
materials

Article

Microstructure Evolution and Strengthening Mechanism of
Galvanized Steel/Mg Alloy Joint Obtained by Ultrasonic
Vibration-Assisted Welding Process

Fangzhou Yang and Bing Liu *

����������
�������

Citation: Yang, F.; Liu, B.

Microstructure Evolution and

Strengthening Mechanism of

Galvanized Steel/Mg Alloy Joint

Obtained by Ultrasonic

Vibration-Assisted Welding Process.

Materials 2021, 14, 1674. https://

doi.org/10.3390/ma14071674

Received: 16 February 2021

Accepted: 23 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Materials Science and Engineering, Chongqing University of Arts and Sciences,
Chongqing 402160, China; 20050001@cqwu.edu.cn
* Correspondence: liubing@cqwu.edu.cn

Abstract: A novel ultrasonic vibration-assisted welding (UVAW) process was used to achieve reliable
joining of galvanized steel and Mg alloy. The effects of the UVAW technique on the microstructure
and mechanical properties of galvanized steel/Mg alloy weldment were studied in detail. The
introduction of ultrasonic vibration can ameliorate the wetting of welds and eliminate porosity defects.
A refined microstructure of the fusion welding zone with an average grain size of 39 ± 1.7 µm was
obtained and attributed to cavitation and acoustic streaming caused by the UVAW process. The grain
refinement led to an increase in the microhardness and joining strength of the galvanized steel/Mg
alloy weldment. Under the ultrasonic power of 0.9 kW and a current of 65 A, the maximum joining
strength of the ultrasound-treated galvanized steel/Mg alloy joint was 251 ± 4.1 MPa, which was a
14.6% increase over the joint without ultrasonic treatment.

Keywords: ultrasonic vibration; galvanized steel; magnesium; welding; microstructure; mechani-
cal properties

1. Introduction

With increasing demand from consumers and the environment for high fuel efficiency
vehicles, as well as for the reduction of carbon dioxide emissions from vehicles, nonferrous
metals, as a good substitute for traditional metal alloys, have attracted much attention [1–3].
Specifically, nonferrous alloys based on aluminum (Al) [4], magnesium (Mg) [5,6], and
titanium (Ti) [7] with high specific strength, superior processability, and easy recycling
have been developed and used in automobile manufacturing and aerospace fields. Over
the past decade, Mg alloys have attracted considerable attention in the automotive industry
because of their potential to reduce weight to achieve better fuel economy [8,9]. However,
in modern vehicles designed with a variety of materials, the connection of Mg alloy to the
underlying substructure (steel) may be a challenge.

The current study was mainly focused on the fabrication of steel/Mg composite
components by adding intermediate metal layers [10,11]. Xu et al. [12] studied the effects of
an aluminized zinc coating on the tensile strength and microscopic interface characteristics
of steel/Mg weldment. The results showed that during the friction stir welding process, the
interface wettability of the steel/Mg was significantly enhanced by the Zn coating, and the
metallurgical connection between the steel and Mg alloy was promoted by Al5Fe2 phase
in the Zn coating on the surface of the steel side matrix. Zhao et al. [13] investigated the
laser welding-brazing of Ni-coated Q235A-steel and AZ31B-Mg alloy. According to Zhao,
there is a strong mutual attraction between Al and Ni atoms in the weld. The maximum
tensile/shear fracture load was close to 230MPa and the weld efficiency reached 88.5%
relative to the AZ31B-Mg alloy.

However, the way to ameliorate the performance of steel/Mg joints through a metal
intermediate layer has reached a bottleneck. For example, it was difficult to eliminate the
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structural defects, such as coarse grains and pores, on the Mg alloy side of the joint with
a traditional welding process. In comparison with other welding techniques, ultrasonic
vibration-aided welding is an emerging welding technology with advantages of high
efficiency and low energy consumption [14,15]. Liu et al. [16] studied the influence of
ultrasonic vibration on welding the residual stress, micro-hardness, and microscopic
characteristics of Q345 steel weld. The results showed that the conventional weld of Q345
steel has a distinct micro-hardness gradient and columnar grains, while ultrasonic impact-
treated weld was characterized by a uniform micro-hardness and equiaxed grains [16].
Hu et al. [17] reported the influences of ultrasonic treatment on elevated-temperature
tensile strength and the microstructure evolution of hot-extruded Mg–6Al–0.8Zn–2.0Sm
wrought Mg alloy. The experimental results revealed that the morphology of Al2Sm
phase was fine granular after ultrasonic vibration treatment. In addition, the maximum
pressure induced by the collapse of cavitation bubbles was much greater than the shear
strength of Al2Sm phase, which caused the rough petal-like Al2Sm phase to split into
fine polygonal granules [17]. Wang et al. [18] introduced ultrasonic vibration into an
underwater flux-cored arc welding process. According to Wang, ultrasonic vibration can
affect the size and morphology of austenite grains during the solidification of the weld
pool and ultimately promote the formation of a large number of fine ferrite structures in the
subsequent solid phase transformation of the weld metal. In addition, ultrasonic vibration
made the columnar structure of the welded metal more refined, achieving a good balance
of high tensile strength and impact toughness.

The present study of ultrasonic vibration-assisted welding mainly focused on the
application of vibration to the entire weldment during the welding process. Although
the above process had achieved the results of refining the microstructure and improving
properties, this process consumed more energy and had potential hazards of welding
deformation. If ultrasonic vibration can be accurately applied to the local area of the weld
pool, it is expected to greatly improve the welding quality. Therefore, the present study
attempted to introduce ultrasonic vibration into the liquid metal of molten pool through
filler wire, aiming to improve the microstructure and performance while minimizing the
adverse effects of vibration on the entire weldment. The evolution of joint appearances, the
weld microstructure, and mechanical performances were systematically investigated.

2. Materials and Methods
2.1. Selected Materials

Galvanized steel (Hangtai, Shandong, China) and AZ31 Mg alloy (Hongya, Henan,
China) were used as parent metals. Table 1 shows the main chemical composition of
the parent metals. Galvanized steel belongs to the ferritic and martensitic duplex steel
system, which has an average grain size of about 17 ± 1.1 µm. The average thickness of the
galvanized layer on the steel surface was about 14 ± 0.6 µm, as shown in Figure 1a. The
AZ31 welding stick, with a diameter of 1.2mm, was adopted as filler material. Figure 1b
shows the metallographic map of the Mg alloy parent material. It can be seen from the
figure that the Mg alloy base material contained a large number of approximate equiaxed
crystals with an average grain size of about 19 ± 0.8 µm.

Table 1. The main chemical composition of the parent metals (wt.%).

Materials Mn Si C Zn Al Fe Mg

Steel 0.65 0.25 0.08 - - Bal. -
AZ31 0.41 0.05 - 0.88 2.90 - Bal.
Filler 0.32 - - 0.79 2.80 - Bal.
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Figure 1. (a) Microstructure of galvanized steel and (b) Mg alloy base material.

2.2. UVAW Process

To ensure the joining quality, the Mg alloy base metal and filler material were firstly
burnished using abrasive papers (1000) to remove the surface oxides. All the base metals
were then immersed in anhydrous alcohol for about 1 minute to remove surface oil contam-
ination. Finally, all the base metals were dried with cold air and stored in a drying oven.
A self-made ultrasonic vibration auxiliary welding system, including an argon tungsten
arc welding machine (YC-300WP5HGN, Panasonic, Tangshan, China), a cuboid ultrasonic
generator (GDZ-1012M, Longke, Dongguan, China), a conical amplitude transformer, a
columnar transducer (DW-20k, Longke, Dongguan, China), and so forth, was used for the
welding of the galvanized steel and Mg alloy. The ultrasonic frequency was 20 kHz and
the amplitude was 30 µm. Figure 2 illustrates the sketch map of the ultrasonic vibration-
assisted welding process. The galvanized steel plate and Mg alloy plate were fixed by a
lap joint (both with the dimensions of 70 mm × 50 mm × 2 mm) with an overlapping
size of 16 mm, and the welding torch was placed above the edge of the Mg alloy plate.
During the UVAW process, the ultrasonic vibration signal was produced by the generator,
amplified by the transformer, output by the horn, and finally, acted on the welding wire. In
consequence, the liquid weld metal was subjected to horizontal ultrasonic vibration during
the UVAW process. Table 2 shows the welding parameters applied in the study.

Figure 2. The sketch map of the ultrasonic vibration-assisted welding (UVAW) process.
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Table 2. The welding parameters used during the UVAW process.

Parameters Value

Voltage 14 V
Wire feed speed 0.5 m/min
Welding speed 0.2 m/min

Welding current 55–75 A
Ultrasonic power 0–1.5 kW

2.3. Joint Characterization

After the UVAW process, the transverse cross-sections of the lap joints were cut from
the weldment for metallographic observation. The specimens (12 mm × 8 mm × 4 mm)
used for metallurgical observation were treated with sandpaper (600#, 1000#, and 2000#)
and polished with distilled water, and then immersed into a picric acid solution (5 mL
acetic acid, 5 g picric acid, 5 mL distilled water, and 30 mL alcohol) for 10 s. Microstructural
observation of the weld was carried out with an optical microscope (OM, CR20-530HS,
Beite, China) and scanning electron microscope (SEM, VAGA 2 LMH, TESCAN, Brno,
Czech Republic) in backscattered electron (BSE, VAGA 2 LMH, TESCAN, Brno, Czech
Republic) mode. The chemical composition analysis of the weld zone was performed
via energy-dispersive X-ray spectroscopy (EDS; VAGA 2 LMH, TESCAN, Brno, Czech
Republic). The wetting angle and width of the weld were measured by the tangent method
and the metallographic positioning method, respectively. A uniaxial tensile test was
conducted using a universal tensile testing machine (AG-X, SHIMADZU, Kyoto, Japan),
which was operated at room temperature with a constant stretching speed of 2.2 mm/min.
The sampling point and outline dimensions (GB/T 2651-89) of the tensile samples are
shown in Figure 3. For each set of welding parameters, the mean value of five tensile test
results was adopted. The fracture samples were cleaned by ultrasonic with acetone and the
fracture surfaces were observed by SEM in secondary electron (SE) mode to determine the
failure characteristics. The microhardness distributions of the weld joint were evaluated
along the horizontal directions with a 50 g load and a 10 s holding time (MH-5L).

Figure 3. (a) The sampling point of tensile test samples and (b) the outline dimensions of tensile test samples (mm).

3. Results and Discussion
3.1. Weld Cross-Sections

Figure 4 presents the typical cross-sectional area of weld obtained with and without the
UVAW process. Under the heat input of the welding torch, the AZ31B Mg alloy parent metal
and filler material melted to form a weld zone (WZ), while a brazing zone (BZ) appeared
between the galvanized steel plate and the weld zone. As shown in Figure 4a, micropores
were formed in the weld area of the weldment, which were mainly attributed to the
hydrogen evolution characteristics of Mg alloy and the rapid solidification of the welding
process. There is no doubt that hydrogen pores, as a welding defect, will deteriorate the
mechanical properties of the weldment and make it unreliable. It is interesting to note
that the pores of the weld area disappeared with the aid of proper ultrasonic vibration, as
presented in Figure 4b. This is mainly due to the fact that after the formation of hydrogen
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bubbles in the molten bath, the application of high-frequency vibration is beneficial for
bubbles to float up and leave the molten pool, thereby avoiding the porosity formation in
the weld zone. In addition to the elimination of welding defects, Figure 5 indicates that
the ultrasonic vibration process also affects the wetting and seam width of the joint. The
ultrasonic vibration introduced into the molten bath by the welding stick had a stirring
effect on the liquid metal, which eventually promoted the wetting and spreading of the
molten pool on the upper surface of the steel substrate and increased the weld width.

Figure 4. The typical cross-sectional area of weldments obtained with and without UVAW: (a) current
of 65 A, ultrasonic power of 0 kW; (b) current of 65 A, ultrasonic power of 0.9 kW.

Figure 5. (a) The wetting angle and (b) width of weld under the assistance of varying ultrasonic power.

3.2. Weld Microstructure

Figure 6a presents the typical cross-sectional profile of galvanized steel/Mg alloy
weldment, which reveals dual characteristics of fusion welding and brazing. Namely, the
welding wire, the AZ31B parent plate, and the galvanized layer melt to form the fusion
welding zone (Zone B), while the high melting point of the steel substrate and the molten
metal (Mg alloy parent plate, welding wire, and galvanized layer) formed the brazing area
(Zone A).



Materials 2021, 14, 1674 6 of 12

Figure 6. The typical backscattered electron (BSE) micrographs of the brazing area: (a) cross-sectional
macrostructure; (b) current of 55 A, ultrasonic power of 0 kW; (c) current of 65 A, ultrasonic power of
0 kW; (d) current of 65 A, ultrasonic power of 0.9 kW.

Figure 6b–d show the corresponding BSE micrographs of the brazing area labeled as
A, which were welded with and without the assistance of ultrasonic vibration. Under a
current of 55 A, a uniform and continuous flake-like reaction layer, with a thickness of about
2 µm, was formed in the interfacial area, as presented in Figure 6b. No crack defects were
observed due to the direct contact between the steel substrate and the interfacial reaction
layer. Under a current of 65 A, a corrugated reaction layer was formed in the interface area,
as shown in Figure 6c. It is obvious that the increase in heat input changed the morphology
of the reaction layer and increased its thickness. This was mainly due to the enhanced heat
input that can cause the upward volatilization trend of the molten galvanized layer in the
molten pool, which caused the undulation of the brazing layer. On the other hand, the
increase in the welding heat input increased the bath temperature and enhanced the atomic
activity in the interface area, which was conducive to the interface reaction. Therefore, the
morphology of the reaction layer in the brazing area was changed, as described above.
Figure 6d shows the BSE micrograph of the brazing zone of the weld with the assistance
of the UVAW process. By comparing Figure 6c with Figure 6d, it can be seen that the
application of the ultrasonic treatment had a certain impact on the morphology of the
reaction layer. The main manifestation was that the wave-like morphology of the reaction
layer was weakened and the wave tip disappeared. During the ultrasonic vibration aid
welding process, the application of the UVAW process played a role in stirring the molten
bath, which made the temperature and composition of the molten pool uniform, and finally,
inhibited the formation of a wave-like reaction layer. To identify the phase components
of the interfacial reaction layer in the brazing area, EDS was carried out and the results
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show that phases P1 and P2 mainly contained 71.6 wt.% pct Zn, 28.4 wt.% pct Mg and
70.8 wt.% pct Zn, 29.2 wt.% pct Mg, respectively. It was suggested that both phase P1 and
P2 were MgZn, which indicates that the UVAW process only changed the morphology of
the reaction layer but had no influence on the phase composition.

Figure 7 shows the corresponding metallographic microstructure of the fusion welding
areas labeled as B (as marked in Figure 6a), which were obtained with and without the
assistance of the UVAW process. As presented in Figure 7a, significant microstructure
coarsening occurred in the fusion welding area of the conventional tungsten inert gas (TIG)
welded joint. The average crystallite dimension of the fusion welding area was about
63 ± 5.3 µm, which was 3.3 times that of the AZ31B Mg alloy parent metal. However, it
is worth noting that the coarse structure of the fusion zone was significantly improved as
ultrasonic vibration was applied to the dissimilar metal welding process of the galvanized
steel and Mg alloy, as shown in Figure 7b. The influence of ultrasonic power on the
crystallite dimension of the weld zone is illustrated in Figure 7c. It is obvious that with the
increase of ultrasonic power, the influence of the UVAW process on the crystal refinement
of the weld area increased. For instance, the refined microstructure of the fusion welding
zone, with an average grain size of 39 ± 1.7 µm, was obtained under the ultrasonic power
of 0.9 kW. However, after the ultrasonic power exceeded 1.2 kW, continuing to increase the
ultra-high power no longer had a significant impact on the microstructure refinement of
the weld zone. Xu et al. [19] also reported a similar pattern of microstructure evolution.

Figure 7. The metallographic microstructure of the fusion welding area: (a) ultrasonic power of
0 kW; (b) ultrasonic power of 0.9 kW, and (c) the crystallite dimension of the weld zone treated with
varying ultrasonic power.

Figure 8 illustrates the refinement mechanism of the UVAW process on the microstruc-
ture of the weld zone. The literature reveals that the ultrasonic cavitation and acoustic
streaming caused by ultrasonic treatment account for the refinement of coarsening grain in
the fusion welding zone. As presented in Figure 8a, a large number of cavitation bubbles
were generated in the negative half cycle of the ultrasonic sine wave. Then, the cavitation
bubbles absorbed the heat around them and grew up rapidly, resulting in supercooling
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in the vicinity and thus, forming a mass of nuclei, as illustrated in Figure 8b. When the
cavitation bubble grew to the threshold value, it burst and produced a shock wave of
gigapascal, thus breaking the growing dendrites, as shown in Figure 8c. Therefore, both
undercooled nucleation and broken dendrite can improve the nucleation rate and refine the
microstructure of the fusion zone. In addition, during the process of ultrasonic vibration
propagation in the weld zone, the sound pressure gradient caused by viscosity attenuation
made the liquid metal flow. Under the action of acoustic streaming, the supercooled nucle-
ation points and broken dendrites were evenly transported to various areas of the molten
pool. In addition, the acoustic flow accelerated the uniform distribution of elements and
alleviated the enrichment of solute at the solidification front, which eventually promoted
the spheroidization of α-Mg grains, as shown in Figure 8d.

Figure 8. The refinement mechanism of the UVAW process: (a) formation of cavitation bubbles;
(b) growth of cavitation bubbles; (c) the bursting of a cavitation bubble; and (d) effect of acoustic streaming.

3.3. Weld Microhardness

In order to facilitate the comparison of the hardness of the ultrasonic-treated joint
and the untreated joint, indentations were carried out along the straight lines in the joint
cross-section, as shown in Figure 9. As shown in the figure, ultrasonic treatment had a
noteworthy effect on the hardness distribution of the weld in both horizontal and vertical
directions. Under proper ultrasonic treatment, the average microhardness of the welding
zone was increased obviously. The improvement of the microhardness is mainly attributed
to the grain refinement caused by UVAW. According to Xu, the Tabor empirical formula
reveals that the relationship between weld microhardness and grain size can be expressed
by the following formula [19]:

H = C
(

σ0 + kd−1/2
)

(1)

where H is the weld microhardness value, C is a constant related to the material, σ0 is the
friction stress of the crystal lattice, k is the gradient constant, and d is the average grain
diameter. The above formula indicates that the microhardness of the weld is inversely
proportional to the average crystallite dimension. In consequence, the grain refinement
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caused by UVAW is a key factor in improving the welding strength and microhardness of
the weld.

Figure 9. (a) The cross-sectional microhardness test point and (b) the microhardness curves of the galvanized steel/AZ31B
joints obtained with and without UVAW.

3.4. Tensile Strength and Fracture Characteristic

Figure 10 illustrates the tensile strength of the Mg alloy base metal, untreated and
ultrasound-treated galvanized steel/Mg alloy joints. For the galvanized steel/Mg alloy
joints without the UVAW process, the increase in welding heat input promoted the full
progress of the metallurgical interface reaction, thereby improving the welding strength.
Under the optimum welding current of 65 A, the maximum strength of the weldment
reached 219 MPa, which was 83% of the base metal of the Mg alloy. After the ultrasound
treatment, the maximum tensile strength of the galvanized steel/AZ31B weldment was
251 ± 4.1 MPa. Compared with the traditional TIG welded galvanized steel/AZ31B joint,
the welding strength was increased by 14.6%. In addition, compared to the application
of vibration to the welding platform, the process of applying ultrasonic vibration to the
welding wire in this study required less ultrasonic power. The increase of the weld
mechanical properties was mainly attributed to the microstructure refinement and defect
elimination, as mentioned above. Nevertheless, the mechanical properties of the weldment
were slightly reduced as the ultrasonic power increased to 1.5 kW.

Figure 10. The tensile strength of the galvanized steel/AZ31B weldments: (a) with various currents and without UVAW; (b)
with a current of 65 A and varying ultrasonic power.

Figure 11 presents the stress/strain curves of the galvanized steel/AZ31B weldments
obtained with and without UVAW. It is apparent that the microstructure refinement induced
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by UVAW not only enhanced the breaking strength but also improved the deformation
ability of the galvanized steel/AZ31B joint.

Figure 11. The tensile stress/strain curves of the galvanized steel/AZ31B joints: (a) a current of 65 A and without UVAW,
(b) a current of 65 A and ultrasonic power of 0.9 kW.

Figures 12 and 13 present the typical failure features of untreated and ultrasound-
treated galvanized steel/Mg alloy joints. For the untreated joint, the fracture path ran
through the welding zone, and the whole fracture was mainly composed of a large-scale
cleavage surface and cleavage step, as shown in Figures 12a and 13a. For the ultrasonic-
treated joint, the fracture occurred at the edge of the fusion welding zone. It can be seen
that the number of cleavage platforms of the fracture surface was fewer than that of the
untreated joint and a few dimples were formed. It can be concluded that the fracture
mechanism of the joint changed from a cleavage fracture to a mixed fracture of cleavage
fracture and dimple fracture under the action of ultrasonic vibration.

Figure 12. The typical fracture locations of the galvanized steel/Mg alloy joint: (a) a current of 65 A, ultrasonic power of
0 kW and (b) a current of 65 A, ultrasonic power of 0.9 kW.
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Figure 13. The typical fracture surfaces of the galvanized steel/AZ31B weldment: (a) a current of
65 A, ultrasonic power of 0 kW and (b) a current of 65 A, ultrasonic power of 0.9 kW.

4. Conclusions

It is confirmed that the sound galvanized steel/AZ31B joint was obtained by the
ultrasonic vibration-assisted welding process. The main conclusions are as follows:

1. The application of ultrasonic vibration improved the wetting of welds and eliminated
porosity defects.

2. The mechanical stirring effect caused by ultrasonic vibration made the interfacial
reaction layer of the brazing zone change from wavy to laminar.

3. Ultrasound-induced acoustic streaming and cavitation significantly refined the mi-
crostructure of the weld zone, and its average grain size was about 39 ± 1.7 µm.

4. With ultrasonic power of 0.9 kW and a current of 65 A, the maximum tensile strength
of the ultrasound-treated galvanized steel/Mg alloy joint was 251 ± 4.1 MPa, which
was a 14.6% increase from the joint without ultrasonic treatment.

In this study, an effective ultrasonic vibration-assisted welding process was developed
to achieve the welding of galvanized steel/AZ31B alloys. In the next step, the author will
study the influences of ultrasonic vibration direction and frequency on the microstructure
and mechanical properties of the joint.
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