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Abstract: Glycyrrhetinic Acid (GA), a triterpenoid aglycone component of the natural product
glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing
activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as
betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained
easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize
new antitumor agents. The structural modifications of GA reported in recent decades can be divided
into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring
modifications. The lack of a comprehensive and recent review on this topic prompted us to gather
more new information. This overview is dedicated to summarizing and updating the structural
modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed
a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives
along with their activity profile in different series. Furthermore, the structure activity relationships
of these derivatives are briefly discussed. The included information is expected to be of benefit to
further studies of structural modifications of GA to enhance its antitumor activity.
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1. Introduction

Natural products have played a highly significant role in the medicine discovery and development
processes and many useful medicines were developed from plant sources [1]. This was particularly
evident in the area of cancer treatment, where over 60% of current antitumor drugs, such as vinblastine,
etoposide and paclitaxel, originated from Nature [2].

Glycyrrhetinic acid (GA, Figure 1) is a triterpenoid aglycone component of the natural product
glycyrrhizinic acid (GL), which is abundant in licorice root [3]. GA was proved to possess a
variety of remarkable biological activities, including anti-inflammatory [4,5], antiviral [6,7], hepato-
protective [8,9], and antitumor properties [10,11]. GA is highly regarded for its remarkable antitumor
activities, whereby it shows significant cytotoxic activity against a broad variety of different cell
types in vitro, for example non-small cell lung cancer cells [11], pituitary adenoma cells [12], human
hepatocellular carcinoma cells [13], prostate cancer cells [14] and glioblastoma cells [15]. It also exhibits
noteworthy activity in various experimental cancer models in vivo [16,17], and it is known to trigger
apoptosis in tumor cell lines [14,18,19]. Some experimental reports have indicated that GA triggered
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apoptosis via the mitochondrial pathway through the collapse of mitochondrial membrane potential,
the accumulation of the cytosolic cytochrome c and the activation of caspase-9 and caspase-3 [19,20].
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The remarkable antitumor activity of GA has been the focus of researchers worldwide. However,
because GA can inhibit type 2 11ß-hydroxysteroid dehydrogenase (11ß-HSD2), administrating GA at
a high dose for a long time often causes pseudoaldosteronism, which is characterized by hypertension,
hypokalemia and other adverse clinical effects [21–23]. Studies on using GA as a scaffold to develop
new low-toxicity and high-effectivity antitumor agents have attracted much attention, and a number of
structural modifications of GA were carried out and some reports of novel GA derivatives as antitumor
agents have been published [24–26]. This overview is dedicated to summarizing and updating
four aspects of the structural modification of GA leading to antitumor agents published between
2005 and 2016, including modifications at the ring-A, ring-C, ring-E and multiple ring modification.
We have compiled the most active GA derivatives along with their activity profile in different series.
Furthermore, the structure activity relationships of these derivatives are briefly discussed.

2. Four Aspects of the Structural Modifications of Glycyrrhetinic Acid

In the past few years, plenty of researchers around the world have designed and synthesized
series of GA derivatives as potential antitumor agents. Most reports about the chemical and structural
modifications of GA were focused on the specific functional groups of the A, C, and E rings, as these
three rings contain three functional groups which are the most suitable for modification: a hydroxyl
group at C-3 in ring-A, an α,β-unsaturated carbonyl function located in ring-C at C-11 and a carboxyl
group at C-30 on ring-E. Meanwhile, studies on the skeleton ring architecture modification of this
pentacyclic triterpene are increasing too, hence, the modifications of GA to produce novel antitumor
agents can be classified into four styles, including structural modifications at ring-A, at ring-C, at ring-E
and at multiple ring modifications.

2.1. Structural Modifications on Ring-A

2.1.1. Structural Modifications at the C3-OH in Ring-A

The structural modifications at the C3-OH group of GA are very common. For example, it could
be converted into an oxime group, a carbonyl group and a 3-oxo group. However, in order to change
the polarity pattern or improve the antitumor activity of GA, the C-30 carboxyl group was often
esterified too.

It was reported that changing the polarity pattern of GA might be an advantage in obtaining better
cytotoxicity. Based on this, different C-3 amino alkyl derivatives of GA (compounds 4–11, Scheme 1,
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were synthesized by Csuk et al. [27]. The antitumor activity of these derivatives was tested in a panel
of 15 human cancer cell lines by a SRB assay. In the SRB assay, all of the amino compounds 4–11
showed significantly improved activity compared with GA. Among them, it could be observed that a
diaminohexyl chain with seven carbon atoms was the most active derivative, about 60 times more so
than GA. The antitumor activity was changed with the change of the carbon number. The results also
showed that the esterification at C-30 (compound 3, Scheme 1) could improve the antitumor efficacy
compared with compound 2. The same result could be found from previous findings and parallel
results [28–32]. Besides, the introduction of nitrogen-containing substituents to the ring-A seemed to
improve the anti-proliferative effect of GA derivatives. The cytotoxicity (IC50 values in µmol) of 1–11
in a panel of various cancer cell lines is summarized in Table 1.
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Scheme 1. Synthesis of the GA amino alkyl derivatives 1–11. Reagents and conditions: (a) K2CO3,CH3I, 
DMF, 24 h, 25 °C; (b) ClCH2COCl, Et3N, THF (or CH2Cl2), 25 °C, 12 h; (c) H2N-(CH2)n-NH2, DMF, 
K2CO3, 12 h, 25 °C. 
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Cell Lines GA 1 2 3 4 5 6 7 8 9 10 11 
518A2 83.92 27.54 25.43 5.24 3.79 2.55 2.02 1.09 1.27 3.49 3.12 4.33 
8505C 86.50 26.07 26.08 15.86 3.37 2.12 1.78 1.68 2.13 3.35 6.18 7.60 
A253 80.78 19.42 25.54 6.19 3.64 2.56 2.27 1.12 1.74 3.01 4.65 5.48 
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DLD-1 81.21 26.12 17.36 6.13 4.39 2.66 2.40 0.91 1.25 3.96 4.50 5.53 
FADU 84.55 23.41 23.56 12.44 5.57 3.51 3.30 1.78 2.20 4.26 5.54 5.65 

HCT-11 78.83 22.10 14.41 5.13 4.30 2.41 2.19 1.17 1.70 3.53 3.44 3.86 
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HT-29 80.09 27.54 16.91 5.34 2.90 1.69 1.28 0.59 0.86 2.76 2.06 2.73 
LIPO 81.44 20.47 25.39 14.55 3.89 2.57 1.93 1.59 1.44 4.36 5.48 6.93 

MCF-7 84.70 22.14 25.22 6.69 3.55 2.45 1.79 1.17 0.98 3.89 3.33 2.68 
SW1736 76.93 34.87 16.42 3.14 6.05 3.30 2.69 1.61 2.24 4.09 3.30 3.73 
SW480 86.80 16.08 25.91 8.92 3.68 2.54 1.91 2.25 2.24 3.93 5.74 4.73 

Similarly, in order to change the polarity pattern of GA, Schwarz et al. [33] prepared a series of 
novel derivatives 12–32 by introducing an extra amino group into C-3 and esterifying at C-30 (Scheme 
2). These derivatives showed a higher antitumor activity and a better selectivity towards tumor cells 
compared with GA on 15 different human tumor cell lines and mouse embryonic fibroblasts 
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Scheme 1. Synthesis of the GA amino alkyl derivatives 1–11. Reagents and conditions: (a) K2CO3,CH3I,
DMF, 24 h, 25 ◦C; (b) ClCH2COCl, Et3N, THF (or CH2Cl2), 25 ◦C, 12 h; (c) H2N-(CH2)n-NH2, DMF,
K2CO3, 12 h, 25 ◦C.

Table 1. Cytotoxicity (IC50 values in µM) of 1–11 in a panel of various cancer cell lines.

Cell Lines GA 1 2 3 4 5 6 7 8 9 10 11

518A2 83.92 27.54 25.43 5.24 3.79 2.55 2.02 1.09 1.27 3.49 3.12 4.33
8505C 86.50 26.07 26.08 15.86 3.37 2.12 1.78 1.68 2.13 3.35 6.18 7.60
A253 80.78 19.42 25.54 6.19 3.64 2.56 2.27 1.12 1.74 3.01 4.65 5.48

A2780 74.57 25.54 23.77 6.01 4.39 2.43 2.00 1.36 1.14 2.80 3.30 3.63
A549 82.76 23.50 24.80 8.39 5.15 3.31 2.52 1.59 2.21 4.08 2.23 5.16

DLD-1 81.21 26.12 17.36 6.13 4.39 2.66 2.40 0.91 1.25 3.96 4.50 5.53
FADU 84.55 23.41 23.56 12.44 5.57 3.51 3.30 1.78 2.20 4.26 5.54 5.65

HCT-11 78.83 22.10 14.41 5.13 4.30 2.41 2.19 1.17 1.70 3.53 3.44 3.86
HCT-8 78.85 24.36 13.39 3.97 2.37 1.51 1.38 0.62 0.89 2.92 2.42 4.07
HT-29 80.09 27.54 16.91 5.34 2.90 1.69 1.28 0.59 0.86 2.76 2.06 2.73
LIPO 81.44 20.47 25.39 14.55 3.89 2.57 1.93 1.59 1.44 4.36 5.48 6.93

MCF-7 84.70 22.14 25.22 6.69 3.55 2.45 1.79 1.17 0.98 3.89 3.33 2.68
SW1736 76.93 34.87 16.42 3.14 6.05 3.30 2.69 1.61 2.24 4.09 3.30 3.73
SW480 86.80 16.08 25.91 8.92 3.68 2.54 1.91 2.25 2.24 3.93 5.74 4.73

Similarly, in order to change the polarity pattern of GA, Schwarz et al. [33] prepared a series
of novel derivatives 12–32 by introducing an extra amino group into C-3 and esterifying at C-30
(Scheme 2). These derivatives showed a higher antitumor activity and a better selectivity towards
tumor cells compared with GA on 15 different human tumor cell lines and mouse embryonic fibroblasts
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(NiH3T3). Compound 24 substituted with glycine and esterified with an i-propyl moiety was the
most active compound. As discussed above for antitumor activity, in this case, the esterification at
C-30 also resulted in improved activity against tumor cell lines compared with GA. The most active
compound among the C-30 ester derivatives was the benzyl ester (compound 14) showing IC50 value
between 6.15–23.82 µM. The decrease of the IC50 value paralleled the size and lipophilic character of
the alkyl chain of the esters. From the SAR of these compounds, it was concluded that the introduction
of an extra amino acid moiety at C3-OH or an alkyl group at C30-COOH could enhance the antitumor
activity. There seemed to be no effect by adding a stereogenic center in the side chain according to the
results. Besides, the amines and their respective ammonium salts might be considered bioequivalent
in biological activity. The cytotoxicity (IC50 values in µM) of 12–32 in a panel of various cancer cell
lines is summarized in Table 2.
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Scheme 2. Synthesis of the GA amino acid derivatives 12–32. Reagents and conditions: (a) K2CO3, alkyl
halides, DMF, 24 h, 25 ◦C; (b) These compounds were synthesized by DCC mediated esterification of
N-Boc protected amino acids followed by their deportation using TFA in dry DCM (for the amines) or
by treating them with dry HCl gas in DCM (for the ammonium hydrochlorides).

Table 2. Cytotoxicity (IC50 values in µM) of 12–32 in a panel of various cancer cell lines.

Compound 8505C A253 A2780 A549 DLD-1 LIPO Average

GA 86.50 ± 4.20 80.78 ± 4.04 74.57 ± 3.73 82.76 ± 4.14 81.21 ± 4.06 81.44 ± 4.07 81.4 ± 4.07
12 24.58 ± 1.23 25.04 ± 1.25 26.96 ± 1.35 22.74 ± 1.14 28.14 ± 1.41 27.66 ± 1.38 24.39 ± 1.22
13 14.24 ± 0.71 15.76 ± 0.79 24.95 ± 1.25 14.41 ± 0.72 27.61 ± 1.38 15.93 ± 0.80 19.21 ± 0.96
14 8.10 ± 0.41 10.67 ± 0.54 20.32 ± 1.18 6.15 ± 0.31 22.69 ± 1.13 11.54 ± 0.80 13.76 ± 0.69
15 >30 >30 >30 >30 >30 >30 >30
16 >30 >30 >30 >30 >30 >30 >30
17 >30 >30 >30 >30 >30 >30 >30
18 7.45 ± 0.37 6.26 ± 0.31 5.99 ± 0.30 6.42 ± 0.32 8.59 ± 0.43 7.54 ± 0.38 7.04 ± 0.35
19 4.31 ± 0.22 3.61 ± 0.18 2.98 ± 0.15 2.77 ± 0.14 4.49 ± 0.22 4.30 ± 0.22 3.74 ± 0.19
20 2.55 ± 0.13 2.50 ± 0.13 1.72 ± 0.09 2.40 ± 0.12 2.51 ± 0.13 2.52 ± 0.13 2.37 ± 0.12
21 5.32 ± 0.27 3.59 ± 0.18 3.90 ± 0.20 5.39 ± 0.27 5.61 ± 0.28 4.32 ± 0.22 4.69 ± 0.23
22 3.87 ± 0.19 2.33 ± 0.12 2.59 ± 0.13 3.43 ± 0.17 3.72 ± 0.19 2.74 ± 0.14 3.11 ± 0.16
23 2.32 ± 0.12 2.23 ± 0.11 1.77 ± 0.09 2.18 ± 0.11 2.74 ± 0.14 2.38 ± 0.12 2.27 ± 0.11
24 2.76 ± 0.14 2.01 ± 0.10 2.24 ± 0.11 2.65 ± 0.13 2.54 ± 0.13 2.74 ± 0.14 2.49 ± 0.12
25 3.49 ± 0.17 3.51 ± 0.18 2.08 ± 0.10 3.43 ± 0.17 5.54 ± 0.28 3.53 ± 0.18 3.60 ± 0.18
26 1.96 ± 0.10 2.68 ± 0.13 1.31 ± 0.07 1.78 ± 0.09 3.52 ± 0.18 3.49 ± 0.17 2.46 ± 0.12
27 4.79 ± 0.24 5.03 ± 0.25 3.54 ± 0.18 5.07 ± 0.25 4.54 ± 0.23 4.81 ± 0.24 4.63 ± 0.23
28 3.10 ± 0.16 3.49 ± 0.17 2.85 ± 0.14 3.51 ± 0.18 5.02 ± 0.25 3.57 ± 0.18 3.59 ± 0.18
29 3.19 ± 0.16 3.05 ± 0.15 1.73 ± 0.09 2.76 ± 0.14 4.54 ± 0.23 3.25 ± 0.16 3.09 ± 0.15
30 >30 >30 >30 >30 >30 >30 >30
31 >30 >30 >30 >30 >30 >30 >30
32 >30 >30 >30 >30 >30 >30 >30

In subsequent research Csuk et al. conducted another study in a similar manner, producing a
series of derivatives 33–44 substituted with aspartic and glutamic acid (Scheme 3) [34]. The glutamic
acid derivative 36 with a benzyl-protected side chain was the most active derivative among this series,
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showing an IC50 value between 1.27–2.33 µM. Meanwhile, compound 36 displayed an extraordinary
selectivity (Mean F = 23) in comparison with other compounds. The derivatives carrying a free amino
group and an unprotected carboxylic group such as compounds 39 and 40 turned out to be inactive
(IC50 > 100 µM). The cytotoxicity (IC50 values in µM) of 33–40, 43, 44 in a panel of various cancer cell
lines is summarized in Table 3.
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As mentioned, introduction an extra amino group into C-3 and esterification at C-30 could
improve the antitumor activity of GA derivatives. To further increase the cytotoxicity and improve the
selectivity, some other amino acid derivatives of glycyrrhetinic acid 45–59 (Scheme 4) were designed
and synthesized in a similar way by Csuk et al. [35]. The derivatives possessing short side chains
like the alanyloxy or sarcosyloxy moiety, turned out to exhibit higher cytotoxic activity, for example,
compound 46 showed IC50 values between 1.83 and 3.42 µM. However compounds with a more
lipophilic side chains, such as compound 50, 51 showed decreased cytotoxic effects compared with
GA–Me in the SRB assay. These results indicated that the structure of the amino acid side chain
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affected the cytotoxicity most. The cytotoxicity (IC50 values in µM) of 45–59 on a panel of various
cancer cell lines is summarized in Table 4.
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It was reported that the introduction of an extra hydrophilic sugar moiety into betulinic acid
could increase its cytotoxicity [36]. Inspired by this, Schwarz et al. [37] prepared some GA glycoside
structural analogues 60–66 (Scheme 5) utilizing methyl glycyrrhetinate (compound 1, Scheme 1) as
starting material.
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Their antitumor activity was evaluated in a SRB assay on various tumor cell lines. These
derivatizations did not result in increased cytotoxicity, with the exception of compound 64 which
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showed IC50 values as low as 9.48 µM on breast carcinoma MCF-7 cells, which was twice the activity
of GA–Me. It seemed that there was no correlation between the monosaccharide structure and the
cytotoxicity, and similar results could also be found in [36,38,39]. The cytotoxicity (IC50 values in µM)
of 60–66 in a panel of various cancer cell lines is summarized in Table 5.

Table 5. Cytotoxicity (IC50 values in µM) of 60–66 in a panel of various cancer cell lines (NA = not active).

Cell Lines 60 61 62 63 64 65 66 GA–Me

SW1736 NA NA NA. 23.87 ± 1.3 11.18 ± 0.9 21.38 ± 1.9 NA 34.87 ± 1.2
MCF-7 NA 16.7 ± 1.4 19.60 ± 1.4 NA 9.48 ± 1.4 20.11 ± 1.3 NA 22.14 ± 0.9
LIPO NA NA NA 28.45 ± 2.1 NA 23.23 ± 1.3 NA 20.47 ± 1.1

DLD-1 NA NA NA NA NA 23.18 ± 1.7 NA 26.12 ± 1.0
A253 NA NA NA 27.25 ± 1.8 13.16 ± 0.9 19.70 ± 1.4 NA 19.42 ± 1.1
8505C NA NA NA NA 21.97 ± 0.6 22.77 ± 1.4 NA 26.07 ± 1.3
518A2 NA NA NA 28.92 ± 2.0 25.95 ± 0.8 23.26 ± 1.2 NA 27.54 ± 1.0

NiH3T3 NA NA NA NA NA 23.45 ± 0.1 NA 22.81 ± 0.6

Lai et al. [40] designed and synthesized a series of novel furan-based nitric oxide (NO)-releasing
derivatives of GA 68–74 (Scheme 6) as antitumor agents. According to the MTT assay results,
compounds 68–74 displayed increased anti-HCC (HepG2, BEL-7402) activity (IC50 2.90–36.52 µM on
HepG2, IC50 2.94–19.92 µM on BEL-7402) compared with GA (IC50 > 50 µM on HepG2, BEL-7402).
The most active compound was 74, showing IC50 values as low as 2.90 µM, 2.94 µM on HepG2
and BEL-7402, respectively. These findings might provide more information for the design of
new chemotherapeutic reagents for the intervention on human HCC in the clinic. The cytotoxicity
(IC50 values in µM) of 68–74 in a panel of various cancer cell lines is summarized in Table 6.
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Scheme 6. Synthesis of the GA furan-based nitric oxide (NO)-releasing derivatives 67–74. Reagents
and conditions: (a) CH3OH, p-TSA; (b) succinic anhydride, DMAP, dry DCM, 15 h; (c) phenylsulfonyl
furans, DCC, DMAP, dry DCM, 24 h.

Table 6. Cytotoxicity (IC50 values in µM) of 68–74 in a panel of various cancer cell lines.

Cell Lines GA 68 69 70 71 72 73 74

HepG2 >50 18.18 13.41 26.03 36.52 15.67 7.90 2.90
BEL-7402 >50 7.85 9.22 6.03 8.20 19.92 7.37 2.94

After forming long chains with ester bonds at C-3, Kumar Yadav et al. [41] found the GA-1, GA-2
and GA-3 (Figure 2) expressed significant antitumor activity against the human lung cancer cell line
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A-549 with pred. log IC50 = 1.182, 1.044, 1.274 µM according to the quantitative structure-activity
relationship (QSAR) model. The cytotoxicity (IC50 values in µM) of GA-1, GA-2 and GA-3 on A-549 is
summarized in Table 7.Molecules 2017, 22, 924 8 of 24 
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Table 7. Cytotoxicity (IC50 values in µM) of GA-1, GA-2 and GA-3 in A-549.

Cell Lines GA-1 GA-2 GA-3

A549 1.182 1.044 1.274

2.1.2. Structural Modifications at the Skeleton of Ring-A

Previous studies revealed that some triterpenoid derivatives which contained a
2-cyano-1-en-3-one functionality on ring-A, such as the oleanoic acid derivatives CDDO (Figure 3)
and its methyl ester CDDO-Me (Figure 3), exerted potent cytotoxic activity in various cancer cell
lines [42,43]. Similar results were also obtained with GA and betulinic acid derivatives containing
a 2-cyano-1-en-3-one function, for example β-CDODA-Me [44,45] (Figure 3). Inspired by this,
Chadalapaka et al. [31] synthesized some β-CDODA-Me analogs 75–79 (Scheme 7) with different
electronegative 2-substituents including iodo, cyano, trifluoromethyl, dimethylphosphonyl and
methanesulfonyl groups. The cell culture studies showed that the anti-proliferative activity of methyl
derivative (β-CDODA-Me) on bladder and pancreatic cancer cells was more potent than that of the
free acid (β-CDODA). This was consistent with a previous report [46]. Among the derivatives, 2-cyano
and 2-trifluoromethyl ones showed the highest anti-proliferation activity. However, compound 79 and
compound 77 were relatively inactive, showing higher IC50 values ranging from 3.34 to 11.97 µM
than the corresponding 2-cyano and 2-trifluoromethyl derivatives on the four cell lines. It could be
seen that their relative potencies were dependent on the cell context: 2-trifluoromethyl derivative
(compound 78) (IC50 0.38 µM in KU7, IC50 0.82 µM in Panc-1, IC50 1.14 µM in Panc-28) was more
active than β-CDODA-Me (IC50 1.59 µM in KU7, IC50 1.22 µM in Panc-1, IC50 1.80 µM in Panc-28),
whereas β-CDODA-Me was more active in 253JB-V cells, showing IC50 values as low as 0.25 µM,
lower than that of the compound 78 (IC50 0.67 µM). The results provided a new way for the structural
modifications of GA. The cytotoxicity (IC50 values in µM) of 76–79 in a panel of various cancer cell
lines is summarized in Table 8.
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Et2O, 0 ◦C; (b) IBX, DMSO, 21 h, 80–85 ◦C; (c) iodine, pyridine, tetrahydrofuran; (d) CuCN, NMP, 2 h,
130 ◦C; (e) CH3SO2Na, CuI, DMSO, 20 h, 120–125 ◦C; (f) CuI, methyl-2,2-difluoro-2-(fluorosulfonyl)
acetate, DMF/HMPT, 20 h, 70 ◦C; (g) dimethyl phosphite, Cs2CO3, N,N-dimethylethylenediamine,
toluene, 26 h, 95–100 ◦C.

Table 8. Cytotoxicity (IC50 values in µM) of 76–79 and β-CDODA-Me in a panel of various cancer
cell lines.

Compound 253JB-V KU7 Panc-1 Panc-28

76 2.67 3.04 4.08 12.75
77 11.97 3.34 7.69 9.75
78 0.67 0.38 0.82 1.14
79 7.90 3.73 6.11 8.14

β-CDODA-Me 0.25 1.59 1.22 1.80

In order to alter the lipophilicity of GA, several functional modifications were carried out at the
C-2 and/or C-3 positions in ring-A by Csuk et al. [46] and a series of derivatives 80–97 (Scheme 8) were
obtained. Their cytotoxicity was investigated on eight different human tumor cell lines. According
to the SRB assays, most of the derivatives showed lower antitumor activity than GA. Acetylated GA
derivatives 80–82 and oxidized GA derivatives 83–85 did not show any significant antitumor activity.
Deoxidized GA derivatives 86 and 97 were relatively active, showing IC50 < 20 µM in several tested
cancer cell lines. The cytotoxicity (IC50 values in µM) of 80–95, 97 in a panel of various cancer cell lines
is summarized in Table 9.

In the search of new GA derivatives as antitumor agents, Jun et al. [47] employed GA as
precursor and synthesized a series of GA derivatives 98–112 (Scheme 9) with major changes to ring-A.
The preliminary pharmacological study showed compound 98, 100, 101, 105, 106, 110 with hydroxyl
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groups displayed some cytotoxicity on HepG-2. The derivative 105 with two hydroxyl groups at C-2
and C-3 displayed more potent activity than GA showing IC50 as low as 0.22 µM on HepG-2.

It seemed that the number and location of hydroxyl groups in ring-A had an important influence
on the antitumor activity of GA derivatives. The cytotoxicity (IC50 values in µM) of 98–112 on HepG-2
os summarized in Table 10.
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Table 9. Cytotoxicity (IC50 values in µM) of 80–95, 97 in a panel of various cancer cell lines.

Compound 518A2 8505C A2780 A549 DLD-1 LIPO MCF-7 SW1736

80–85 >30 >30 >30 >30 >30 >30 >30 >30
86 18.33 19.28 28.83 >30 >30 28.74 21.87 16.56
87 29.82 27.69 14.84 26.62 29.56 24.80 28.68 27.00
88 >30 >30 >30 >30 >30 >30 >30 13.24
89 >30 29.42 >30 >30 >30 >30 >30 29.40

90–92 >30 >30 >30 >30 >30 >30 >30 >30
93 >30 >30 14.95 >30 >30 >30 >30 19.14

94, 95 >30 >30 >30 >30 >30 >30 >30 >30
97 23.69 24.30 10.39 >30 >30 25.52 >30 16.98
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reagent; (b) HCO2Et, NaOMe; (c) NaOMe, H2O2; (d) t-BuOK/t-BuOH, n-BuONO; (e) NaBH4; (f) p-TsCl;
(g) CH3I, K2CO3; (h) LiBr, Li2CO3; (i) m-CPBA, K2CO3; (j) HClO4; (k) KOH; (l) m-CPBA, NaHCO3;
(m) NaOMe; (n) NH2OH·HCl; (o) p-TsCl, DMAP.
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Table 10. Cytotoxicity (IC50 values in µM) of 98–112 in a panel of various cancer cell lines.

Cell Lines 98 99 100 101 102 103 104 105

HepG-2 61.70 >100 71.83 47.12 >100 >100 >100 0.22
106 107 108 109 110 111 112

HepG-2 59.98 >100 >100 >100 88.68 >100 >100

2.2. Structural Modifications on Ring-C

The studies on structural modifications at ring-C were mainly focused on the carbonyl function
located at C-11. According to Fiore and Salvi [48,49], a ketone group at position C-11 was the primary
cause for the apoptotic activity of GA derivatives, but the research conducted by Csuk et al. [50]
showed that there was no direct relation between the presence of the C-11 ketone group and the
apoptotic activity of the compounds. Also, esterification at C-30 was important, as mentioned above.
Six compounds (Scheme 10) were tested in a SRB assay for cytotoxicity screening on 12 tumor cell lines
and mouse embryonic fibroblasts (NIH3T3) which showed that GA and compound 113 nearly had the
same activity on tumor cells, but after esterification at C-30, compounds 1 and 114 showed a relatively
high cytotoxicity against the tested tumor cell lines. For the fibroblasts and most of the tumor cell lines,
the toxicity of compound 114 was reduced, while the cytotoxic effect on the tumor cells of compounds
12 and 115 was similar to their effect on NIH3T3 cells. However, according to Lin et al. [51], when
GA was converted into 11-DOGA, it showed higher toxicity toward gastric cancer cells both in vivo
and in vitro, so the relation between the existence of the C-11 ketone group and the apoptotic activity
should be further studied. The cytotoxicity (IC50 values in µM) of 1, 12, 113–115 in a panel of various
cancer cell lines is summarized in Table 11.
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Scheme 10. Synthesis of ring C modified GA derivatives 113–115. Reagents and conditions: (a) Zinc
dust, conc. HCl, dioxane, 25 ◦C, 24 h; (b) MeI, K2CO3, DMF, 25 ◦C, 24 h; (c) BH3-THF, THF, citric acid,
25 ◦C, 20 h; (d) EtI, K2CO3, DMF, 25 ◦C, 24 h; (e) BH3-THF, THF, Na2CO3, 25 ◦C, 4 days.

Table 11. Cytotoxicity (IC50 values in µM) of 1, 12, 113–115 in a panel of various cancer cell lines.

Cell Lines GA 113 1 114 12 115

518A2 83.92 71.49 27.54 34.54 25.23 51.52
8505C 86.50 78.52 26.07 33.88 24.58 52.80
A2780 74.57 62.78 25.54 23.58 26.96 57.01
A431 79.58 86.13 25.28 33.55 23.45 46.55
A549 82.76 79.13 23.50 31.59 22.74 48.97

DLD-1 81.21 90.50 26.12 31.73 28.14 52.80
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Table 11. Cont.

Cell Lines GA 113 1 114 12 115

HCT-116 78.83 87.70 22.10 31.82 21.58 47.78
HCT-8 78.85 88.76 24.36 31.34 43.42 44.32
HT-29 80.09 90.30 27.54 23.89 22.14 44.32
LIPO 81.44 73.88 20.47 34.81 27.66 52.80

MCF-7 84.70 90.19 22.14 34.37 18.61 48.97
SW1736 76.93 72.47 34.87 32.35 13.37 45.48
NIH3T3 18.52 68.70 22.81 42.22 23.66 43.16

2.3. Structural Modifications on Ring-E

The C-30 position in GA has been widely exploited and hundreds of derivatives have been
reported in the literature. To increase the antitumor activity of GA and to obtain potent cytostatic
compounds, Lallemand et al. [52] synthesized a series of GA amide derivatives 116–130 (Scheme 11)
by coupling GA with various amines. The antitumor activity screening showed that compound 127
appeared to be the most potent one, with single-digit micro molarity IC50 values in a panel of eight
cancer cell lines. Further pharmacokinetic studies by the same group suggested that compound 127
was rapidly distributed (t1/2dist of ~3 min) but slowly eliminated (t1/2elim = ~77 min). This study
was helpful in producing this kind of GA antitumor derivatives.
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Scheme 11. Synthesis of ring E modified GA derivatives 116–130. Reagents and conditions: (a) 1. DCC,
HOBt, DIPEA, DMF, r.t., 30 min; 2. R1NH2, r.t., overnight; (b) 1. DCC, HOBt, DIPEA, DMF, r.t., 30
min; 2. H2N(CH2)2NHBoc, r.t., overnight; (c) TFA, DCM, 0 ◦C, 3 h; (d) DMAP, RCOCl, DCM; (e) THF,
RNCO, r.t., 20 h; (f) THF, RNCS, r.t., 20 h; (g) Jones reagent, acetone, 0 ◦C, 45 min.
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Similarly, Shi et al. [53] synthesized biotinylated GA (BGA) by introducing biotin into the C-30
carboxyl of GA, and evaluated its antitumor effects on mouse B16 melanoma cells and BEL 7402 cells.
The result showed that the biotin group in BGA had no influence on the antitumor effects of GA.
The cytotoxicity (IC50 values in µM) of 116–130 in a panel of various cancer cell lines is summarized in
Table 12.

Table 12. Cytotoxicity (IC50 values in µM) of 116–130 in a panel of various cancer cell lines.

Compound A549 SKMEL T98G HS683 U373 PC3 MCF7 816F10

GA >100 92 85 84 83 80 76 37
116 52 >100 91 59 43 34 34 37
117 40 >100 >100 57 75 43 38 31
118 33 82 46 56 42 33 31 32
119 43 60 73 63 57 41 37 48
120 31 >100 >100 58 32 31 59 30
121 47 49 62 38 55 53 28 36
122 63 42 77 58 75 72 46 31
123 37 38 54 36 37 47 30 31
124 68 35 77 67 76 72 27 31
125 28 37 35 31 29 30 25 28
126 29 49 30 28 30 32 28 31
127 7 9 12 6 6 8 4 4
128 29 65 71 42 42 46 42 41
129 31 38 25 8 29 9 30 34
130 38 33 35 36 35 39 30 33

Guided by previous results indicating that incorporation of a stable nitroxyl radical or amino
acids into antitumor molecules could increase their activity and decrease their toxicity [34,54,55],
Liu et al. [56] designed and synthesized a series of GA derivatives 131–140 (Scheme 12) by introducing
a nitroxyl functionality and amino acid segments into GA.
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r.t., overnight; (c) EDCI/HOBt/Et3N DMF, r.t., overnight.
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The in vitro cytotoxicity screening showed that compounds 131–140 with only various free
amino acids at C-30 showed no significant cytotoxicity (GI50 > 70 µM). However, incorporation of a
piperidine (compounds 141–150) or pyrroline (compounds 151–155) nitroxyl radical at the terminus
of the C-30 side chains could significantly enhance the cytotoxic effects. Among the new derivatives,
compound 150 with a tryptophan amino moiety and a piperidine nitroxyl radical showed the greatest
cytotoxicity (GI50 13.7–15.0 µM), five-fold more potent than GA. These results suggested that the
incorporation of a nitroxyl functionality and amino acid segments into the C-30 carboxyl group of GA
might contribute to improve its cytotoxicity. The cytotoxicity (GI50 values in µM) of 141–155 in a panel
of various cancer cell lines is summarized in Table 13.

Table 13. Cytotoxicity (GI50 values in µM) of 141–155 in a panel of various cancer cell lines.

Compound A549 DU145 KB Kbvin

GA 61.2 ± 2.33 64.9 ± 0.505 61.2 ± 0.118 62.3 ± 1.41
141 >70 >70 >70 >70
142 >70 >70 >70 >70
143 19.4 ± 0.909 19.3 ± 0.292 14.6 ± 0.448 14.9 ± 0.471
144 34.2 ± 1.88 28.9 ± 0.921 17.5 ± 0.927 18.6 ± 0.931
145 23.3 ± 0.304 21.7 ± 0.402 16.9 ± 0.501 19.2 ± 0.497
146 44.0 ± 0.057 45.5 ± 0.666 39.9 ± 0.618 47.6 ± 1.06
147 18.3 ± 0.373 17.4 ± 0.619 15.3 ± 0.469 19.5 ± 1.33
148 >70 >70 >70 >70
149 19.6 ± 1.60 22.0 ± 0.546 16.0 ± 0.368 17.0 ± 0.377
150 15.0 ± 0.689 15.0 ± 0.363 14.2 ± 0.670 13.7 ± 1.25
151 46.7 ± 1.90 46.2 ± 0.697 45.5 ± 1.04 46.9 ± 0.230
152 46.1 ± 0.653 45.2 ± 1.27 41.3 ± 0.346 44.2 ± 0.280
153 19.0 ± 1.13 22.5 ± 0.606 17.8 ± 0.193 16.6 ± 0.591
154 34.5 ± 0.187 39.5 ± 1.05 30.7 ± 0.480 27.3 ± 0.338
155 41.5 ± 1.83 43.2 ± 1.61 38.4 ± 1.15 38.5 ± 0.956

Inspired by previous studies indicating that esterification of glycyrrhetinic acid (GA) with
dehydrozingerone (DZ) resulted in a novel cytotoxic GA–DZ conjugate, Tatsuzaki et al. [57]
synthesized a series of triterpenoid—dehydrozingerone derivatives by combining DZ analogs with
different triterpenoids, such as oleanoic acid (OA), ursolic acid (UA), glycyrrhetinic acid (GA).

The in vitro antitumor assay indicated that most of the GA–DZ conjugates 156–166 (Scheme 13)
showed significant antitumor activity. In particular, compounds 156–158 exhibited prominent
cytotoxicity against LN-Cap, 1A9, and KB cells with ED50 values of 0.6, 0.8 and 0.9 µM. However,
similar conjugates between DZ and OA or UA were inactive suggesting that the GA component was
critical for activity. The cytotoxicity (ED50 values in µM) of 156–166 in a panel of various cancer cell
lines is summarized in Table 14.
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Table 14. Cytotoxicity (ED50 values in µM) of 156–166 in a panel of various cancer cell lines.

Compound KB KB-VIN A549 1A9 HCT-8 ZR-751 PC-3 DU-145 LN-Cap

GA >21 >21 NA >21 19.5 NA >21 >21 >21
DZ NA NA >52 33.9 >52 >52 >52 >52 51
156 1.6 2.5 2 0.9 1.7 2.8 1.4 3.1 0.6
157 0.8 2.8 2.2 0.8 1.9 3 1.1 3.6 2.8
158 0.9 1.9 2.8 1.6 2 1.9 2.8 9.9 6.5
159 6.2 >15 15.5 5.9 2.6 >15 7.4 >15 1.9
160 1.8 1.7 1.7 1.1 2.7 5.2 3.3 5.8 1.1
161 2.9 13.2 3 1.8 4.9 8.8 3.5 >15 6.8
162 3 8.7 3.2 1.3 2.2 2.7 1.6 2.7 4.4
163 NA NA >14 >14 >14 NA >14 >14 >14
164 9.9 NA >14 13.3 >14 >14 14.1 >14 14.1
165 NA NA NA >14 >14 NA 14.1 >14 14.1
166 >14 >14 NA NA >14 NA >14 13 >14

In the search of new GA derivatives as antitumor agents, Csuk et al. [58] performed some
variations at C-30 of GA, including esterification, the formation of amides and a nitrile. The antitumor
evaluation showed the amide derivatives like compounds 167–169 (Scheme 14) showed no cytotoxic
activity at 30 µM concentration, but nearly all the ester derivatives like compounds 170, 172–174
(Scheme 15) exhibited high cytotoxic activity. In particular, compound 172 exhibited potent cytotoxic
activity on SW1736 cells (IC50 = 1.88 µM), while compound 175 esterified at C-30 and etherified at
C-3 almost showed no cytotoxic activity (IC50 > 30 µM) against seven tested human tumor cell lines.
This suggested that not only the type of the chemical bonding but also the position of substituent
groups affects the antitumor activity. This study greatly enriched the modification strategy of the
carbonyl group. The cytotoxicity (IC50 values in µM) of 167–175 in a panel of various cancer cell lines
is summarized in Table 15.
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Table 15. Cytotoxicity (IC50 values in µM) of 167–175 in a panel of various cancer cell lines.

Compound 518A2 8505C A253 A549 DLD-1 Lipo SW1736

GA 83.92 86.50 80.78 82.76 81.21 81.44 76.93
167 >30 >30 >30 >30 >30 >30 >30
168 >30 >30 >30 >30 >30 >30 >30
169 >30 >30 >30 >30 >30 >30 >30
170 15.19 15.59 15.89 20.27 22.98 15.46 19.87
171 28.99 >30 >30 >30 >30 >30 28.64
172 21.00 8.82 10.97 4.28 23.09 11.47 1.88
173 14.91 11.61 13.57 19.16 14.88 12.77 16.36
174 15.33 15.59 15.89 20.27 22.98 15.46 19.87
175 >30 >30 >30 >30 >30 >30 >30

2.4. Structural Modifications of Multiple Rings

In an attempt to improve the pharmacological activity of GA, structural modification at multiple
rings has been reported. Structural modifications of multiple rings in GA has focused on the A, C,
and E rings, especially at A and E ring. Shen et al. [59,60] reported syntheses and antitumor activity
of some GA derivatives by simultaneously modifying the C-3 hydroxyl group and the C-30 carboxyl
group in GA. They found when the carbon chain of the linking group was 2 to 4, the activity increased
as the carbon chain was lengthened, while when the carbon chain length of the linking group was 5,
the activity decreased. Meanwhile, they also found that when there were nitrate moieties at C-3 and
C-30 simultaneously; the antitumor activity of the compounds was enhanced.

Starting from GA, Li et al. [61] synthesized a series of GA derivatives 176–199 (Scheme 16) in
which the 30-carboxyl group was modificated by ferulic acid analogs and the 3-hydroxyl group was
coupled with amino acids. The MTT assay results showed that most of the derivatives exhibited much
higher antitumor activity than GA against cancer cell lines (MCF-7 cells, MDA-MB-231) and lower
cytotoxicity against normal cells (hTERT-RPE1 cells).
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Among the derivatives, compound 193 was the most active one (IC50 1.88 + 0.20 µM for MCF-7;
IC50 1.37 + 0.18 µM for MDA-MB-231). The results displayed that introduction of a lipophilic fragment
or amino acid groups into C-3 and C-30 might increase the antitumor activity. The cytotoxicity
(IC50 values in µM) of 176–199 in a panel of various cancer cell lines is summarized in Table 16.

Table 16. Cytotoxicity (IC50 values in µM) of 176–199 in a panel of various cancer cell lines.

Compound MCF-7 MDA-MB-231 hTERT-RPE1

GA 75.66 ± 1.52 84.70 ± 1.73 63.41 ± 1.07
176 13.64 ± 0.93 5.03 ± 0.82 17.32 ± 1.21
177 22.46 ± 1.26 8.14 ± 0.76 22.80 ± 0.97
178 20.29 ± 1.47 14.38 ± 0.52 29.63 ± 1.16
179 24.45 ± 1.36 14.46 ± 0.58 28.41 ± 0.87
180 8.54 ± 0.67 7.31 ± 0.16 18.59 ± 0.54
181 19.27 ± 1.01 9.41 ± 1.03 21.11 ± 0.73
182 14.90 ± 0.75 20.84 ± 1.20 24.09 ± 0.88
183 19.30 ± 0.98 23.15 ± 1.07 22.88 ± 0.68
192 6.00 ± 0.43 3.52 ± 0.61 10.36 ± 0.80
193 1.88 ± 0.20 1.37 ± 0.18 4.93 ± 0.36
194 8.62 ± 0.23 5.36 ± 0.44 16.28 ± 0.51
195 8.45 ± 0.32 3.49 ± 0.61 12.33 ± 0.46
196 7.24 ± 0.30 6.43 ± 0.84 8.48 ± 0.73
197 6.02 ± 0.35 6.27 ± 0.24 6.33 ± 0.19
198 2.65 ± 0.12 2.31 ± 0.65 5.65 ± 1.02
199 2.42 ± 0.23 1.86 ± 0.29 7.08 ± 0.73

In order to further improve the antitumor activity of GA, Song et al. [62] designed and synthesized
a series of novel GA derivatives by modifying the structure at the C-3 hydroxyl or C-11 carbonyl or
C-30 carboxyl.

The biological activity evaluation showed that compound 203 (Scheme 17) exhibited the most
promising antitumor activity against tumor cell lines MDA-MB-231 cells, DU-145 cells and Hep-G2
cells (IC50 10.01 µM for HepG2, 11.96 µM for DU-145 and 17.8 µM for MDA-MB-231), which was much
better than starting material GA (IC50 values of 74.35, 69.40, 72.65 µM, respectively). What’s more,
compound 200 with linker n = 2 and compound 205 with linker n = 4 also showed higher antitumor
activity than GA on all tested tumor cell lines. But other compound, such as 201, 202, 204, showed
weak anti-proliferative effect due to their poor solubility. The cytotoxicity (IC50 values in µM) of
200–206, 209, 210 in a panel of various cancer cell lines is summarized in Table 17.

Table 17. Cytotoxicity (IC50 values in µM) of 200–206, 209 and 210 in a panel of various cancer cell lines.

Compound HepG2 DU-145 MDA-MB-231

GA 74.35 ± 2.03 69.40 ± 2.37 72.65 ± 1.67
200 >100 21.59 ± 3.22 24.66 ± 2.71
201 >100 >100 89.40 ± 2.85
202 >100 >100 >100
203 10.01 ± 2.29 11.96 ± 1.42 17.80 ± 1.76
204 >100 >100 79.3 ± 2.34
205 36.37 ± 1.89 >100 40.65 ± 2.11
206 >100 >100 >100
209 >100 >100 >100
210 >100 >100 >100
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substituents, and the type of chemical bonding. The published studies of GA derivatives as the 
antitumor agents have provided us much useful information which was as follows and is 
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1. The hydroxyl at the C-3 position seems to be critical in maintaining the cytotoxicity. The 
introduction of an extra amino acid or a nitrogen-containing substituent was found to be 
beneficial to increase the cytotoxicity, but the acetylation or oxidation of the hydroxyl group at 
the C-3 position resulted in a decreased anti-proliferative activity. 
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A did not make a major difference in the cytotoxicity, but the number and location of hydroxyl 
groups in the A-ring has an important influence on the antitumor activity. 

3. The C-11 keto group of C ring seems to show no direct relation with cytotoxicity. 
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Scheme 17. Synthesis of multiple rings modified GA derivatives 200–210: Reagents and conditions:
(a) K2CO3, cat. KI, 60 ◦C, 12 h, chromatography; (b) Ac2O, Py, r.t., 3 h, chromatography; (c) K2CO3,
cat. KI, 224, or 225 or 226, 60 ◦C, 12 h; (d) Zn (containing 10% HgCl2), concentrated. HCl, 1,4-dioxane,
20 ◦C, 2 h, chromatography; (e) K2CO3, cat. KI, 227, 60 ◦C, 12 h, chromatography; (f) ClCH2COCl, Py,
THF, r.t., 4 h; (g) Et3N, THF, refluxing, 10 h; (h) K2CO3, cat. KI 230 or 231 60 ◦C, 12 h, chromatography.

3. Conclusions

Glycyrrhetinic Acid was found to possess remarkable anti-proliferative and apoptosis-inducing
activity against various cancer cell lines. A number of structural modifications of GA were carried out
to synthesize new potential antitumor agents. As for the many synthetic strategies reported in this
review, they can be summarized as follows: (i) introduction of aminoalkyl, amino acid, sugar and other
groups into the hydroxyl group at C-3 by esterification; (ii) oxidation or elimination of the hydroxyl
group at C-3, introduction of functional groups at C-2, opening or increasing the number of atoms
of ring-A; (iii) elimination of the C-11 ketone group in ring-C; (iv) esterification or amidation of the
carboxyl group at C-30 in ring-E; (v) esterification at the C-3 hydroxyl group and C-30 carboxyl group
simultaneously, elimination of the ketone group at C-11 and esterification at C-30 simultaneously.

To some extent, the reported GA derivatives and their biological activity confirmed that there are
many factors affecting the antitumor activity, such as the kind, quantity and position of substituents,
and the type of chemical bonding. The published studies of GA derivatives as the antitumor agents
have provided us much useful information which was as follows and is summarized in Figure 4:

1. The hydroxyl at the C-3 position seems to be critical in maintaining the cytotoxicity.
The introduction of an extra amino acid or a nitrogen-containing substituent was found to
be beneficial to increase the cytotoxicity, but the acetylation or oxidation of the hydroxyl group at
the C-3 position resulted in a decreased anti-proliferative activity.

2. The A ring skeleton plays an important role in eliciting antitumor activity. A cyano or
trifluoromethyl substituent at C-2 position of GA improved the cytotoxicity. Expansion of ring
A did not make a major difference in the cytotoxicity, but the number and location of hydroxyl
groups in the A-ring has an important influence on the antitumor activity.

3. The C-11 keto group of C ring seems to show no direct relation with cytotoxicity.
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4. The C-30 carboxyl group is essential for cytotoxicity. Esterification at the C-30 carboxylic acid
could improve the antitumor efficacy.

5. Esterification at the C-3 hydroxyl group and C-30 carboxyl group simultaneously increased the
antitumor activity.
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