and isosteric substrates is performed by an editing 
pocket appended (cis) to many aaRSs and by trans-edit-
ing factors [12–14]. Class I enzymes contain an inser-
tion in their Rossmann fold called connective polypeptide 
1 (CP1), which in some cases forms the editing pocket 
[14]. CP1 can catalyze the reversion of both pre- and 
post-transferred errors in aminoacylation. Class II aaRSs 
contain a distinct editing domain, which mostly hydro-
lyse the mischarged tRNAs (post-transfer). Trans-editing 
factors like AlaX and Ybak hydrolyse misacylated tRNAs 
[12–14]. Enantiomeric selectivity is provided by the 
D-tyrosyl-tRNA deacylase (DTD) enzyme, which hydro-
lyses D-amino acids coupled to tRNA molecules [5, 15, 
16].

Reduced set of aaRSs translate parasite genome 
efficiently
Research on crucial malaria parasite aaRSs was majorly 
initiated with their genomic analysis and tabulation in 
2008 by Bhatt et  al. [17]. Their comprehensive analysis 
revealed that malaria parasite P. falciparum contains 37 
aaRS genes in its nucleus, which can form 36 enzymes 
[17] (Table  1). Many interesting aspects about malaria 
aaRSs came to light through this study. For instance, 
compared to other organisms, malarial aaRSs constitute 
a much larger fraction of the overall proteome. Addition-
ally, these aaRSs have an unusual domain architecture 
and contain additional domains [17]. Most intriguingly, 
it was, till recently, unclear how 36 aaRSs, instead of 
the theoretically required 60 aaRSs, provide charged 
tRNAs to three translational compartments; cytoplasm, 
mitochondrion and apicoplast (20 tRNAs per compart-
ment being the theoretical requirement). Studies mainly 

focused on cellular distribution of aaRSs and import of 
cytoplasmically charged tRNA to mitochondrion have 
now revealed the scheme by which the malaria parasite 
efficiently utilizes a compromised array of 36 aaRSs to 
synthesize its proteome (Table  1) (Fig.  2). Localization 
studies combined with robust bioinformatics predictions 
have revealed that there are 16 aaRSs exclusive to cyto-
plasm and 15 nucleus-encoded aaRSs exclusively targeted 
to apicoplast (Table  1) [17–26]. Four single copy aaRSs 
(alanyl-tRNA synthetase; AlaRS, threonyl-tRNA syn-
thetase; ThrRS, cysteinyl-tRNA synthetase; CysRS and 
glycyl-tRNA synthetase; GlyRS) are shared between the 
apicoplast and cytoplasm by dual localizations, where 
mechanisms like alternative splicing (CysRS) and pre-
sumably, alternative translation initiation (AlaRS, ThrRS 
and GlyRS) occur (Table  1) (Fig.  2) [18–20]. Moreover, 
since the apicoplast lacks glutaminyl-tRNA synthetase 
(GlnRS), a charged glutamine-specific tRNA is provided 
by the reactions of two apicoplastic enzymes; glutamyl-
tRNA synthetase (GluRS) and a unique glutamyl-tRNA 
amidotransferase (GatAB) [27, 28]. Apicoplastic non-dis-
criminating GluRS mischarges glutamine-specific tRNA 
with glutamic acid followed by tRNA-bound glutamic 
acid conversion into glutamine by the heterodimeric 
GatAB, thus providing a complete set of 20 charged 
tRNAs (Fig. 2) [27, 28].

Plasmodium falciparum mitochondrion was shown 
to harbour an enzymatically active mitochondrial phe-
nylalanyl-tRNA synthetase (PheRS), which is unique to 
Plasmodium as it is absent in other apicomplexans [29]. 
Mitochondrial PheRS is the only aaRS present in para-
site mitochondrion and its functional relevance remains 
unclear. The mitochondrion seem to be dependent on 
charged tRNA import for synthesizing its three respira-
tory chain associated genes; cytochrome c oxidase sub-
units I and III (COX1, COX3) and cytochrome b (Cytb) 
(Fig. 2) [5, 29, 30]. Recently, evidence for import of cyto-
plasmically charged phenylalanine and cysteine tRNAs 
was provided which suggest that the same is likely true 
for other tRNAs [29]. Similar studies on Toxoplasma have 
demonstrated the presence of an analogous translational 
setup in mitochondrion [31].

While the aminoacylation requirements of three trans-
lationally active compartments in P. falciparum are the 
same, it was shown that proofreading requirements at the 
aminoacylation level are not the same for apicoplast and 
cytoplasm [18]. The apicoplast seem to be tolerant for 
mischarged tRNAs as it only contains three aaRSs with 
editing pocket (Table 1) (Fig. 2). The same would not be 
true for the mitochondrion as it was shown that parasite 
mitochondrion import charged tRNAs from cytoplasm 
and hence fidelity would be similar to cytoplasm [29].

Fig. 1  Generalized two step aminoacylation reaction. In the first step, 
specific amino acid (AA) is combined with ATP molecule to form a 
tightly bound aminoacyl-adenylate complex (AA-AMP) by release of 
pyrophosphate (PPi) and help of a divalent cation. In second step, 
the activated amino acid is transferred to the 3′ end of cognate tRNA 
molecule to form charged tRNA (AA-tRNA) with release of AMP. These 
charged tRNA molecules are then used by ribosomes for protein 
translation



Page 3 of 10Khan ﻿Malar J  (2016) 15:203 

aaRSs can also form a highly efficient aminoacylation 
ensemble called a multi-synthetase complex, which con-
sists of nine aaRSs tethered by scaffold proteins such as 
P43, P18 and P38 in higher eukaryotes [10]. Bioinformat-
ics analysis of malarial aaRSs identified only one putative 
cytoplasmic adaptor protein, P43, that could participate 
in the formation of the multi-synthetase complex [17]. 
Plasmodium-related apicomplexan Toxoplasma gondii 
possesses a reduced multi-synthetase complex consist-
ing of P43, methionyl- (MetRS), glutaminyl-, glutamyl-, 
and tyrosyl- (TyrRS) tRNA synthetases [32]. A similar 
reduced P43-dependent complex can be expected for 
malaria parasite.

Non‑canonical functions by malaria parasite aaRSs
aaRSs have not been comprehensively studied for their 
non-canonical functions in malaria parasite though stud-
ies suggest that malaria parasite aaRSs have evolved to 
meet parasite-specific needs [17–26, 33].

Tyrosyl‑tRNA synthetase modulates host immune response
Most prominent example of parasite specific adapta-
tion and non-canonical functionality is the P. falcipa-
rum cytoplasmic PfTyrRS, which can modulate host 
immune response [23]. Human TyrRS contains a C-ter-
minal endothelial monocyte-activating polypeptide II 
(EMAPII) domain and a tripeptide cytokine motif (ELR; 
Glu-Leu-Arg) embedded in its catalytic domain (Ross-
mann fold) [10, 34]. Cytokine activities of both EMAPII 
and ELR are well studied [10, 34]. After cleaving into 
two fragments, the C-terminal fragment (EMAPII) per-
forms cytokine-like functions such as inflammation and 
the N-terminal performs functions similar to interleukin 
8—like cytokines such as angiogenesis [10, 34]. Malaria 
parasite TyrRS lacks the C-terminal EMAPII domain, but 
possesses the ELR motif [23]. This enzyme was observed 
to be present on RBC membrane in the infected RBCs 
and secreted outside upon schizont burst (Fig.  3) [23]. 
This secreted TyrRS is capable of eliciting immune mod-
ulation by binding to macrophages and dendritic cells 

Table 1  Genes encoding P. falciparum aaRSs and their localization

a   Indicate genes containing editing activity

Protein name Mitochondria Apicoplast Cytoplasm

Class I

 Arginyl-tRNA synthetase PF3D7_0913900 PF3D7_1218600

 Cysteinyl-tRNA synthetase PF3D7_1015200.1 PF3D7_1015200.1

 Glutamyl-tRNA synthetase PF3D7_1357200 PF3D7_1349200

 Glutaminyl-tRNA synthetase PF3D7_1331700

 Isoleucyl-tRNA synthetase PF3D7_1225100a PF3D7_1332900a

 Leucyl-tRNA synthetase PF3D7_0828200a PF3D7_0622800

 Methionyl-tRNA synthetase PF3D7_1005000 PF3D7_1034900

 Tryptophanyl-tRNA synthetase PF3D7_1251700a PF3D7_1336900

 Tyrosyl-tRNA synthetase PF3D7_1117500 PF3D7_0807900

 Valyl-tRNA synthetase PF3D7_0311200a PF3D7_1461900

Class II

 Alanyl-tRNA synthetase PF3D7_1367700a PF3D7_1367700a

 Asparaginyl-tRNA synthetase PF3D7_0509600 PF3D7_0211800

 Aspartyl-tRNA synthetase PF3D7_0514300 PF3D7_0102900

 Glycyl-tRNA synthetase PF3D7_1420400 PF3D7_1420400

 Histidyl-tRNA synthetase PF3D7_0934000 PF3D7_1445100

 Lysyl-tRNA synthetase PF3D7_1416800 PF3D7_1350100

 Phenylalanyl-tRNA synthetase PF3D7_0603700 PF3D7_1232000 PF3D7_1104000 (α)
PF3D7_0109800a (β)

 Prolyl-tRNA synthase PF3D7_0925300a PF3D7_1213800

 Seryl-tRNA synthetase PF3D7_1216000 PF3D7_071770

 Threonyl-tRNA synthetase PF3D7_1126000a PF3D7_1126000a

Other enzymes

 D tyrosyl-tRNA deacylase PF3D7_1108200a

 P43 PF3D7_1442300

 Glutamyl-tRNA amidotransferase PF3D7_0416100 (A)
PF3D7_0628800 (B)
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using ELR motif and triggering secretion of pro-inflam-
matory cytokines TNF and IL6 (Fig.  3). Structural data 
showed that the PfTyrRS ELR motif, unlike its human 
counterpart, is not buried but instead is exposed. Thus 
the enzyme without cleavage can probably, upon secre-
tion, bind CXCR2 receptors present on macrophages and 
dendritic cells (Fig. 3) [23].

Lysyl‑tRNA synthetase can synthesize signaling molecule 
Ap4A
Another example is lysyl-RNA synthetase (LysRS) that 
can synthesize signaling molecules Ap4A (diadenosine 
tetraphosphate) and Ap5A (diadenosine pentaphosphate) 
which can regulate variety of cellular functions ranging 
from gene transcription, apoptosis and DNA replication 
to ion channel regulation [10, 35]. Malaria parasite LysRS 
is also capable of synthesizing an Ap4A molecule and 
presence of an Ap4A hydrolase in the parasite hints at a 
special role for this molecule in parasite physiology [25, 
36]. Regulations of Ap4A synthesis and its functional rel-
evance to parasite physiology have not yet been studied.

Tryptophanyl‑tRNA synthetase has an unusual architecture
Another unusual aaRS that malaria parasite possesses is 
tryptophanyl-tRNA synthetase (TrpRS) which contain a 

trans-editing factor AlaX fused to its N-terminal (Fig. 3) 
[17, 18, 26]. AlaX was found to be essential for function-
ing of the enzyme, while the enzyme without this domain 
was non-functional [26]. It was suggested that AlaX could 
assist tRNA binding to TrpRS. This is a unique feature 
absent in the human counterpart or any other reported 
mammalian TrpRS. Bioinformatics and modelling stud-
ies on TrpRS suggest that it has lost the crucial residues 
for editing function when compared with the Pyrococcus 
horikoshii AlaX. [26]. Human TrpRS is secreted outside 
cells and is an angiostatic cytokine [10, 11]. The plasmo-
dial enzyme was found to be non-secretory in the asexual 
blood stages of parasite [26]. TrpRSs in human and other 
organisms are also capable of synthesizing signaling mol-
ecule Ap3A, but whether the malarial enzyme can syn-
thesize the same has not been tested [10].

Other aaRSs with extra domains in malaria parasite
Many other aaRSs were found with unusual domains in 
P. falciparum and experimental validation of their func-
tionalities remains to be performed. For example, cyto-
plasmic PheRS contains DNA binding domains in its 
β subunit [11, 17, 29]. PheRSs have been suggested to 
bind to DNA and their role on DNA binding is not clear 
(Fig.  3) [10, 11, 29]. Cytoplasmic PheRS was observed 
only in the cytoplasm of parasite in all asexual blood 
stages and gametocyte stages of parasite suggesting that 
the enzyme either goes to nucleus in other stages of the 
life cycle (hepatocyte or mosquito) or has a conditional 
nuclear localization [29].

Glutathione-S-transferase (GST) or GST-like domains 
have important implications in protein–protein inter-
actions such as formation of the multi-synthetase com-
plex [10, 11, 23]. MetRS and GlnRS from P. falciparum 
were found to contain GST domains [17, 24]. Functions 
of these GST domains in malaria parasite aaRSs remain 
unclear [24]. Plasmodium GST-like domain appended 
to the cytoplasmic PfMetRS differs from the ortholo-
gous group suggesting different functionality in different 
members.

Malarial prolyl-tRNA synthetase (ProRS) contain an 
N-terminal Ybak domain, which can potentially hydro-
lyze the aminoacylation bond on proline tRNA mis-
charged with alanine or cysteine (Fig.  3) [17, 18, 22]. 
The C-terminal part of PfProRS contains a pseudo-zinc 
binding domain, which is functional in the human coun-
terpart [18, 22]. Apicoplast PfTyrRS contains a S4 RNA 
binding domain whose function remains to be explored 
[17].

Some aaRSs have been observed to possess P. fal-
ciparum-specific extensions and insertions that were 
removed from the recombinant, purified enzymes for 
structural studies or biochemical characterizations  

Fig. 2  Cellular distribution of 36 malaria parasite aminoacyl-tRNA 
synthetases (aaRSs). All 36 aaRSs are encoded by the nuclear genome. 
16 aaRSs are exclusively present in cytoplasm (Cyto aaRSs) of parasite 
and 15 are exclusive to the apicoplast (Api aaRSs). Four aaRSs; 
AlaRS, ThrRS, GlyRS and CysRS are shared by both apicoplast and 
the cytoplasm by mechanism of dual localization (denoted as Dual 
aaRSs). A unique amidotransferase (GatAB) provides the glutamine 
charged cognate tRNA in the apicoplast. Mitochondrion contain only 
one enzymatically active aaRS; PheRS (mFRS). Mitochondrion seem 
to be reliant on the charged tRNA import from the cytoplasm for its 
translation. tRNAs charged with amino acid are shown with aa written 
in yellow box
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[17, 18, 22, 24–26]. For example, the N-terminal of some 
aaRSs seems crucial for tRNA binding and the ami-
noacylation reaction, as suggested for Pf aspartyl-tRNA 
synthetase (AspRS) and PfTrpRS. On the other hand, 
N-terminal region seems dispensable for the enzymatic 
activity of PfLysRS, suggesting a regulatory role or non-
canonical functionality. The apicoplast copy of PfMetRS 
contains a unique low complexity 35 amino acid inser-
tion of unknown functionality in the CP1 region [24]. 
What these extensions are and what is their precise role 
in the parasite are fascinating issues, which require fur-
ther study.

Structures and drug targeting of malarial aaRSs
Theoretically, each aaRS is vital for parasite survival 
and hence, a potential drug target [6, 37–39]. Over 
the last half a decade, aaRSs from the malaria para-
site have provided many lead inhibitor compounds 
that can be used to develop species-specific drugs 
[6, 21, 24, 40–45]. High content screenings have pro-
vided aaRS inhibitors as lead anti-malarials [41, 45]. 

aaRSs are multidomain enzymes and thus provide the 
flexibility of designing intervention strategies against 
multiple sites, viz. aminoacylation pocket, editing site, 
tRNA binding region and additional domains of non-
canonical functionalities. Structural studies of malaria 
parasite aaRSs by X-ray crystallography have hugely 
boosted the anti-malarial drug discovery programme. 
Reported anti-malarials that target aaRSs are listed in 
Table  2 and key targets and their inhibition are dis-
cussed below.

Targeting single copy aaRSs
Single copy aaRSs, AlaRS, ThrRS, CysRS and GlyRS are 
important anti-malarial drug targets mainly because 
targeting of these enzymes would stall translation in 
three compartments simultaneously [18–20, 29]. Two 
of these enzymes, AlaRS and ThrRS contain an editing 
domain, providing an additional advantage to design 
inhibitors against the editing pocket [18, 19]. In fact, an 
AlaRS inhibitor A5 has been reported to kill the para-
site at low μM values [18]. In an effort to test the known 

Fig. 3  Additional functionalities and domains in Plasmodium falciparum aaRSs. Plasmodium falciparum TyrRS (shown as yellow rhombus) contain the 
ELR motif that helps it act as a cytokine to modulate immune functioning. Pf TyrRS is secreted during schizont burst from the infected red blood 
cells into blood stream. Released TyrRS interacts with dendritic cells and macrophages and gets internalized. This triggers release of TNF and IL6 
and consequently results in increased host endothelium cell ICAM and VCAM expression. Lower panel shows aaRSs containing additional domain. 
N-terminal AlaX domain is present in the TrpRS and required for tRNA binding. β subunit of cytoplasmic PheRS contains a DNA binding domain 
B5. Cytoplasmic ProRS contain homologue of trans-editing factor Ybak fused to its N-terminal. AA, RBD and B3/B4 represent the aminoacylation 
domain, tRNA anticodon binding domain and the editing domain, respectively
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aaRS inhibitors against malaria parasite enzymes, sev-
eral inhibitors were found to target P. falciparum aaRSs 
[46]. PfThrRSs was found to be inhibited by the natural 
compound borrelidin at a remarkable ~ 1 nM IC50 value 
[42]. Borrelidin and its analogs can clear malaria at low 
concentrations from mice [42, 47]. A major limitation 
with borrelidin is its lack of specificity for PfThrRS over 
the human enzyme, as it’s highly toxic to human cells [42, 
47]. Many borrelidin analogues have been synthesized 
and some of these possess lesser toxicity to human cells 
and clear malaria both in  vitro and in  vivo [42, 47–49]. 
No atomic structures are available for any of these single 

copy aaRSs, making structural studies of these enzymes 
for finding anti-malarial drugs a high priority.

Lysine‑tRNA synthetase
PfLysRS is a class II aaRS and Plasmodium contains two 
copies of this enzyme; one cytoplasmic and the other api-
coplastic [17]. The cytoplasmic copy was reported to be 
inhibited by a fungal secondary metabolite cladosporin 
in high content screening (Table  2) [41]. Cladosporin 
was found to inhibit both blood and liver stages of the 
parasite with a high specificity over human cells [41, 50]. 
Structures of both apo and drug-bound forms of PfLysRS 

Table 2  A list of efficient anti-malarial aaRS inhibitors

Inhibitor Target plasmoDB 
geneID

Comment

Mupirocin IleRS
PF3D7_1225100

This is a clinical inhibitor of bacterial infection by S. aeurus. Likely targets active site of apicoplast 
IleRS with IC50 ~ 90 nM [21]

4-Thiaisoleucine IleRS
PF3D7_1332900

Structural analogue of isoleucine targets the cytoplasmic IleRS [21]

TCMDC-131575 IleRS
PF3D7_1332900

Molecule identified in GlaxoSmithKline’s library screening. IleRS is the hypothesized target [45]

Cladosporin LysRS
PF3D7_1350100

A selective malaria inhibitor with IC50 value near 50 nM. Kills both liver and blood stage parasites. 
Drug bound crystal structure is available [40, 41]

Lysyl-adenylate analogues LysRS
PF3D7_1416800

Nearly 50 analogues with μM inihibition reported [46]

Halofuginone ProRS
PF3D7_1213800

Inhibit both liver and blood stages. Bind to parasite enzyme with Kd value of 9 nM. Halofuginone 
bound crystal structure is available [43, 52, 55]

Borrelidin and analogues ThrRS
PF3D7_1126000

Kills P. falciparum at IC50 near 1 nM. ThrRS inhibition confirmed in enzyme assays [40]. Analogs with 
reduced cytotoxicity to human were reported [42, 47–49]

A5, A3 AlaRS
PF3D7_1367700

Several P. falciparum inhibitors identified using in silico screening and docking against active site. 
A5 was top inhibitor with IC50 value near 4 μM [18]

TCMDC-141232 TyrRS
PF3D7_1117500

Molecule identified in GlaxoSmithKline’s library screening. Apicoplast copy of TyrRS is the hypoth-
esized target [45]

REP3123
REP8839
C1–C8

MetRS
PF3D7_1034900

Known bacterial MetRS inhibitors REP3123 and REP8839 inhibit P. falciparum and block translation 
with IC50 values near 150 nM. C1–C8 identified from in silico screening and inhibit parasite growth 
with IC50 values below 500 nM [24]

TCMDC-140014
TCMDC-139627
TCMDC-139450

MetRS
PF3D7_1034900

Molecules identified in GlaxoSmithKline’s library screening. MetRS is the hypothesized target [45]

Sulfomyl adenosine  
analogues

SerRS
PF3D7_071770
GluRS
PF3D7_1349200
GlnRS
PF3D7_1331700
AsnRS
PF3D7_0211800
TyrRS
PF3D7_0807900

Mechanism based inhibitors that mimic the intermediate aminoacyl-AMP were tested and shown 
to kill malaria parasite in nM values [42]

AN2729 LeuRS
PF3D7_0828200

Member of benzoxaborols family which show anti-malarial activity [42]

TCMDC-140398
TCMDC-140498
TCMDC-140522
TCMDC-140563
TCMDC-140564
TCMDC-140734
TCMDC-141485

PheRS
PF3D7_1104000

Molecule identified in GlaxoSmithKline’s library screening. Cytoplasmic copy of PheRS is the 
hypothesized target [45]
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have helped in understanding the molecular mecha-
nism of cladosporin binding and specificity over human 
counterpart [25, 40, 51] (Fig.  4). Cladosporin binds in 
the adenosine binding site of the enzyme and two main 
residues-Ser344 and Val328, were proposed to be the 
specificity regulators [40, 51]. Dissociation constant for 
PfLysRS with cladosporin was found to be ~ 14 nM, while 
human LysRS bound the drug at ~ 4 μM [40, 51]. Also, 
the P. falciparum enzyme was observed in a mono-dis-
perse dimeric form whereas the human enzyme was addi-
tionally observed in a tetrameric form [25]. The X-ray 
structure of cladosporin-bound PfLysRS and a detailed 
dissection of the binding mechanism is expected to assist 
structure-based drug derivatization of cladosporin. A 
series of inhibitors were tested against the apicoplastic 
copy of LysRS and were found to kill the malarial parasite 
effectively [46].

Proline‑tRNA synthetase
Febrifugine, a Chinese herb derived molecule, and its ana-
logs, especially halofuginone, are highly efficient inhibi-
tors of malaria parasite growth [44, 52–54]. Halofuginone 
targets both the asymptomatic liver stage and the blood 
stages of Plasmodium parasites [44, 52, 53]. The cytoplas-
mic copy of ProRS from malaria parasite was identified as 
the specific target for these molecules (Table 2) [52, 55]. 
Crystal structures of malaria parasite ProRS in apo and 
halofuginone-bound states have revealed the molecular 
mechanism of inhibition (Fig.  4) [22, 43]. Halofuginone 
occupies the proline binding pocket and A76 nucleotide 
at the 3′ end of cognate tRNA [43]. A strong binding of 
halofuginone was reported to require ATP molecule (Kd 
value of 1  nM) that locks the halofuginone into active 
site (Fig. 4) [43]. A series of febrifugine and halofuginone 
analogs have been synthesized by various groups and 
those functioning as inhibitors in the nanomolar level 
were tested for their anti-malarial activities in an effort to 
achieve specificity over the human counterpart [43, 44].

Tyrosyl‑tRNA synthetase
The crystal structure of PfTyrRS was solved at 2.2  Å 
in complex with tyrosyl-adenylate complex [23]. This 
structural investigation provided the basis for consti-
tutively active ELR motif in the malarial enzyme. The 
structure revealed 11 differences in the active sites of 
human and parasite enzymes, with five in tyrosine bind-
ing residues and six involved in AMP binding, which 
can be used for designing specific inhibitors [23, 45]. In 
a large scale screening of GlaxoSmithKline’s library, a 
chemotype potentially targeting the apicoplastic copy 
of PfTyrRS (TCMDC-141232) was identified (Table  2) 
[45]. Structural differences in the active site as compared 
to the human enzyme and its role in a key pathological 

non-canonical function makes PfTyrRS one of the most 
attractive drug targets.

Tryptophanyl‑tRNA synthetase
Crystal structures of PfTrpRS have been solved in apo, 
l-tryptophan-bound and l-tryptophanyl-adenylate-
bound forms [26, 56]. These have allowed the exploration 
of major structural differences between the human and 
P. falciparum enzymes. The ATP binding loop KMSST 
in the Plasmodium enzyme is present in disordered 
form, while the ATP binding loop KMSAS of the human 
enzyme is ordered and in a closed conformation [26]. 
Cho Yeow Koh et al. suggested a unique targeting strat-
egy against PfTrpRS by focusing on the conformational 
changes occurring during transition from apo to ligand-
bound form rather than only on the active site residues 
[56]. Similarly, the unique AlaX domain appended to the 
N-terminus of several aaRSs of Plasmodium parasites can 
also be targeted.

Methionyl‑tRNA synthetase
Many specific inhibitors targeting the cytoplasmic 
PfMetRS enzyme have been reported. In the GlaxoSmith-
Kline library screening, four potent inhibitors belonging 
to two chemotypes, for example, TCMDC-139627 were 
identified [45]. In another attempt, known MetRS inhibi-
tors REP3123, REP8839 and novel molecules from in sil-
ico screening named C1–C8 were found to target malaria 
parasite growth (Table  2) [24]. Determining the atomic 
structure of MetRS from Plasmodium would be helpful 
in understanding the mechanism of inhibition and devel-
oping these lead inhibitors into a drug.

Phenylalanyl‑tRNA synthetase
The malaria parasite contains three PheRS proteins; one 
for each of the three translational compartments [17, 29]. 
PheRSs show heterogeneity in their functionality and 
architecture. The cytoplasmic enzyme is an (αβ)2 het-
erotetramer while the mitochondrial and apicoplastic 
PheRSs are monomeric [29]. GlaxoSmithKline’s library 
screening identified seven inhibitors belonging to three 
chemotypes that can target the catalytic α subunit of 
malarial cytoplasmic PheRS [45]. Structural information 
for any of the three plasmodial PheRSs is much needed. 
The presence of three PheRSs in malaria parasite pre-
sents an opportunity to block translation in all three 
compartments.

Isoleucyl‑tRNA synthetase
Plasmodium falciparum contains two copies of isole-
ucyl-tRNA synthetase (IleRS) where one is cytoplasmic 
and the other one is apicoplastic [18, 21]. Mupirocin is 
a natural product that selectively targets bacterial IleRS 
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and is the only commercially available antibiotic against 
aaRSs. Mupirocin was found to target the apicoplastic 
copy of IleRS at low nano-molar values [21]. GlaxoSmith-
Kline’s library screening has also identified one inhibitor, 
TCMDC-131575 against P. falciparum cytoplasmic IleRS 
[45]. Interestingly, both copies of parasite IleRS contain 
editing domains, which provide extra set of pockets to 
target [18].

Conclusions
As clear from the above report, malaria parasite aaRSs 
are not only intriguing for fundamental research, but 

are also validated drug targets. The apicoplast and mito-
chondrial translational setups are equally druggable as 
the cytoplasmic counterpart, and require more studies 
targeted at exploring their structures and mechanisms. 
Available inhibitors of bacterial-type organellar aaRSs 
suggest that their targeting is feasible. Many of the cyto-
plasmic aaRSs remain to be explored for their structure 
and physiological roles. Previous studies have hinted 
at parasite specific adaptations in housekeeping aaRS 
enzymes, making the predicted extra domains in non-
characterized aaRSs, fascinating to study. Moreover, 
aaRSs are conserved enzymes and thus repurposing of 

Fig. 4  Structures of two drug targets LysRS and ProRS from malaria parasite are shown in drug bound forms. Upper panel left shows PfLysRS bound 
to cladosporin (orange) and l-lysine (blue). Upper panel right shows cladosporin bound to PfLysRS active site. Cladosporin binding is achieved by 
stacking and hydrogen bonding (shown in dotted lines) interactions with the inhibitor. Red dot denotes water molecule. Lower panel left shows 
halofuginone (light blue) and ATP mimic (yellow) bound surface view of ProRS crystal structure. Lower panel right shows halofuginone binding in the 
active site and major interacting residues. Halofuginone biding is stabilized by the ATP binding which makes hydrogen bonds with the inhibitor. 
Hydrogen bonds are denoted as dotted lines
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drugs developed against malarial aaRSs can be used to 
target other eukaryotic pathogens and hence be of much 
value.

Abbreviations
aaRS: aminoacyl-tRNA synthetase; AlaX: alanine-tRNA synthetase editing 
domain homolog; MetRS: methionyl-tRNA synthetase; TyrRS: tyrosyl-tRNA 
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