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Abstract: Autoimmune atrophic gastritis is an organ-specific immune-mediated condition
characterized by atrophy of the oxyntic mucosa. Autoimmune atrophic gastritis (AIG) is characterized
by a progressive loss of acid-secreting parietal cells leading to hypo-achlorhydria. Due to this
peculiar intra-gastric environment, gastric microbiota composition in individuals with autoimmune
atrophic gastritis was first supposed and then recently reported to be different from subjects with
a normal acidic healthy stomach. Recent data confirm the prominent role of Helicobacter pylori as
the main bacterium responsible for gastric disease and long-term complications. However, other
bacteria than Helicobacter pylori, for example, Streptococci, were found in subjects who developed
gastric cancer and in subjects at risk of this fearful complication, as well as those with autoimmune
gastritis. Gastric microbiota composition is challenging to study due to the acidic gastric environment,
the difficulty of obtaining representative samples of the entire gastric microbiota, and the possible
contamination by oral or throat microorganisms, which can potentially lead to the distortion of the
original gastric microbial composition, but innovative molecular approaches based on the analysis of
the hyper-variable region of the 16S rRNA gene have been developed, permitting us to obtain an
overall microbial composition view of the RNA gene that is present only in prokaryotic cells.
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1. Introduction

Autoimmune atrophic gastritis (AIG) is a relatively frequent and often undiagnosed disorder with
important and potentially life-threatening consequences from a clinical point of view, ranging from
micronutrient deficiencies and severe anemia to such neoplastic complications as gastric cancer and
gastric type 1 neuroendocrine tumors. Due to its peculiar intra-gastric environment, characterized
by severely impaired gastric acid secretion as a result of gastric oxyntic mucosa atrophy, the gastric
microbiota composition in individuals with AIG was first supposed and then recently reported to be
different from subjects with a normal acidic stomach, possibly assuming a key role in the development
of neoplastic complications. This evidence adds new pieces to a constantly developing puzzle on the
knowledge of autoimmune atrophic gastritis, a condition far from being completely investigated, and
opens the door to new and intriguing perspectives on the management and possible treatment options
of this important condition, which reduces the quality of life of millions of persons all over the world.
This review addresses different aspects of AIG, focusing particularly on epidemiology, the clinical
picture and management, the relationship between hypochlorhydria and long-term complications, and
the interplay between the gastric microbiota, autoimmune gastritis and its clinical consequences, as
well as the complicated and still debated role of Helicobacter pylori infection, providing an updated
summary of recent scientific evidence on this intriguing topic.
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2. Epidemiology and Clinical Manifestations of Autoimmune Gastritis

AIG is an organ-specific immune-mediated condition that affects the corpus and fundus of the
stomach; AIG is characterized by atrophy of the oxyntic mucosa with subsequent hypochlorhydria,
hypergastrinemia, and deficiency of intrinsic factors, leading, in late stages, to pernicious anemia [1].
AIG’s classical histopathological alterations consist of corporal-limited Helicobacter pylori (Hp)-negative
atrophic gastritis with a spared antrum; sometimes, active Hp infection and/or involved antral mucosa
may be observed in AIG, showing overlapping features with the multifocal atrophic gastritis mainly
linked to Hp [2]. AIG is a condition that may involve any age group, but more frequently affects the
elderly and females; most cases are reported in subjects of Northern European descent [3]. The absence
of proactive case-finding strategies for AIG diagnosis, the lack of epidemiological studies, and the
frequent indolent disease course, possibly leading to an underestimation of the disease, may contribute
to the lack of knowledge of the true prevalence of AIG [4]. Moreover, in most papers published in
the recent past, AIG was diagnosed only based on serological biomarkers such as anti-parietal cell
or anti-intrinsic factor antibodies (PCA/IFA), pepsinogen, and/or gastrin-17 levels [5,6] without any
histological confirmatory diagnosis. Finally, for several years, the diagnosis of AIG was frequently
underestimated and mistakenly considered only in cases of pernicious anemia (PA), with macrocytic
anemia due to vitamin B12 malabsorption usually manifesting itself in the late stage of the disease [7,8].
Based on this scenario, AIG prevalence has been estimated to be ~0.5–4.5% globally, varying widely
owing to different diagnostic criteria, ethnical and demographical settings [4].

From a pathological point of view, AIG is thought to be the result of a complex interaction
between environmental factors and host-related factors such as genetic susceptibility, but data are scant.
An Italian study showed a significantly higher prevalence of HLA-DRB1*03 and HLA-DRB1*04 alleles in
patients with AIG than in a healthy control group [9]. By contrast, a Finnish study found an association
between AIG and HLA-DRB1*04/HLA-DQB1*03, but not with HLA-DRB1*03 [10]. These HLA
haplotypes are also frequently associated with other autoimmune diseases, in particular autoimmune
thyroid disease, thereby underlining a common HLA-dependent autoimmune pathway [4].

Despite the advancements in knowledge that have been made in the field of AIG, the trigger
precipitating the autoimmune response has not been clarified. The resulting immunological
dysregulations involve sensitized CD4+T lymphocytes and PCA/IFA, while gastric corpus/fundus
tissue damage results from an antibody-mediated destruction of the parietal cells due to selective
targeting of the H+/K+ ATPase proton pump [11]. PCA are of immunoglobulin G type, they are
directed against the parietal cell H+/K+ ATPase, and they are mainly considered serological markers
of autoimmune gastritis. PCA/IFA positivity is considered a helpful tool for AIG diagnosis. However,
detection of those antibodies is not sufficient for AIG diagnosis, because they are not specific and are
also found in healthy individuals for in escaped negative thymic selection or in patients with other
autoimmune diseases such as type 1 diabetes or thyroid diseases, whereby the AIG prevalence is
comparatively three- to fivefold higher [12].

Furthermore, serology against H. pylori (IgG AbHp) may be positive in AIG patients with previous
contact with the bacterium or in those previously treated for the infection. When a positive serological
titer of AbHp is found in a patient with AIG together with a polymorphonucleate inflammatory
infiltrate in the gastric mucosa, an active H. pylori infection should be suspected [13].

From a clinical point of view, AIG has been traditionally considered a silent condition, often
suspected due to its hematologic findings, and rarely by the presence of gastrointestinal symptoms.
Despite the fact that most patients are pauci- or asymptomatic, several studies have shown that
dyspeptic symptoms such as postprandial fullness, early satiety, and nausea are among the most
common symptoms complained about by AIG patients [14–16]. Most commonly, AIG may be suspected
in the presence of an iron deficiency and, in particular, anemia due to iron malabsorption consequent
to reduced gastric acid secretion (25–50% of patients with AIG) or, rarely, in the presence of pernicious
anemia, which is found in up to 15–25% of AIG patients [17–20]. Less frequently, AIG patients may
complain of neurological symptoms such as paresthesia, abnormal proprioception, numbness, ataxia,
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cognitive impairment, mood disorders, and psychosis. Neurological symptoms are consequences of
vitamin B12 deficiency, due to an impairment of sensory and peripheral nerve function linked to a
reduced production of succinyl coenzyme A, which is essential for myelin sheath structure [21,22].
Finally, concomitant autoimmune diseases, especially Hashimoto thyroiditis or a positive family history
for AIG may contribute to increasing the suspicion of an AIG diagnosis.

3. Association with Other Autoimmune Diseases

AIG may be associated with a wide spectrum of autoimmune disorders [4]. Hashimoto thyroiditis
(HT) is the most frequent autoimmune disease associated with AIG with a 3–8-fold higher reported
prevalence than in the general population [23]. Conversely, the prevalence of AIG is 3–5 times greater
in patients with autoimmune thyroid disorders [3,5,6]. The association between gastric and thyroid
disorders has been observed since the early 1960s when the frequent co-presence of the thyroid
and gastric autoantibodies (anti-thyroperoxidase, anti-thyroglobulin, PCA, IFA) in patients with
thyroid disorders and PA led Doniach B and Irvine WJ et al. to coin the expression “thyrogastric
syndrome” [24–27]. The impairment of thyroid follicular cells and gastric parietal cells typical of HT
and AIG are, respectively, due to a multifactorial etiology resulting from the association between genetic
susceptibility and several environmental factors [28,29]. The specific mechanism leading to thyrocytes
and/or parietal cell damage is still poorly understood, but this similar phenomenon can be partly
elucidated by the common embryological origin of gastric mucosal and thyroid follicular cells, both
developing from the endoderm and sharing some functional and morphological similarities [30,31].
Thyro-gastric autoimmunity is currently considered part of type III polyglandular autoimmune
syndromes, which include several endocrine and nonendocrine autoimmune disorders as a consequence
of immune tolerance loss [27,32,33]. Type I diabetes mellitus (T1DM) is the second most frequently
autoimmune disorder associated with AIG. This association has been confirmed by several studies
which, found PCA positivity in 10–15% of children (<18 years of age) and in 15–25% of adult T1DM
patients [34,35]. Another study showed that 57% of PCA-positive patients and 10% of PCA-negative
patients, out of 88 patients with T1DM (of whom 47 were PCA- positive) undergoing gastroscopy
with biopsies, received a histological diagnosis of AIG [36]. Apart from HT and T1DM, the other
less commonly associated autoimmune disorders are vitiligo and Addison’s disease, followed by
only sparse and scant data mainly resulting from case reports on the association between AIG and
rheumatoid arthritis [37], celiac disease [38], and many other autoimmune disorders [39,40].

4. The Role of Hypochlorhydria and Long-Term Complications

Gastric acidity has several primary functions as a bactericidal defensive barrier, including
digestive and absorptive properties. The progressive destruction of hydrochloric acid-secreting
parietal cells is typical of AIG and may lead to a gradual hypochlorhydric state [1]. Hypochlorhydria
may result in dietary iron malabsorption [41]. The pH increase due to the weakening of the gastric
acid defensive barrier may also result in consequent gastric microbiota composition alterations with
potential overgrowth of other bacteria than Hp [42]. Furthermore, AIG is considered a precancerous
condition with an increased neoplasm risk, and is also linked to possible intra-gastric changes such as
hypochlorhydria and increased oxidative stress as a consequence of persistent inflammatory infiltration
of the corpus–fundus of the stomach [43]. The hypochlorhydric state may induce enterochromaffin-like
(ECL) cell hyperplasia with a major risk of developing type 1 gastric neuroendocrine tumors over
time, at percentages varying from 0.4% to 7%, and gastric adenocarcinoma, with an incidence ranging
between 0% and 1.8% per year [44–46]. The crucial role of parietal cell secretion in maintaining an
acidic intragastric milieu is strictly regulated by both endocrinal and neuronal stimulation via the
vagus nerve. Hydrochloric acid secretion is stimulated by gastrin, secreted by gastrin-producing
cells in the antrum, and by histamine, produced by ECL cells in the corpus or fundus glands. In the
presence of oxyntic mucosa atrophy, hypochlorhydria leads to persistently increased levels of gastrin,
a well-known risk factor for ECL cell hyperplasia, dysplasia, and type 1 gastric neuroendocrine
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tumors [20,47]. While the higher risk of gastric cancer in corpus atrophic gastritis is well defined and
linked to Hp, considered the first trigger of a multistep carcinogenic process explained by the Correa
Cascade [48], the potential carcinogenic mechanisms associated with AIG are still under debate. In fact,
it has been hypothesized that inflammation, dysregulation of the host immune system, and an increase
in nitrate and nitrose-producing bacteria, leading to a non-acidic intragastric milieu, as occurs in AIG,
may play a role in gastric carcinogenesis [49–51]. Nowadays, most of the available evidence about the
gastric cancer risk associated with AIG is derived from cohort and case–control studies conducted
on patients affected by PA [52–57]. According to the recently published European guidelines on the
management of epithelial precancerous conditions and lesions, AIG is considered a precancerous
condition, and patients should be stratified according to risk groups (OLGA/OLGIM system, family
history of gastric cancer, or presence of incomplete intestinal metaplasia) and monitored by gastroscopy
with biopsies, according to the updated Sydney system protocol [8], at an interval of 3–5 years [58].
Lastly, the most frequent long-term complication associated with the hypochlorhydric state is the
onset of hematological alterations due to iron or vitamin B12 malabsorption. Iron absorption is strictly
dependent on normal gastric hydrochloric acid secretion, which is essential for the reduction of ferric
dietary iron to ferrous iron, a major absorbable iron form [59,60]. Patients with iron-deficiency anemia
may be managed by oral iron supplementation and it has been suggested to switch to intravenous iron
delivery and blood transfusion only in case of severe anemia or exceptional situations [4,61,62]. In the
case of vitamin B12 deficiency, intramuscular administration is recommended to obtain an ideal vitamin
B12 normalization, particularly in patients who complained of neurological symptoms, which are
also not always reversible. For maintenance therapy, a Cochrane review did not find any superiority
of oral or intramuscular vitamin B12 treatment in normalizing serum vitamin B12 levels, showing
cost-effectiveness in favor of oral treatment, but the trials reviewed included patients irrespective of
the cause of vitamin B12 deficiency and therefore also patients without AIG or PA [63].

5. Gastric Microbiota: Historical Aspects and Helicobacter pylori

A growing body of literature on gastric microbiota composition has been recently published, but
data in this field are still scarce and conflicting. Nowadays, no specific gastric microbiota profiles
related to different gastric conditions such as Hp gastritis, chronic atrophic gastritis, autoimmune
gastritis, or gastric cancer have been well defined [64]. The stomach was historically considered a
sterile organ and an unfavorable bacterial growth environment owing to its very low pH and the
proteolytic activity of gastric juice, as well as the antimicrobial function of nitric oxide, produced by
salivary nitrate [65]. The discovery of Hp about 40 years ago was the first step towards a paradigm
shift [66]. Hp infection was recognized to be the major cause of chronic atrophic gastritis, becoming
the most thoroughly investigated component of the gastric microbiota [67], and it was classified as a
class I carcinogen by the World Health Organization [68] for its contribution to gastric carcinogenesis,
as supposed by Correa Cascade [48]. After Hp discovery, the growing interest in gastric histology
and microbiology increased over time and many of the older observations, such as the effect of
reduced acid secretion on promoting a diverse gastric flora, began to be investigated [69]. A growing
number of culture-dependent and molecular method-based studies comparing different microbial
compositions in Hp-positive or -negative subjects, in chronic atrophic gastritis and in stomachs with
gastric cancer, were published, aiming to assess gastric microbiota diversity and its possible role in
gastric carcinogenesis [70].

6. The Role of Innovative Methods for the Detection of the Gastric Microbiota

The interest in the field of gastric microbiota has been widely increasing in recent years.
The knowledge of the gastric microbiota and its role in human health and diseases, although still limited,
is expanding more and more thanks to the development of molecular-based methods [65]. Gastric
microbiota composition is challenging to study, owing to the acidic gastric environment, the difficulty
in obtaining a representative sample of the entire gastric microbiota by gastric biopsies or gastric juice
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samples, and their possible contamination by oral or throat microorganisms, which can potentially
lead to the distortion of the microbial composition [67]. In 1946, Barber and Franklin published their
efforts to culture bacteria from gastric mucosal swabs for the first time in history [71]. This study
began the culture-dependent era of gastric microbiota definition. Unfortunately, the culture-based
approach has several limitations and it is influenced by many factors comprising the type of gastric
sample that is most often limited to luminal contents rather than mucosa-associated organisms,
the different gastric acidic state of the stomach the time of the culture, and the methods used for
culture [72]. However, the major limitation of the culture-based approach that the vast majority (~80%)
of microbial species are not cultivable [73]. These limits and, in particular, the need to exceed the limit of
non-cultivable microorganisms led to the development of new molecular techniques based first on DNA
genome sequencing and then on next-generation sequencing and molecular analysis of microbiota [74].
Furthermore, the main advantage of culture-independent methods is the selective detection of viable
bacteria. In the era of culture-independent methods, molecular approaches allowed researchers to
markedly enhance the study of the gastrointestinal tract in general and the gastric microbiota profile in
detail using DNA-based approaches, either relying on whole-genome information or focusing on the
16S rRNA gene as a standard phylogenetic marker [67,75]. Methods relying on the sequence-specific
separation of equal-sized 16S rDNA PCR-amplified fragments such as denaturing gradient gel
electrophoresis (DGGE), temporal gradient gel electrophoresis (TTGE), or terminal restriction fragment
length polymorphism (TRFLP) of polymerase chain reaction (PCR)-amplified 16S rDNA fragments
were introduced in 2000 [72,76]. However, the above-cited methods were not able to define sequence
differences at the species level and often relied on short 16S rDNA-amplified fragments. Due to these
limitations, they were successively replaced in the mid-2000s by a next-generation sequencing technique
based on high-throughput DNA sequencing techniques, allowing researchers to assess the bacterial
composition rapidly in many samples with greater sequencing depth and sequence coverage. The first
study using high-throughput DNA sequencing techniques to analyze the human gastric mucosa
microbiota was published in 2008, reporting a higher gastric microbiota diversity in Hp-negative
compared to Hp-positive patients [77]. Since then, many other studies showed that Hp eradication
may lead to increased bacterial diversity and restore the relative abundance of other bacteria similar to
Hp-negative subjects, suggesting that Hp colonization results in alterations to the gastric microbiota,
which are reversible by antibiotic treatment [78]. More recently, many innovative molecular approaches
based on analyses of the hyper-variable region of the 16S rRNA gene by 16S rRNA gene-restricting
high-throughput sequencing methods (Illumina, and Ion Torrent) have been developed, permitting us
to obtain an overall microbial composition view of RNA that is only present in prokaryotic cells [74].
The gastric microbiota analysis based on 16S rRNA gene-restricting high-throughput sequencing
methods has permitted us to identify many unexpected or previously unknown bacteria in Hp-negative
stomachs with 262 phylotypes representing 13 phyla [65,79]. This technology allows us to analyze
microbiota composition below the genus level, but only provides information on the bacterial presence,
without any detail about bacterial functions or the vitality state of microorganisms [80]. Based on
this scenario, the future goal is to perform studies assessing the metabolically active bacteria of the
stomach using many innovative and different methods such as reverse-transcribed 16S rRNA as an
amplification template [81].

7. Gastric Microbiota, Hypochlorhydria, and Autoimmune Gastritis

In recent years, several studies have been published in the field of gastric microbiota aiming to
discover whether substantial differences between a healthy stomach and pathological gastric conditions
were found. For this purpose, most of the authors working in this field have conducted studies mainly
on the gastric microbiota of patients with gastric cancer, a well-known long-term complication of
Hp-related atrophic gastritis, and AIG. Concerning gastric precancerous conditions, gastric microbiota
composition of Hp-related atrophic gastritis has been better defined than that of AIG. Hp-induced
atrophic gastritis has been reported to display a lower bacterial diversity and a decreased abundance of
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other microbial groups than a healthy stomach with a high prevalence of Proteobacteria (as Hp itself is
a member of this phylum), as shown in previous studies [82,83]. However, this seems to be a reversible
situation that may substantially change after Hp eradication. Apart from Hp, a well-established
carcinogen linked to gastric cancer, the composition of the gastric microbiota has not yet been
investigated thoroughly and conflicting data have emerged from different studies. Moreover, it should
be noted that most of the data derive from Asian populations and only rarely from Western populations,
and that different sources of gastric samples, different microbial composition-analyzing methods, as
well as different reference groups have been used, such as chronic gastritis instead of a healthy stomach,
in many studies [65,84–86]. A recently published systematic review on the gastric microbiota showed
highly heterogeneous results for gastric microbial composition, with 266 bacterial genera identified,
of which 57 were more frequently reported in the normal acidic stomach and distributed among five
bacterial phyla, including Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria, and
the most abundant genera: Helicobacter, Streptococcus, and Prevotella [65].

Considering gastric conditions characterized by a hypochlorhydric state and, in particular,
corpus-restricted AIG, where the gastric mucosal barrier becomes progressively compromised due to
an immune-mediated pathological mechanism, it has been hypothesized that the progressive loss of the
acid barrier function may favor a bacterial overgrowth, thus potentially affecting the gastric microbiota
composition; however, data in this field are currently scarce and conflicting (Figure 1) [42,65]. A previous
study published by Parsons et al. focused on assessing the diversity of gastric microbial profiles in
different hypochlorhydric states, including Hp-induced atrophic gastritis and AIG. This study showed
that patients with AIG presented a relatively higher microbial diversity and bacterial abundance
than normal stomachs with the largest proportion of Streptococci among the groups investigated [42].
Research on gastric microbiota in AIG is therefore at an early stage. As it has recently been accepted
as a precancerous condition to be subjected to endoscopic surveillance for its potential neoplastic
complications, further studies are needed to understand if changes in the gastric microbiota could be
associated with the progression of gastric carcinogenesis [72].Microorganisms 2020, 8, x FOR PEER REVIEW 7 of 12 
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Figure 1. A possible link between autoimmune gastritis, hypochlorhydria, and gastric cancer may be
hypothesized. Autoimmune gastritis, a corpus-restricted Hp-negative atrophic gastritis, is characterized
by progressive immune-mediated atrophy of the oxyntic mucosa with subsequent loss of acid-secreting
parietal cells, leading to hypochlorhydria. This changed intra-gastric microenvironment can make
possible the survival of other bacteria than Hp possibly playing a key role in gastric carcinogenesis.
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Regarding the gastric microbiota in subjects with gastric cancer, most studies have shown that it
seems to be characterized by an enrichment of bacterial diversity due to the additional colonization of
the gastric environment by oral taxa [84,87] such as Streptococcus, Staphylococcus, Lactococcus, Bacillus,
Prevotella, Veillonella, and Leptotrichia, as well as intestinal taxa such as Lactobacillus [88], Clostridium
and Fusobacterium, with a contemporary decreased presence of Hp [84,85,89]. Interestingly, in the
above-cited study on AIG, in individuals with this condition, who are predisposed to gastric cancer, the
largest proportion of Streptococci was found; these microbes notably belong to the oral microbiota and,
probably, the non-acidic gastric environment due to the fact that hypochlorhydria offers an acceptable
habitat, making this oral commensal intriguing because plays a potential role in gastric carcinogenesis.
However, conflicting data have been found in Portuguese studies, in which a decrease in Streptococcus
in individuals with gastric cancer was reported [70,85,90].

8. Conclusions Remarks and Research Agenda

As in other body districts, in the stomach, growing knowledge of the possible role of the microbiota
in health and disease is emerging from recent studies. Recent data confirm the prominent role of Hp
as the main bacterium responsible for gastric disease and long-term complications. However, other
bacteria, and possibly other poorly or not yet investigated viral or fungal microbiota components, are
emerging and likely play a role in conditions with an altered intragastric environment such as AIG,
which is notably characterized by a non-acidic stomach favoring the overgrowth of microorganisms
that are otherwise not viable in the acidic stomach. Some of these bacteria, for example, Streptococci, are
found in subjects who have developed gastric cancer and in subjects at risk of this fearful complication,
such as those with AIG. These first pieces of evidence certainly cannot be interpreted as a point
of arrival, but should rather be viewed as a starting point for future research in this very complex
and intriguing field in which much work is yet to be done. In the last few years, many pieces have
been added to the knowledge puzzle, and future research is needed. As detailed in Table 1, several
aspects are still awaiting clarification, to ultimately pave the way for possible innovative treatment
strategies to eventually prevent the progression of AIG or neoplastic complications by therapeutic
gastric microbiota modulation.

Table 1. Proposal of research agenda on gastric microbiota.

1 To standardize techniques and gastric samples used to assess the viable microbiota in the stomach by giving
priority to innovative methods based on RNA for sequencing

2 To perform studies considering possible confounding factors on the gastric microbiota such as drugs and
dietary, smoking, and alcohol habits

3 To perform longitudinal, multicentre studies to increase the knowledge on the role of gastric microbiota in
gastric carcinogenesis

4 To launch studies on the gastric microbiota in Caucasian populations as the available data on Asian
populations may not be necessarily comparable and valid in non-Asian subjects
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