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A number of studies have shown that non-invasive brain stimulation has an additional
effect in combination with rehabilitative therapy to enhance functional recovery than
either therapy alone. The combination enhances use-dependent plasticity induced by
repetitive training. The neurophysiological mechanism of the effects of this combination
is based on associative plasticity. However, these effects were not reported in all
cases. We propose a list of possible strategies to achieve an effective association
between rehabilitative training with brain stimulation for plasticity: (1) control of temporal
aspect between stimulation and task execution; (2) the use of a shaped task for the
combination; (3) the appropriate stimulation of neuronal circuits where use-dependent
plastic changes occur; and (4) phase synchronization between rhythmically patterned
brain stimulation and task-related patterned activities of neurons. To better utilize brain
stimulation in neuro-rehabilitation, it is important to develop more effective techniques to
combine them.

Keywords: use-dependent plasticity, associative plasticity, neuro-rehabilitation, transcranial magnetic stimulation
(TMS), transcranial direct current stimulation (tDCS)

USE-DEPENDENT PLASTICITY ENHANCED BY THE
COMBINATION OF REHABILITATIVE TRAINING AND BRAIN
STIMULATION

Repetitive training is one of the fundamental strategies in neuro-rehabilitation regardless of
what type of damage has occurred in the central or peripheral nervous system. Task-specific
training induces task-specific neuronal changes lasting for a long period i.e., use-dependent
plasticity that can lead to functional recovery (Butefisch et al., 1995; Nudo and Milliken, 1996;
Nudo et al., 1996a,b; Hummelsheim, 1999; Masiero and Carraro, 2008; Richards et al., 2008;
Dimyan and Cohen, 2011). Use-dependent plasticity induced by motor training has been
demonstrated within the human primary motor cortex (M1). The long-term potentiation
(LTP)-like changes in specific cortcospinal motoneurons were induced for the trained task
after repetitive simple finger movements (Classen et al., 1998; Butefisch et al., 2000; Rossini
and Pauri, 2000).

In recent decades, a number of studies have shown that non-invasive brain stimulation
such as repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current
stimulation (tDCS) has an add-on effect in combination with rehabilitative therapy
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(Platz and Rothwell, 2010; Edwardson et al., 2013; Sandrini and
Cohen, 2013; Floel, 2014). Furthermore, this combination may
better enhance functional recovery in post-stroke patients, as
compared with rehabilitation training alone, which may not
sufficiently induce functional recovery (Khedr et al., 2005, 2010;
Kim et al., 2006, 2010; Takeuchi et al., 2008; Chang et al., 2010,
2012; Emara et al., 2010; Koganemaru et al., 2010; Conforto
et al., 2012; Meehan et al., 2011; Nair et al., 2011; Stagg and
Nitsche, 2011; Wang et al., 2012; Hsu et al., 2013), especially
in the chronic phase when it is difficult to produce plastic
changes (Nakayama et al., 1994; Verheyden et al., 2008). A single
intervention of brain stimulation alone without rehabilitative
therapy seems to have limited effects on patients with mild
motor symptoms (Hummel and Cohen, 2005; Koganemaru
et al., 2010) and insufficient sustainability of effects (Takeuchi
et al., 2005; Kim et al., 2009). Whereas the combination
may enhance use-dependent plasticity induced by repetitive
training.

ASSOCIATIVE PLASTICITY TO PRODUCE
THE COMBINATION EFFECTS

Although the exact neurophysiological mechanism of this
combination effect is not known yet, it may be based on Hebbian
associative plasticity (Hebb, 1949). For example, a post-synaptic
neuron (A) receives low-frequency weak inputs from one pre-
synaptic neuron (B) (the inputs themselves cannot induce LTP
in a synaptic connection). Simultaneously, neuron (A) receives
high-frequency weak inputs (the inputs themselves can induce
LTP) from another pre-synaptic neuron (C). According to
the Hebbian rule, LTP is also induced in the weak synaptic
connection between neurons (A) and (B) as well as between
neurons (A) and (C). A similar mechanism would work in
the case of the combination of training with brain stimulation.
Training alone may only produce a weak activation of neuronal
circuits, which do not lead to long term changes. On the other
hand, brain stimulation can induce LTP-like changes for synaptic
strength in stimulated areas (Pascual-Leone et al., 1994; Hallett,
2000; Fritsch et al., 2010; Dayan et al., 2013; Karabanov et al.,
2015). Therefore, simultaneous training with brain stimulation
would enable weak synaptic connections to induce associative
LTP-like effects through the Hebbian rule.

However, a recent study reported no additional effects of
theta-burst stimulation (TBS) in combination with standardized
rehabilitative therapy in chronic stroke patients. That might be
possibly due to a failure to induce associative plasticity. Neuronal
activities enhanced by TBS may not have been associated with
task-specific neuronal activities produced by the rehabilitative
therapy (Talelli et al., 2012).

We can speculate and make a list of possible factors that may
have weakened the therapeutic effects of combined rehabilitation
and brain stimulation:

1. Diversities in diseases, particularly the locations of lesions
– The effects of facilitatory rTMS over M1 depended on
lesion location in post-stroke hemiparetic patients. The
deterioration of finger function was seen in the patients with

cortical lesions, whereas improvement in finger function was
seen in patients with subcortical lesions (Ameli et al., 2009).

2. Small sample size
– The responses to brain stimulation show a large variability
even if patients are similar in lesion location, severity of
paresis and time after stroke onset in patients. Genetic factors
are responsible for individual susceptibility to rTMS-induced
plasticity (Cheeran et al., 2008).

3. Insufficient intensity and/or too short duration of the
intervention
– Patients with severe paresis show reduced or no motor
evoked potentials (MEP) with TMS (Pennisi et al., 1999;
Hendricks et al., 2002). If the intensity of brain stimulation
is determined by the excitability of the healthy hemisphere,
it may be too weak to induce plasticity in the affected
hemisphere. Unless brain stimulation is repeated daily for
days to weeks, its effects might not be sustainable (Khedr et al.,
2009; Emara et al., 2010; Bolognini et al., 2011; Conforto et al.,
2012; Edwardson et al., 2013).

4. Inappropriate affinity between rehabilitation task and brain
stimulation modality
– This will be discussed in detail in the following section.

Future clinical studies should give careful consideration to
these factors. We have considered how effectively we can induce
associative plasticity through the combination of training and
brain stimulation.

EFFECTIVE METHODS OF COMBINING
REHABILITATIVE TRAINING AND BRAIN
STIMULATION

Control of the Temporal Aspect Between
Stimulation and Task Execution
First, we should control the temporal aspect between stimulation
and task execution. Spike timing-dependent associative plasticity
has been proven in both animals (Hess and Donoghue, 1996;
Hess et al., 1996; Egger et al., 1999) and humans (Stefan
et al., 2000, 2002; Ueki et al., 2006; Koganemaru et al., 2009).
Associative LTP occurs when a post-synaptic neuron fires
less than 10–20 ms after a pre-synaptic neuron. Recently,
we have demonstrated that associative plasticity is induced
within human M1. The repetitive pairing of TMS and paired
bihemispheric stimulation (PBS) applied at a time interval of
15ms, produced an associative LTP-like effect within the targeted
M1 and facilitated fine finger movements (Koganemaru et al.,
2009). Furthermore, associative use-dependent plasticity has
been demonstrated within human M1. Thabit et al. (2010)
showed that associative LTP-like changes were induced by the
repetitive paring of a unidirectional fingermovement and a single
TMS pulse over the contralateral M1 with a specific interval in
healthy subjects. It resulted in a faster reaction in the trained
direction. By decrease or increase of the interval, LTP-like effects
can disappear or be reversed. Buetefisch et al. (2011) showed
that the extensor-specific M1 reorganization was induced by
robot-assisted training of paretic wrist extension combined with
TMS over the ipsilesional M1 in a strict temporal relationship
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in chronic post-stroke patients. Particularly, a decrease of motor
threshold and a shift of motor mapping for the extensor
carpi ulnaris muscles, not the biceps muscles, were demonstrated
in the combination therapy with TMS over the ipsilesional
M1. The training alone and the simulation protocol with TMS
over the contralesional M1 did not show those changes. The
results suggest that temporal associative plasticity is induced
specifically for the extensor-related activity in the ipsilesional
M1. If we can associate brain stimulation and task execution
with proper timing, a task-specific associative plasticity may
be induced. There is a large variability in movement onset
of the paretic limbs after neurological insults. The central
motor conduction time is prolonged in stroke and other
neurodegenerative diseases due to lesions in the corticospinal
tract (Kaviraja and Robert, 2013). It is influenced by time
after disease onset or disease progression. On the other hand,
electromyogram (EMG) onsets are often variable since it is
difficult to increase firing rate in central nervous diseases (Barnes,
1980). Therefore, when we do simultaneous TMS with training,
we may as well be careful for both the timing for TMS and task
execution.

Use of a Shaped Task for the Combination
An effective rehabilitative approach should consist of various
types of training pertaining to body movements in enriched
environments that encourage patterns and combinations of
movement for improving recovery. Different types of task-
specific training help their effects transfer into actual activities
of daily life in patients (Teasell et al., 2005). However, a specific
task or tasks for specific movements are better combined with
brain stimulation. If a task consists of various gross and precise
movements, it may evoke conflicting neuronal activities such
as inhibition and activation. Then, it may reduce the effect of
brain stimulation. In recent animal studies, it was shown that
training general gross movements inhibited recovery of skilled
movements (Garcia-Alias et al., 2009). Neural competition for
newly available neural resources may occur when multiple tasks
are trained (Reinkensmeyer and Boninger, 2012). In clinical
studies, task-specificity of training is more important than the
intensity of training (Page, 2003; Bayona et al., 2005). The
repetition of task-specific training produced long-lasting cortical
reorganization and use-dependent plasticity specific to the areas
that were activated during the trained movements in healthy
subjects (Classen et al., 1998; Butefisch et al., 2000). In post-
stroke patients, shaped task-specific training resulted in a better
recovery of their paretic upper-limb function as compared
with general training (Butefisch et al., 1995; Woldag et al.,
2010).

Recently, we have investigated the effect of repetitive motor
tasks in the paretic upper-limb combined with brain stimulation
in post-stroke patients (Koganemaru et al., 2010). Patients
with chronic stroke with moderate-to-severe hemiparesis often
suffer from motor deficits associated with flexor hypertonia.
A possible therapeutic strategy is to selectively induce use-
dependent plasticity in the extensors to counteract the flexor
hypertonia. However, the beneficial effects of training in

chronic-phase patients are relatively limited due to resistance
to induction of use-dependent plasticity in the chronic phase
(Nakayama et al., 1994; Verheyden et al., 2008).When 5Hz rTMS
over the ipsilesional M1 was combined with extensor training
assisted by electrical neuromuscular stimulation, the combined
intervention resulted in an improvement of extensor movement
with a reduction of flexor hypertonia, whereas neither of the
single interventions alone demonstrated any improvements. The
extensor-specific change in M1 was likely attributable to a
functional recovery of the paretic upper limb (Koganemaru et al.,
2010). Our study is an exemplary case showing the relevance of
task selection combined with brain stimulation to enhance use-
dependent plasticity for functional recovery.

The Stimulation of Neuronal Circuits Where
Use-Dependent Plastic Changes Occur
Stimulation should be given to neuronal circuits and brain
areas where use-dependent plastic changes occur. Because use-
dependent plasticity is task-specific, changed circuits and areas
depend on what type of task was trained. For repetitive simple
motor tasks, use-dependent plastic changes have been reported
within M1 (Classen et al., 1998; Butefisch et al., 2000; Rossini and
Pauri, 2000). However, it is unknown whether it occurs within
M1 alone or in combination with the multi-regional functional
reorganization of the motor-related brain network. If it occurs in
a multi-regional brain network, other non-M1 regions would be
the possible targets of stimulation.

Recently, we used neuroimaging to investigate whether
use-dependent changes occurred in a multiregional brain
network in chronic post-stroke patients (Koganemaru et al.,
2015). In process of post-stroke recovery with rehabilitative

FIGURE 1 | Brain regions with use-dependent task-specific changes.
Reduced activation was observed in the ipsilesional SMC, the contralesional
cingulate motor cortex (CMC) and the contralesional premotor cortices (PMC),
specifically for extensor movements of the paretic upper-limb after our
combination therapy consisting of 5 Hz repetitive transcranial magnetic
stimulation (rTMS) and the paretic extensor training in post-stroke patients
with flexor hypertonia (“Post 0” and “Post 1”, immediately after and 2 weeks
after the combination therapy, respectively). Adapted from Koganemaru et al.
(2015).
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training, neuroimaging studies demonstrated that multi-
regional brain reorganization occurred in several motor-related
regions, including bilateral M1, premotor cortices (PMC),
cingulate motor cortex (CMC), basal ganglia, and cerebellum
(Nelles et al., 2001; Carey et al., 2002; Johansen-Berg et al.,
2002a; Jang et al., 2003, 2005; Ward et al., 2003a, 2004; Luft
et al., 2004; Ward and Cohen, 2004). The over-activity of
non-M1 regions such as bilateral PMC in the acute stage
was progressively decreased with an improvement in motor
performance of the hemiparetic limbs (Calautti et al., 2001;
Small et al., 2002; Ward et al., 2003a). In the chronic stage,
the magnitude of brain activity in the non-M1 regions was
negatively correlated with clinical outcome (Ward et al., 2003a,b)
and positively correlated with the extent of damage in the
corticospinal system (Ward et al., 2006). The findings suggest
that the compensatory mechanism of these regions may be
due to insufficient motor recovery (Feydy et al., 2002; Ward
et al., 2003b). Those patients with larger brain damage and
poorer clinical recovery may rely on activity in secondary
motor areas to drive residual hand function (Johansen-Berg
et al., 2002b). If a combination therapy of a task-specific
training and brain stimulation could restore the ipsilesional
M1 function by use-dependent plasticity, compensatory drive
from secondary motor areas would be changed in post-stroke
patients.

As previously described, we have developed a new
combination therapy consisting of 5 Hz rTMS and an electrical
neuromuscular stimulation assisted extensor training of the
paretic upper-limb for stroke patients with flexor hypertonia.
The extensor-specific plastic change in M1 was associated

with beneficial functional effects (Koganemaru et al., 2010).
We investigated whether extensor-specific multiregional brain
reorganization occurred after our combination therapy by
using functional magnetic resonance imaging (fMRI). The
patients were scanned while performing upper-limb extensor
movements. Untrained flexor movements were used as a control
condition. Assessments were performed before, immediately
after, and 2 weeks after the hybrid rehabilitation protocol.
Analysis of the imaging data showed a significant reduction of
brain activity in the ipsilesional SMC and the contralesional
CMC immediately after (Post 0) and in the contralesional PMC
2 weeks after the intervention (Post 1; Figure 1). It suggests
that the effects of the hybrid-rehabilitation appeared to differ
temporally in each brain area. The process of motor learning
consists of a fast learning stage and a slow learning stage.
Specific neural representations are known in each stage (Karni
et al., 1998; Kantak et al., 2012). The changes in activity in the
ipsilesional SMC and the contralesional CMC may have shown
combined effects of the fast learning stage, whereas the activity
change in the contralesional PMC may have been involved in a
consolidative process of the slow learning stage. Furthermore,
the changes were associated with functional improvements of the
paretic hands. They were not shown for the control condition
(Koganemaru et al., 2015). Use-dependent plasticity induced
by repetitive training may be related to the task-specific multi-
regional brain reorganization. Thus, we expect that possible
future targets for brain stimulation could include secondary
motor areas. Artificial control of compensatory drive from
secondary motor areas in accordance with the recovery process
may be the next target for a combination therapy.

FIGURE 2 | Phase synchronization and temporal associative plasticity. Phase synchronization enables neurons in two different regions (A) and (B) to fire at
the same timing, leading to an induction of spike-timing dependent plasticity between these regions. No synchronization of phases between the two regions (A) and
(C) with different timing of neuronal firing does not induce any plasticity.
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Phase Synchronization Between
Rhythmically Patterned Brain Stimulation
and Task-Related Patterned Activities of
Neurons
In line with the theory of associative plasticity, we may be able
to utilize the synchronization of phases between rhythmically
patterned brain stimulation and task-related rhythmical activities
of neurons. The phase synchronization of pre- and post-synaptic
oscillations (wave-like neuronal signals) enabled researchers to
correlate the timing of pre- and post-synaptic action potentials,
resulting in the induction of temporal associative plasticity (Fell
and Axmacher, 2011). Oscillatory non-invasive brain stimulation
such as transcranial alternative current stimulation (tACS)
and oscillatory tDCS (otDCS) has been reported to modulate
oscillatory brain activity (Herrmann et al., 2013). Both tACS
and otDCS use a sinusoidal form of electrical currents; however,
tACS has no DC offset (net current = 0) and otDCS has a
DC offset (net current = DC offset). In otDCS, the alternating
current is superimposed onto a direct current. These protocols
of stimulation may enhance neuronal circuits associated with
intrinsic rhythmicity, leading to the enhancement of cognitive
function (Marshall et al., 2006; Castro-Alamancos et al., 2007;
Kanai et al., 2008, 2010; Kirov et al., 2009; Zaehle et al.,
2010). In a recent study, phase-synchronized tACS suppressed
Parkinson tremor by adjusting the phase to an abnormal cycle
of the movements (Brittain et al., 2013). Rhythmical movements
are produced with neuronal rhythmicity, a periodical repeat
of excitation and inhibition. If oscillatory brain stimulation
is synchronized with them at an appropriate phase, temporal
associative plasticity may be induced (Figure 2).

One of the most familiar rhythmical movements in our
daily life is locomotion, which requires the repeated patterned
activation of specific neurons and muscles. Recently, in a
preliminary experiment, we found that otDCS simulating gait
rhythm induced gait-specific plasticity in healthy subjects
(Koganemaru et al., 2014). Oscillatory patterned brain

stimulation could be a new and powerful approach for the
association of neuronal activities involved with training.

CONCLUSION

We have proposed the possible strategies for combination
therapy of stimulation and rehabilitative trainings: (1) the
control of temporal aspect between stimulation and task
execution; (2) the use of a shaped task for the combination;
(3) the appropriate stimulation of neuronal circuits where use-
dependent plastic changes occur; and (4) phase synchronization
between rhythmically patterned brain stimulation and task-
related patterned activities of neurons. Associative brain
plasticity induced by the combination therapy can bring
functional improvements in patients.

There are still many diseases that are resistant to neuro-
rehabilitative approaches. To better utilize brain stimulation in
neuro-rehabilitation, we must explore more effective techniques
for combining brain stimulation and rehabilitative training. An
efficient association between brain stimulation and rehabilitative
training could improve brain plasticity and promote functional
recovery of patients.
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