
Calculation of Critical Speed fromRaw Training
Data in Recreational Marathon Runners
BARRY SMYTH1, and DANIEL MUNIZ-PUMARES2

1Insight Centre for Data Analytics, School of Computer Science, University College Dublin, Dublin, IRELAND; and 2School of
Life and Medical Sciences, University of Hertfordshire, Hatfield, UNITED KINGDOM
Address fo
Medical Sc
Kingdom;
ORCID: ht
Submitted
Accepted f
Supplemen
appear in t
of this artic

0195-9131
MEDICIN
Copyright
on behalf o
article distr
Commercia
sible to dow
cannot be c
the journal

DOI: 10.12
ABSTRACT

SMYTH, B., and D. MUNIZ-PUMARES. Calculation of Critical Speed from Raw Training Data in Recreational Marathon Runners. Med.

Sci. Sports Exerc., Vol. 52, No. 12, pp. 2637–2645, 2020. Introduction: Critical speed (CS) represents the highest intensity at which a phys-

iological steady state may be reached. The aim of this study was to evaluate whether estimations of CS obtained from raw training data can

predict performance and pacing in marathons.Methods:We investigated running activities logged into an online fitness platform by >25,000

recreational athletes before big-city marathons. Each activity contained time, distance, and elevation every 100 m. We computed

grade-adjusted pacing and the fastest pace recorded for a set of target distances (400, 800, 1000, 1500, 3000, and 5000m). CSwas determined

as the slope of the distance–time relationship using all combinations of, at least, three target distances. Results: The relationship between dis-

tance and time was linear, irrespective of the target distances used (pooled mean ± SD: R2 = 0.9999 ± 0.0001). The estimated values of CS

from all models were not different (3.74 ± 0.08 m·s−1), and all models correlated with marathon performance (R2 = 0.672 ± 0.036, er-

ror = 8.01% ± 0.51%). CS from the model including 400, 800, and 5000 m best predicted performance (R2 = 0.695, error = 7.67%) and

was used in further analysis. Runners completed the marathon at 84.8% ± 13.6% CS, with faster runners competing at speeds closer to CS

(93.0% CS for 150 min marathon times vs 78.9% CS for 360 min marathon times). Runners who completed the first half of the marathon

at >94% of their CS, and particularly faster than CS, were more likely to slowdown by more than 25% in the second half of race.Conclusion:

This study suggests that estimations of CS from raw training data can successfully predict marathon performance and provide useful pacing

information. Key Words: EXERCISE, PERFORMANCE, PREDICTION, RUNNING
Marathon performance is determined by several fac-
tors, including the physiological characteristics of
the runner, race course, weather and ambient condi-

tions, and pacing strategies (1–3). The physiological factors
associated with endurance performance typically include the
maximum oxygen consumption (V̇O2max), lactate threshold,
and running economy (1,3). Alternatively, predictions of
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endurance performance can be derived from the relationship
between the intensity of exercise (e.g., running speed) and
the time such intensity can be sustained until task failure (Tlim)
(4). Specifically, as running speed (S) increases, the duration
of exercise until Tlim decreases, which forms a hyperbolic
function (equation 1):

Tlim ¼ D′

S−CS
½1�

The asymptote of the hyperbola is known as critical speed
(CS), and the curvature constant is termed as D′. Equation 1
can be rearranged to produce a linear function between distance
(D) and Tlim (equation 2):

D ¼ D′ þ CS� Tlim ½2�

Physiologically, CS represents the highest intensity at which
oxidative phosphorylation is sufficient to satisfy the energy de-
mand (5,6), whereas D′ represents a finite work capacity above
CS (7). Ametabolic steady state, therefore, can be achieved dur-
ing exercise below CS, but not above CS. For example, pulmo-
nary oxygen uptake (V̇O2), the concentration of intramuscular
metabolites such as inorganic phosphate, hydrogen ions, and
phosphocreatine, and the concentration of lactate in blood reach
a steady state below, but not above, CS (5,8–10). Exercise
above CS is characterized by the progressive depletion of D′,
which has been linked to substrate phosphorylation (11–13).
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Furthermore, exercise above CS also results in the inexorable
increase in the concentration of intramuscular metabolites and
continued increase of V̇O2 until a “critical” threshold of muscle
substrate and metabolite concentrations is reached, V̇O2max is
attained, and ultimately exercise is terminated (7–9,14).

Given the profound differences observed during exercise
below versus above CS, there is a growing body of evidence
suggesting that CS and D′ are strong predictors of endurance
performance (e.g., [15–20]). Jones andVanhatalo (19) conducted
a recent analysis of elite marathon runners and observed that their
best marathon performance has been achieved at speeds corre-
sponding to ~96% of their CS. However, it remains unknown
whether recreational runners also complete their marathon at
speeds close to, but below, their CS. Furthermore, because an even
pace seems to be the best strategy in a marathon (21), it can be hy-
pothesized that runnerswho complete the first half of themarathon
closer to, and particularly faster than their CS, would experience
a significant slowdown in the final phase of the marathon.

The determination of CS is a relatively simple process but
can be time consuming as it requires undertaking a series of max-
imal efforts (22). Furthermore, it has been suggested that the
attainment of V̇O2max should be verified in trials intended to
be used to calculate CS (22). Some authors have used personal
best performance to determine CS in elite athletes (19), or to
examine the evolution of human performance (through CS
andD′) over the history of Olympic Games (23). Furthermore,
critical power and W′, the cycling analogous of CS and D′,
respectively, have been determined from “intentional” and
“nonintentional” efforts recorded over 4 wk of training data
(24). There has been an increase in online platforms where run-
ners log their activities using devices such as smartphones or
smartwatches. Such activities are likely to include both training
sessions and races and may be used to estimate CS and D′.

The aims of the current study, therefore, were (i) to use a
large set of raw training data logged into an online fitness plat-
form to calculate CS and D′ and compare such estimates to mar-
athon performance and (ii) to investigate whether the calculated
CS andD′ can offer any insight into pacing during marathon per-
formance. We hypothesized that (i) training data logged into an
online fitness platform will allow determination of CS, as
TABLE 1. Summary of the data set by city and year.

City Year Sex (M/F) Number of Runners Age (yr) Finishers (%

Dublin 2014 F 59 38 ± 7 90.1
M 313 38 ± 7 97.0

2015 F 91 39 ± 8 90.9
M 506 39 ± 8 96.0

2016 F 220 39 ± 8 93.0
M 959 40 ± 8 97.2

London 2015 F 641 39 ± 8 96.3
M 2151 40 ± 8 97.1

2016 F 1053 38 ± 9 96.2
M 3197 40 ± 8 97.3

2017 F 1824 39 ± 8 96.5
M 4278 41 ± 8 97.6

New York 2015 F 412 38 ± 9 87.8
M 1460 40 ± 8 92.3

2016 F 841 37 ± 9 87.9
M 2314 40 ± 9 92.7

2017 F 1427 37 ± 9 90.6
M 3497 40 ± 9 93.0
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demonstrated by strong linearity of the distance–Tlim relationship
and low standard error of estimate (SEE) in CS and D′; (ii) the
calculated CS andD′ obtained from training data will be strongly
associated with marathon time (MT) and, specifically, marathon
speed (MS) will be close to, but lower than, CS; and (iii) CS will
offer valuable information regarding pacing, so that athletes who
complete the first half of the marathon faster than their CS were
at a greater risk of experiencing a positive split.
METHODS

Data set. The data set for this study consisted of the activ-
ity logged to an online platform (Strava®) by 31,190 runners
of the Dublin, London, and New York marathons from
mid-2014 to late 2017 (Table 1). These data were, in part,
provided by Strava® under limited research license. Each
runner included in the data set registered a race time for one
of these marathons, and the data set included all of their
logged training activities for the 16 wk before that race. Each
runner was characterized with gender and age information,
and each activity included time, distance, and elevation data
sampled every 100 m. Taking into consideration the different
energy costs of uphill and downhill running (25), we com-
puted pacing and grade-adjusted pacing at 100 m intervals.
A detailed explanation of how grade-adjusted pacing was
calculated is provided in the supplementary material (see Ap-
pendix 1, Supplemental Digital Content 1, Grade adjusted
pace calculations, http://links.lww.com/MSS/C10).

The study was reviewed by the ethics committees at Uni-
versity College Dublin and University of Hertfordshire and
deemed to be exempt from ethical approval by both institu-
tions since no data were collected. It is worth noting that, first,
the data set was anonymized by assigning a unique code for
each runner in each marathon. Therefore, it is not possible to
identify whether a given runner has competed in multiple races.
Second, the logged activities may not provide a complete record
of all training activities because only logged running activities
were included in our analysis.

Calculation of CS from raw training data. For each
runner, the fastest time recorded at any time within the 16-wk
) Race Time (Min) Frequency (Activities per Week) Volume (km�wk�1)

258.4 ± 30.9 3.2 ± 1.1 33.8 ± 9.9
221.0 ± 35.8 3.8 ± 1.7 42.9 ± 17.0
253.5 ± 33.9 3.5 ± 1.3 36.3 ± 12.3
217.8 ± 35.8 3.9 ± 1.8 42.5 ± 17.8
257.3 ± 40.9 3.6 ± 1.4 36.8 ± 13.6
220.2 ± 35.3 3.8 ± 1.7 42.1 ± 16.8
242.2 ± 42.4 3.7 ± 1.7 40.3 ± 14.9
202.5 ± 38.0 4.2 ± 2.2 47.1 ± 21.4
242.3 ± 43.1 3.7 ± 1.5 39.3 ± 15.3
203.0 ± 39.3 4.3 ± 2.3 47.3 ± 22.4
251.4 ± 47.7 3.6 ± 1.7 37.8 ± 14.8
207.1 ± 41.9 4.3 ± 2.3 47.3 ± 22.5
253.2 ± 43.6 3.7 ± 1.4 39.5 ± 14.4
223.9 ± 42.8 3.8 ± 1.6 44.0 ± 19.2
250.3 ± 42.7 3.8 ± 1.6 39.6 ± 15.5
224.0 ± 41.5 3.8 ± 1.7 43.4 ± 18.0
250.3 ± 43.0 3.8 ± 1.5 40.0 ± 16.2
223.7 ± 41.1 3.8 ± 1.6 43.5 ± 18.5
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period before the marathon was calculated for a range of target
distances: 400, 800, 1000, 1500, 3000, and 5000 m. This range
of target distances was selected because training programs may
push runners to achieve fast times for these specific distances. Fur-
thermore, athletes training for a marathon are likely to also partici-
pate in other races, such as 5000-m races, during their training,
whereas the shorter distances are common in trainingprogramswith
prescribed interval sessions or time trials. This range of distances is
also similar to those used previously to determine CS in elite run-
ners from performance data and from field studies (19,23,26).

Because the data were sampled at 100-m intervals, a rolling
average of the grade-adjusted pacing was used to determine
the fastest time recorded for each target distances and assumed
to be Tlim. For example, the fastest 1000-m performance was
calculated as the rolling average of 10 consecutive values of
the grade-adjusted pace that resulted in the shortest time. CS
andD′were then calculated for each athlete using the relation-
ship between distance and Tlim, where the slope of the line rep-
resents CS, and the y-intercept representsD′ (equation 2 [27]).
For each athlete, 42 values of CS andD′were calculated using
all possible combinations that included, at least, three of the
target distances: 400, 800, 1000, 1500, 3000, and 5000 m.

Statistical analysis. The ability of CS and D′ to predict
marathon performance, defined as MT, was calculated using a
linear regression. Specifically, we conducted 42 linear regres-
sions, using all available values of CS andD′. However, for clar-
ity, subsequent analyses were conducted only on themodel using
400-, 800-, and 5000-m distances, which was selected as the best
performingmodel (i.e., themodel with the lowest SEE predicting
MT). Briefly, to do this, we used each runner as the test runner
and fit a linear regression model using the CS and D′ values of
the remaining runners and their MT. Then, with the CS and D′
values of the test runner, we used the resulting linear regression
model to predict the test runner’s MT. This was repeated for all
runners, and the percentage error between the actual and the pre-
dicted MT was used to compare the accuracy of predictions.

A linear regression between relative MS and MT was con-
ducted to investigate how runners paced their marathon relative
to their CS. Relative MS was determined as average speed dur-
ing the marathon (i.e., MS) relative to CS (equation 3):

relative MS ¼ MS
CS

½3�

In addition, base speed (BS) was calculated as the average
speed from the 2 km to the 16 km during the marathon, as
we observed that during this early portion of the racemost run-
ners were able to sustain a relative stable pace. Relative BS
was subsequently calculated as BS relative to CS (equation 4):

relative BS ¼ BS

CS
½4�

A linear regression was conducted to investigate the rela-
tionship between relative BS and relative MS. In addition, a
linear regression was conducted between relative BS and fre-
quency of runners that experienced a significant reduction in
speed in the last section of the race, defined as a slowing down
CRITICAL SPEED AND MARATHON PERFORMANCE
during the last 12.2 km of the marathon by more than 25% rel-
ative to their BS (i.e., slowdown >1.25).

The athletes were categorized based on gender (male and
female) and age, and all analyses were conducted for male
and female runners and younger and older runners. For age,
we selected an arbitrary threshold of 40 yr to distinguish be-
tween younger (<40 yr old) and older (40+ yr old) runners,
as this age resulted in approximately the same number of younger
and older runners. The significance of the linear regressions
was tested using F-tests, and we used one-tailed Welch’s
t-tests to assess the difference between groups (male vs female
runners, younger vs older runners) for the variables above.We
performed this analysis based on absolute MT, grouped in
10-min bins, and relative marathon performance (i.e., relative
MS and relative BS), grouped in 2% bins. The SEE associated
with CS and D′ was calculated and reported as coefficient of
variation (CV%). All analyses were performed using Python.
Results are presented as mean ± SD, unless otherwise stated.
In all cases, a 99% confidence level (P < 0.01) was used as
the threshold for significance.
RESULTS

Determination of CS andD′ from raw training data.
The relationship between distance and duration was highly
linear for all 42 combinations of target distances and Tlim
used (pooled average from all models and all participants:
R2 = 0.9999 ± 0.0001). The CS obtained from the 42 models
was 3.74 ± 0.08 m·s−1, and the SEE associated with these esti-
mates was 0.05 ± 0.02 m·s−1 (CV% = 1.3%). The correspond-
ing value for D′ from the 42 models was 149 ± 24 m, and the
SEE of these estimates was 28 ± 11 m (CV% = 19.44%).

The model using 400, 800, and 5000 m produced the lowest
error to predict marathon performance and, therefore, was
deemed as the best performing model. It resulted in a strong lin-
ear relationship between distance and Tlim for all participants
(R2 = 0.999 ± 0.001), and the estimated mean values of CS
and D′ for this model were 3.69 ± 0.57 m·s−1 and 136 ± 39 m,
respectively. The corresponding CV% values associated with
these estimations were 0.73% and 14.56%, respectively. For
simplicity, all subsequent results refer to estimates of CS and
D′ derived only from this best performing model.

The estimates of CS were ~16.4% greater for male runners
compared with females (3.83 ± 0.54 vs 3.29 ± 0.47 m·s−1;
t = 75.92, P < 0.01), whereas D′ estimates were ~7.8% lower
for male runners compared with females (133 ± 37 vs
144 ± 41 m, respectively; t = −18.24, P < 0.01). With regard
to age, estimates of CS for younger athletes were 8.8% higher
than for older athletes (3.76 ± 0.59 vs 3.62 ± 0.54 m·s−1;
t = 20.04, P < 0.01), whereasD′was 1.6% greater in the youn-
ger compared with older age category (137 ± 38 m vs
135 ± 39 m; t = 4.57, P < 0.01).

CS and prediction of marathon performance. The
best performing model was correlated with MT (R2 = 0.695,
f = 2.88 � e04, P < 0.01) and was able to predict MT with a
7.67% error. In fact, all of 42 models of CS and D′ generated
Medicine & Science in Sports & Exercise® 2639



FIGURE 1—Mean percentage prediction error by finish time and based on gender (A) and age category (B) using a leave-one-out test to evaluate the best
performingmodel at predictingMT. The shaded region in panel A indicates finish times associated with error differences betweenmale and female runners
that were found to be significant (P < 0.01) based on a one-tailed Welch’s t-test.
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were successful at predicting MT (R2 = 0.67 ± 0.03; P < 0.01).
The error associated with these predictions was 8.01% ± 0.51%.
The single worst performing model used 400, 800, and 1000 m
and produced an R2 of 0.54 and a 9.72% prediction error.

The mean percentage prediction error in marathon perfor-
mance for the model used in this study, as a function of MT,
is presented in Figure 1 for male and female athletes and for
both age categories. The overall percentage error was not sig-
nificantly different between male and female runners,
7.67% ± 6.63% and 7.67% ± 6.20%, respectively (t = 0.02,
P = 0.98). However, for MT from 170 to 240 min, inclusive, the
percentage error was significantly greater in female runners
(P < 0.01). For slower runners with MT from 250 to 360 min,
the percentage error was significantly greater among males
compared with females (P < 0.01). There was a small, but sig-
nificant, difference in the percentage error of the model be-
tween younger and older runners (7.56% ± 6.42% and
7.79% ± 6.63%, respectively; t = −2.84 and P = 0.004).

Marathon pacing relative to CS. Runners completed
their marathon at an average speed that corresponded to
84.8% ± 13.6% of their CS (Fig. 2). Relative to CS, females
completed the marathon slightly (~1%), but significantly,
faster than males (85.5% ± 23.2% CS vs 84.6% ± 7.8%;
t = −2.94, P = 0.003). Specifically, females run relatively faster
(i.e., closer to CS) than males for MT from 170 to 360 min, in-
clusive (Fig. 3; P < 0.01). There were no differences in relative
MS in both age categories (Fig. 2), with younger runners
FIGURE 2—Distributions of relative MS (Rel MS), defined as CS relative to M
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competing at 84.8% ± 17.4% of their CS and older runners
at 84.9% ± 7.7% of their CS (t = −0.79, P = 0.42).

Faster runners completed the marathon at speeds closer to
CS compared with slower runners, as denoted by the negative
relationship between MS relative to CS (relative MS), and
overall marathon performance (Fig. 3, all P < 0.01). This
held true irrespective of gender (R2 of 0.99 and 0.98 for
males and females, respectively) and age (R2 = 0.98 for both
age-groups). Irrespective of gender or age, runners with finishing
times of ~150 min completed the marathon at 93.0% of their
CS, whereas runners with finishing times >300 min completed
the marathon at 78.9% of their CS (Fig. 3).

The speed of runners from 2 to 16 km into the marathon (BS)
was 3.24 ± 0.55 m·s−1, which corresponds to 87.6% ± 6.9%
of CS. There was a small but significant difference in relative
BS (BS relative to CS) between male and female runners
(87.5% ± 7.0% vs 88.0% ± 6.5% of CS, respectively;
t = −4.7 and P < 0.01). There was a similar small but signif-
icant difference in relative BS between younger and older
runners (87.4% ± 6.8% vs 87.9% ± 6.9%, respectively;
t = −5.3, P < 0.01).

Runners with a higher relative BS experienced a greater rel-
ative split, as denoted by the positive correlations between rel-
ative BS and relative split time (Fig. 4). This observation held
true irrespective of gender (R2 = 0.72 and R2 = 0.69 for males
and females, respectively) and age category (R2 = 0.73 and
R2 = 0.77 for younger and older runners, respectively; all
S, for male and female (A) and younger and older (B) runners.

http://www.acsm-msse.org
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FIGURE 3—RelativeMS (Rel MS), defined as CS relative toMS, of runners versus finish time. Results are presented based on gender (A) and age category
(B). The shaded regions in panel A indicates finish times associated with relative MS differences between male and female runners that were found to be
significant (P < 0.01) based on a one-tailed Welch’s t-test.
P < 0.01 except in the case of older runners). In other words,
typically the faster an athlete ran the first part of the marathon,
relative to their CS, the greater the slowdown they experienced
in the second half of the marathon. Male runners had greater
relative splits (slower second half ) than female runners for rel-
ative BS values from 76% to 94% of CS (P < 0.01). There
were no significant differences in relative BS and relative split
between younger and older runners.

The percentage of runners that exhibited a decrease in speed
greater than 25% in the last 12.2 km of the marathon, relative
to their BS (i.e., a relative split ≥1.25), was greater among
males compared with females (20.5% vs 10.7%, respectively;
t = 17.86, P < 0.01). The percentage of athletes with such
slowdown was not statistically different with respect the age
categories (17.9% vs 18.1% for young and old age category,
respectively; t = −0.55, P = 0.57).

The relationship between relative BS and percentage of run-
ners with a slowdown ≥1.25 is presented in Figure 5. There
were positive correlations between relative BS and percentage
of runners with a slowdown ≥1.25 for males and females
(R2 = 0.62 with P = 0.005 and R2 = 0.36 with P = 0.13, respec-
tively). Similarly, there was a positive correlation between rel-
ative BS and percentage in younger (R2 = 0.67, P = 0.002) but
not older runners (R2 = 0.04, P = 0.7). It is worth noting that
23% of runners with relative BS > 1 (that is, running the first
FIGURE 4—Relative split of runners (second-half time divided by first-half time)
2–16 km as a fraction of CS). Results are presented based on gender (A) and age
that was associated with relative split differences, between male and female ru
Welch’s t-test.

CRITICAL SPEED AND MARATHON PERFORMANCE
part of the race faster than their CS) experienced a significant
slowdown, compared with 17% of runners who run the first
half of the marathon at speeds slower than their CS, and suf-
fered a comparable slowdown during the second half of the
race (P < 0.01). There was evidence to suggest that a relative
BS of 0.94 represents an important threshold for runners, with
respect to their ability to avoid a significant slowdown (≥1.25)
later in the race (Fig. 5). Specifically, the proportions of male
and female athletes with a relative BS < 0.94 who go on slow
significantly are 20.5% and 9.6%, respectively, comparedwith
26.0%and 15.6% formen andwomenwith a relativeBS>0.94
(both P < 0.01).
DISCUSSION

CS is a physiological threshold with the potential to assess
athletic ability. In this study, we investigated whether CS de-
termined from raw training data logged into a fitness applica-
tion can be used to predict performance and offer insight into
pacing in a marathon race. The main findings from this study
were as follows: (i) it seems feasible to estimate CS from raw
training data, and the estimates were sufficiently accurate to be
useful for predicting athletic performance; (ii) the average run-
ner completed their marathon at ~85% of their estimated CS,
with faster runners achieving speeds that were on average closer
as a function of relative BS (relative BS, defined as average running speed
category (B). The shaded region in panel A indicates the relative BS range
nners, that were found to be significant (P < 0.01) based on a one-tailed

Medicine & Science in Sports & Exercise® 2641
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FIGURE 5—Percentage of runners experiencing a late-race (final 12 km) slowdown in excess of 25% (relative to BS) versus relative BS (Rel BS, defined as
average running speed 2–16 km as a fraction of CS). Results are presented based on gender (A) and age category (B). The shaded region in panel A indicates
the relative BS range that was associated with percentage slowing differences, betweenmale and female runners, that were found to be significant (P < 0.01)
based on a one-tailed Welch’s t-test.
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to, but still below, their estimated CS; and (iii) CSmay be useful
to monitor pacing during a marathon, as runners who perform
the early part of the marathon (2–16 km) faster than 94% of
their CS were associated with a slower second-half time and
a greater likelihood of experiencing a slowdown greater than
25% in the final stages of the race (>30 km).

Determination of CS from raw training data. The
conventional approach to determine CS and D′ requires a se-
ries of maximal efforts, either at constant intensity to task fail-
ure or as time trials (22). In the present study, we used raw
training data to calculate CS and D′ and, therefore, did not
have access to such information. Furthermore, we did not have
access to physiological (e.g., heart rate) or psychobiological
(e.g., rating of perceived exertion) data, which can be used as
surrogate measures to evaluate whether a maximal effort has
been performed. Instead we used the fastest pace recorded for
six target distances, from 400m to 5 km, during the weeks lead-
ing up to amarathon. Thismay impose a limitation on this study
because using raw training data to calculate CS and D′ does
not allow verification of maximal effort. We conducted some
further analysis to develop an adjusted model in an effort to
improve estimates of the fastest paces for runner, which form
the basis of our model and estimates of CS and D′, in an effort
to assess whether predictive trials were maximal. The adjusted
model was developed with the assumption that when the
fastest time for a target distance was recorded, the remaining
of the activity should be considerably slower. The details of
this adjustment are presented in the supplementary material
accompanying this article (Supplemental Digital Content 2,
http://links.lww.com/MSS/C11). In brief, as an example, if a
runner ran their fastest 1 km over a 5-km session, but the re-
maining 4 km was not much slower, then it suggested that
the fastest 1-km pace was not a maximal effort pace and, there-
fore, should be adjusted (i.e., increase pace). The adjusted model
was complex, and the key results were similar to those obtained
from the original analysis (see Appendix 2, Supplemental Digital
Content 2, Adjusted Model, http://links.lww.com/MSS/C11)
and, therefore, not included as part of the document. Further
methodological considerations are discussed below. Nonethe-
less, the results presented herein suggest that raw training data
2642 Official Journal of the American College of Sports Medicine
have the potential to permit estimates of CS andD′ that are ac-
curate and useful in practice. Further to its potential to assess
endurance performance and inform pacing (see discussion
below), CS may be seen as a tool to assess cardiorespiratory
fitness because of its strong correlations with V̇O2max (5),
the time constant of V̇O2 kinetics (28,29), the percentage of
Type I muscle fibers (30,31), andmuscle capillarity (31). Future
studiesmay investigate whether raw training data can be used to
assess improvement in fitness, by looking at the changes in CS
and D′ with training.

The physiological basis of D′ is less well understood, and its
precise etiology is complex and multifactorial (5,22). None-
theless, there is some evidence suggesting that D′ may be
linked to substrate phosphorylation and muscle mass and func-
tion (32,33). Therefore, we would expect a higher D′ in males
compared with females, and in young compared with older
runners. However, although we observed a greater D′ in the
younger group compared with older runners, the estimated D′
was ~7.8% greater in females compared with males. The reason
for this phenomenon is not clear, but it may be linked to greater
error inherent in the estimation of D′.

CS and marathon performance. An important finding
from this studywas thatmarathon performance can be predicted
using estimations of CS andD′ obtained from raw training data.
Previous studies have already shown that CS determined in lab-
oratory conditions can be a good predictor of endurance perfor-
mance (r ≥ 0.87 [15–18,20]), including evidence that CS may
be associated with marathon performance (19,20). The strength
of the correlation between CS and marathon performance was
remarkably similar in the study by Florence and Weir [20]
(R2 = 0.76), where CS was determined in controlled laboratory
conditions for 12 participants, and in the current study, where
CS was determined using raw training data for >25,000 runners
(R2 = 0.67). The best performing model (using 400-, 800-, and
5000-m distances) was able to predict marathon performance
with 7.67% error. Indeed, most combinations of target distances
(61%) used to calculate CS and D′ resulted in errors of <8%,
and the worst performing model (using the distances 400,
800, and 1000 m) was associated with a prediction error of
9.7%. The error associated with these predictions was lower
http://www.acsm-msse.org

http://links.lww.com/MSS/C11
http://links.lww.com/MSS/C11
http://www.acsm-msse.org


A
PPLIED

SC
IEN

C
ES
in males compared with females for fast runners, but the model
was more accurate in females for slow marathon runners. It is
plausible that predictions of fast marathon (~175 to 225 min)
MT were more accurate in males compared with females be-
cause males also had faster MT (~215 min) compared with fe-
males (~250 min). Therefore, more data were available, and
the models were able to produce more accurate predictions
of marathon performance. Nonetheless, overall the predictions
of MT had ~8% error, which corresponds to ~18 min for the
average MT of 230 min. This value compares favorably with
the error obtained from equations that aim to predict MT (34).
However, there are multiple equations available to predict
MT, which are based on several variables, such as anthropo-
metric, physiological, and/or training history and previous
performance, and it remains unclear which equations provide
the best estimation (34). The present study demonstrates that
CS determined from raw training data can be useful to predict
MT in a large, heterogeneous sample.

The data reported in this study show that estimates ofD′ ex-
hibit a much greater CV% than that of CS (~16% vs ~1%, re-
spectively), which is a common finding within the literature
(22). For example, Black et al. (9) and Muniz-Pumares et al.
(22) reported CV% of 2%–3% for critical power, but CV%
of ~10% forW′ . It should be noted that the relative contribution
of D′ is small in endurance events such as the marathon, but it
remains unclear whether CS andD′ determined from raw train-
ing data may be able to predict performance in events in which
the relative contribution of D′ is larger, such as a 5-km race.

Marathon pacing relative to CS. It has long been ap-
preciated that intensities corresponding to CS (or its cycling
analogous critical power) can only be sustained for up to 1 h
(22). In the present study, therefore, it was hypothesized that
marathons would be performed at speed close to, but below,
CS. The results showed that recreational athletes completed
the marathon at ~85% CS (Fig. 2). Previous data on marathon
performance relative to CS are limited to a small group of elite
athletes (19), who were able to run the marathon at ~96% of
their CS. It is not clear why elite athletes were able to sustain
a higher fraction of their CS in the marathon. However, it
has been recently shown that prolonged, submaximal exercise
can affect both critical power and W′ (35–37). Specifically,
Clark et al. (35–37) reported a ~10% reduction in critical
power after 120 min of exercise below critical power. Assum-
ing a similar decline in CS is also observed during prolonged
exercise, CS may have been reduced during the marathon
preventing participants to complete at a higher fraction of their
CS. Clark et al. (35) suggested that the decline in critical power
may occur as a function of time, as it was evident after 120 min
of exercise but not after 40 and 80 min of exercise. In the pres-
ent study, we analyzed data from recreational runners with an
averageMT of ~230min, whichmay result in greater a decline
in CS compared with elite athletes who completed themarathon
in ~125 min (19). In the present study, we observed that more
competitive athletes were able to maintain speeds of up to
93.0% of their CS, but somewhat slower athletes were only able
to complete the marathon at speeds corresponding to ~80% CS.
CRITICAL SPEED AND MARATHON PERFORMANCE
Indeed, there was a strong negative relationship between MS
relative to CS and finish time (R2 ≥ 0.98; Fig. 3), which may
be interpreted as (i) CS decreases as a function of time, and
therefore faster athletes complete the marathon with a lower
MT, which results in lower decrease in CS; (ii) faster athletes
are fitter athletes, and fitness itself offers some protection to
the deterioration of CS during exercise; or (iii) a combination
of both. This remains speculative, and further research may in-
vestigate whether CS is also affected by prolonged running; its
etiology and possible strategies to minimize such decline, in-
cluding carbohydrate supplementation (37); and its implication
for accuracy of MT predictions derived from CS and D′.

It is worth noting that a small number of runners (0.82%)
completed the marathon at speeds faster than their estimated
CS (i.e., MS relative to CS > 1 in Fig. 1). This result is difficult
to reconcile with the current understanding of the CS as the up-
per limit of sustainable exercise. It is possible that available
raw training data failed to capture maximal effort in some par-
ticipants and resulted in the underestimation of CS. Then
again, it is plausible that some runners benefited from a taper
premarathon or experienced favorable conditions during the
race compared with conditions they may have experienced
during training. For instance, all marathons investigated where
completed very close to sea level (Dublin, London, and New
York). It is well known that altitude has a negative effect on
endurance performance, which is evident from altitudes of
only 150–300 m above sea level (38). Therefore, raw training
data may underestimate CS in athletes that live at moderate al-
titudes and then compete at sea level. It is also plausible that in
big-city marathons, with thousands of athletes competing si-
multaneously, some athletes benefit from drafting, which re-
sults in decreased oxygen cost of running (39), and therefore
an increased performance (2). Nonetheless, the results from
the current study show that, as hypothesized, >99% of 25,000
recreational runners performed the marathon at speeds close
to but below their CS.

The results from this study suggest runners who completed
the initial part of the marathon closer to their CS were more
likely to experience difficulties later in the race, quantified as
a positive relative split (i.e., slowing down in the second half
of the race) and also as the percentage of athletes who experi-
enced a significant slowdown in the final stages of the race.
The results reported in the current study showed a positive corre-
lation between BS relative to CS and subsequent impairment in
performance, irrespective of gender and age category. Adopting
an even split has been suggested as the best approach for endur-
ance events (21), and large-scale studies have already suggested
that an even split is optimal for endurance performance (40).
The data presented in the current study suggest that such even
pace should be close to, but below, the CS. For example, run-
ners who complete an evenly paced race (defined as a race
in which the first-half time is within 2%, faster or slower, than
the second-half time) do so by running at a speed that is
~88% of their CS, whereas runners whose pacing falls outside
of this range completed their race at ~84% of their CS. The re-
sults of the present study suggest that speed in the first half of
Medicine & Science in Sports & Exercise® 2643
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the marathon should stay within ~94% of CS, or athletes risk
having to disproportionately slowdown in the second half of
the marathon.

The results also showed that although no differences were
observed between younger and older athletes, males experi-
enced a greater slowdown in the second half of the marathon,
and severe slowdowns >25% occurred more frequently com-
pared with females. This is consistent with research showing
that female runners tend to pace their marathons more evenly
than male runners and that they are less susceptible to severe
slowdowns and hitting the wall when compared with male
marathoners (40,41).

Methodological considerations. The determination of
CS andD′ requires participants to perform a series of maximal
efforts.When testing is conducted in a laboratory, it is possible
to assess if participants have performed a maximal effort, for
instance, by checking whether V̇O2max has been attained dur-
ing predictive tests (22). In the current study, however, CS and
D′ have been determined using raw training data, and it was
not possible to verify whether predictive tests represented a
maximal effort. Although this is a potential limitation for using
raw training data to calculate CS andD′, it is worth noting that
(i) when performing maximal efforts, the relationship between
distance and time becomes linear. The data reported herein
also show a very strong linear relationship between distance
and time for all participants. (ii) We used data from a 16-wk
period before the race and only included runners with at least
24 activities logged during this period. It is plausible that
some of the activities in the data set correspond to shorter races
(e.g., 5 km) and training activities performed maximally, e.g.,
high-intensity interval training. (iii) It has been shown that un-
intended efforts over a single training session can be used to
estimate critical power andW′, and such estimations are similar
to those obtained from field data do not have to perform
2644 Official Journal of the American College of Sports Medicine
predefined intentional efforts (24). However, Karsten et al.
(24) included race data, whereas it was not possible to differ-
entiate training or race data in the current study. (iv) CS and
D′were determined using an adjusted model, with the assump-
tion that if runs included in the analysis of CS andD′would ap-
proximate a maximal effort, these would be likely to occur
early in a training session. The results from the adjusted model
(presented in the Supplemental Digital Content) were similar
to those presented herein. Therefore, although a degree of caution
is warranted until a direct validation of CS and D′ determined
from raw training data is performed against laboratory-based
estimations of these parameters, the results suggest that it
would be possible to calculate CS and D′ from raw training
data and such estimates can be useful to estimate marathon
performance and inform pacing.

CONCLUSIONS

In the current study, we aimed to use a large data set of raw
training data to determine CS and D′ and to evaluate whether
such predictions can be used to assess performance and pacing
during a marathon. The main, original finding in the study is
that CS andD′ determined from a large data set of raw training
data may be useful to predict marathon performance and pacing.
These results have the potential to enable fitness apps to provide
more targeted advice to their users about training options and rac-
ing strategies, perhaps enablingmore targeted, personalized train-
ing programs that are based on physiological thresholds (i.e., CS)
and that can adapt to individual runners, thereby helping them
to optimize their training and performance.
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