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INTRODUCTION 
 
Alzheimer’s disease (AD) is a neurodegenerative 
disorder of elderly individuals and is characterized by 
the accumulation of β-amyloid and tau in brain,  

 

progressive brain atrophy, and cognitive decline [1]. 
With the increase of life expectancy in developed 
countries, the incidence of AD and its socioeconomic 
impact are also growing [2]. Currently, there is no 
preventive or disease-modifying therapeutic measures, 
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ABSTRACT 
 
It has been increasingly evident that pulse pressure (PP) is associated with Alzheimer's disease (AD) but 
whether PP increases AD risk and the mechanism responsible for this association remains unclear. To 
investigate the effects of PP in the process of AD, we have evaluated the cross-sectional and longitudinal 
associations of PP with AD biomarkers, brain structure and cognition and have assessed the effect of PP on AD 
risk in a large sample (n= 1,375) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Multiple linear 
regression and mixed-model regression were employed in cross-sectional and longitudinal analyses 
respectively. Clinical disease progression was assessed using Cox proportional hazards models. High PP was 
associated with lower β-amyloid 42 (Aβ42) (P= .015), and higher total tau (T-tau) (P= .011), phosphorylated tau 
(P-tau) (P= .003), T-tau/Aβ42 (P= .004) and P-tau/Aβ42 (P = .001), as well as heavier cortical amyloid-beta burden 
(P= .011). Longitudinally, baseline high PP was significantly associated with hippocampal atrophy (P= .039), 
entorhinal atrophy (P= .031) and worse memory performance (P= .058). Baseline high PP showed more rapid 
progression than those with normal PP (P <.001). These results suggest PP elevation could increase AD risk, 
which may be driven by amyloid plaques and subclinical neurodegeneration. 
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therefore identification of modifiable risk factors is 
required. The well-established AD biomarkers include 
cerebrospinal fluid (CSF) biomarkers of β-amyloid 42 
(Aβ42), total tau (T-tau), and phosphorylated tau (P-tau); 
positron emission tomography (PET) measurements of 
Aβ and tau; and structural magnetic resonance imaging 
(MRI) measurements [3–5], which are increasingly used 
to support the diagnosis of AD in research, clinical 
practice and drug development and have become part of 
the newly revised early diagnostic criteria for AD [6, 7]. 
Therefore, it is necessary to investigate the associations 
between susceptibility factors and biomarkers in 
the preclinical stage of AD, which is helpful for early 
identification of modifiable factors.  
 
Pulse pressure (PP) is an index of vascular aging and 
displays a linear increase with age [8]. It has also been 
recognized as a marker of increased arterial stiffness 
and widespread atherosclerosis. Atherosclerosis and 
cerebrovascular diseases have been implicated in the 
occurrence and development of AD [9, 10]. Therefore, 
it is biologically plausible to suppose that high pulse 
pressure could be related to the development of AD 
[11]. Several relevant studies indicated that high PP was 
associated with AD pathophysiology [8, 12–14], 
suggesting that vascular aging might increase AD risk 
[11]. Some studies suggested PP elevation was 
associated with CSF P-tau and Aβ42 in cognitively 
normal older adults [8]. Others found arterial stiffness 
was associated with Aβ plaque deposition in the brain 
[15]. Furthermore, previous studies indicated arterial 
stiffness might play a role in early cognitive decline and 
brain atrophy in mid-to-late life [13, 14, 16]. However, 
these studies were mostly limited by their cross-
sectional design and small samples, and the mechanisms 
underlying the association between PP and AD were 
still unclear.  
 
More studies are warranted to explore whether PP might 
increase AD risk or not. This study was designed to 
investigate whether PP was related to baseline and 
longitudinal changes in AD biomarkers such as CSF 
biomarkers, cortical amyloid-beta load, MRI 
measurements and neuropsychological composites in a 
large sample of non-demented elderly from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
study.  
 
RESULTS 
 
Demographic and clinical data 
 
There were 669 people with high PP and 706 with 
normal PP in the ADNI. Comparisons of characteristics 
between groups were presented in Table 1. Participants 
in the high PP group were more likely to be older  

(P < .001) and hypertension (P < .001) than those with 
normal PP. But there was no group difference in gender, 
education, APOE Ɛ4 carrier status, and other vascular 
risk factors (all P > .050). Clinical profiles of patients 
changed drastically due to data availability issues, the 
new selected sub-datasets were presented in 
Supplementary Table 1.  
 
Pulse pressure and CSF biomarkers  
 
CSF measurements were available for 977 non-
demented participants at baseline (n = 364 CN, 613 
MCI), of whom 517 had normal PP. In cross-sectional 
analyses, after excluding extreme outlines, high PP was 
associated with a decrease in Aβ42 (β = -.525, P = .015, 
Figure 1A), as well as increases in T-tau (β = .077, P = 
.011, Figure 1B), P-tau (β = .097, P = .003, Figure 1C), 
T-tau/Aβ42 (β = .131, P = .004, Figure 1D) and P-
tau/Aβ42 (β = .157, P = .001, Figure 1E) after 
adjustment for age, gender, education, APOE Ɛ4 carrier 
status, vascular risk factors, cognitive diagnosis and 
extracted CSF volume. When stratified by cognitive 
diagnosis, the associations between PP and CSF 
biomarkers still persisted within MCI group and high 
PP was associated with higher P-tau and P-tau/Aβ42 
levels in CN group (Figure 1C and 1E); when stratified 
by age, the associations between PP and CSF 
biomarkers still persisted within very old group and PP 
elevation was associated with increased T-tau/Aβ42 in 
young old group (Supplementary Table 2). 
 
There were 526 people who had at least one follow-up 
visit at baseline enrolled in the five-year longitudinal 
analysis. Longitudinally, we did not find any 
association between baseline PP and CSF biomarkers. 
Similarly, no associations were detected when the 
analyses were stratified by cognitive diagnosis 
(Supplementary Table 2), while baseline high PP  
was associated with lower T-tau/Aβ42 in the young  
old subgroup when stratified by age (Supplementary 
Table 2). 
 
Pulse pressure and AV45 PET imaging 
 
The mean Aβ load measured by the florbetapir AV45 
standardized uptake value ratio (SUVR) was available 
in 739 participants at baseline (n = 280 CN, 459 MCI), 
of whom 358 had high PP. In cross-sectional analyses, 
after excluding extreme outlines, we found that PP was 
positively correlated with cortical Aβ load in summary 
SUVR (β = .018, P=.011, Figure 1F) when adjusted for 
age, gender, education, APOE Ɛ4 carrier status, vascular 
risk factors, cognitive diagnosis and florbetapir mean of 
composite ref region. When stratified by cognitive 
diagnosis and age, the association between PP and 
cortical Aβ load remained significant within MCI 
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Table 1. Participant demographic and clinical information. 

Participant features Normal PP (<60mmHg) High PP (≥60mmHg) P Value 

N 706 669  

Age(Mean ± SD, year) 72.31±6.91 74.73±6.86 <0.001 

Gender (M/F) 396/310 366/303 0.606 

Education (Mean ± SD, year) 16.19±2.76 16±2.83 0.214 

APOE Ɛ4 carrier status (2/1/0) 59/248/399 47/226/396 0.500 

BMI (Mean ± SD, kg/m2) 27.1±4.84 26.94±4.78 0.373 

CVD(yes/no) 156/550 154/515 0.682 

Hyperlipemia (yes/no) 329/377 320/349 0.647 

Hypertension (yes/no) 296/410 347/322 <0.001 

T2DM (yes/no) 44/662 60/609 0.055 

Cognitive diagnoses 

CN/MCI  255/451 259/410 0.320 

Abbreviations: Normal PP=normal pulse pressure; High PP=high pulse pressure; SD=standard deviation; APOE, apolipoprotein 
epsilon; BMI, Body Mass Index; CVD, Cardiovascular Disease; T2DM, Type 2 diabetes mellitus; CN, cognitively normal; MCI, 
mild cognitive impairment. 
 

 

 
 

Figure 1. Association between pulse pressure (PP) and AD biomarkers at baseline. (A) PP is negatively correlated with CSF Aβ42 
within non-dementia and MCI groups; (B) PP is positively correlated with CSF T-tau within non-dementia and MCI groups; (C) PP is positively 
correlated with P-tau in all diagnostic groups; (D) PP is positively correlated with CSF T-tau/ Aβ42 within non-dementia and MCI groups; (E) PP 
is positively correlated with CSF P-tau/Aβ42 in all diagnostic groups; (F) PP was positively correlated with cortical Aβ load in summary SUVR 
within non-dementia and MCI groups. Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; CN, cognitively normal; MCI, mild 
cognitive impairment; Aβ, β-amyloid; SUVR, standardized uptake value ratio. *p<.05; **p<.01; *** p<.001. 
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(β = .034, P = .003, Figure 1F) and the young old group 
(Supplementary Table 2). 
 
There were 550 people who had at least one follow-up 
visit at baseline enrolled in the five-year longitudinal 
analysis. Longitudinally, we did not identify a statistically 
significant association between PP and summary SUVR 
(β = 1.457*e-3, P = .144). Similarly, no associations were 
detected when the analyses were stratified by cognitive 
diagnosis or age (Supplementary Table 2). 
 
Pulse pressure and MRI measurements 
 
Measurements of hippocampal, entorhinal, and mid-
temporal volumes were available in 1,137 participants 
at baseline (n = 694 MCI), of whom 554 had high PP. In 
cross-sectional analyses, after excluding extreme 
outlines, increased PP was not associated with 
hippocampal volume (β = -1.084*e3, P = .312), 
entorhinal volume (β = -2.311*e1, P = .554), or mid-
temporal volume (β = 4.364*e1, P = .752) when 
adjusted for age, gender, education, APOE Ɛ4 carrier 
status, vascular risk factors, cognitive diagnosis and 
intracranial volume. Similarly, no associations were 
detected between PP and MRI structure when the 
analyses were stratified by cognitive diagnosis and age 
(Supplementary Table 3).  
 
There were 1,042 who had at least one follow-up visit at 
baseline enrolled in the five-year longitudinal analysis. 
Longitudinally, increased PP was associated with an 
accelerated decline in hippocampal volume (β = -
16.903, P = .039, Figure 2A) and entorhinal volume (β 
= -20.014, P = .031, Figure 2B) over time. When 
stratified by cognitive diagnosis and age, the association 
between PP and entorhinal volume still persisted among 

those with MCI and the young old subgroup 
(Supplementary Figure 1A and Table 3).  
 
Pulse pressure and ADNI-MEM & ADNI-EF 
 
ADNI-MEM and ADNI-EF were available in 1,375 (n 
= 514 CN, 861 MCI) participants at baseline, of whom 
706 had normal PP. In cross-sectional analyses, no 
association of PP was found with memory performance 
(β = −.030, P = .343) or executive function performance 
(β = −.042, P = .298). Similarly, no association was 
detected when the analyses were stratified by cognitive 
diagnosis while high PP was associated with worse 
memory performance in young old group when 
stratified by age (Supplementary Table 3). 
 
There were 1322 who had at least one follow-up visit at 
baseline enrolled in the five-year longitudinal analysis. 
Longitudinally, increased PP was associated with worse 
memory performance with a strong tendency towards 
statistical significance (β = -1.829*e-2, P = .058, Figure 
2C). In stratified analyses restricted to MCI participants, 
increased PP was associated with a greater decline in 
memory performance over time (β = −.034, P = .012, 
Supplementary Figure 1B and Table 3). We did not find 
any statistically significant associations in other 
stratified analyses (Supplementary Table 3). 
 
Pulse pressure and clinical disease progression 
 
Kaplan-Meier analysis revealed participants with high PP 
at baseline showed more rapid progression over the 
following five years, compared with those with normal PP 
(P <.001, Figure 3). In Cox regression models (adjusted 
for age, gender, education, APOE Ɛ4 carrier status, 
vascular risk factors and cognitive diagnosis), the 

 

 
 

Figure 2. Associations between baseline pulse pressure and measurements of brain aging. Data from linear mixed-effects models 
adjusted for age, gender, education, APOE Ɛ4 carrier status, vascular risk factors, cognitive diagnosis, as well as intracranial volume. Increased 
PP level was associated with an accelerated decline in measurements of brain aging. (A–C) Increased PP level was associated with accelerated 
decline in hippocampal volume, entorhinal volume and episodic memory performance. 
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individuals with high PP had a higher risk of progression 
to AD (hazard ratio 1.216, 95% CI 1.051-1.461, P = .011). 
 
Systolic blood pressure (SBP), diastolic blood 
pressure (DBP) and hypertension   
 
SBP exhibited the same pattern of associations with 
CSF biomarkers found in the PP analyses. Higher SBP 
was associated with a decrease in Aβ42, as well as 
increases in T-tau, P-tau, T-tau/Aβ42 and P-tau/Aβ42 
(Supplementary Table 4); in AV45 PET imaging 
analyses, SBP was positively correlated with cortical 
Aβ load in summary SUVR, and the association still 
persisted within MCI and the young old subgroup 
(Supplementary Table 4); in MRI measurements 
analyses, we only found that higher SBP was associated 
with smaller mid-temporal volume within MCI 
(Supplementary Table 4); in ADNI-MEM and ADNI-
EF analyses, higher SBP was associated with worse 
memory performance and executive function 
performance in the young old subgroup (Supplementary 
Table 4).   
 
There was no association between DBP and CSF 
biomarkers or AV45 PET imaging analyses 
(Supplementary Table 5); in MRI measurements 
analyses, DBP was negatively correlated with mid-
temporal volume and it still persisted within MCI 
 

 
 

Figure 3. Pulse pressure predicts more rapid progression 
to dementia. The Cox regression indicates that a higher pulse 
pressure was associated with more rapid progression to 
dementia. Visually, the survival plot displays results for high pulse 
pressure in comparison with normal pulse pressure.  

subgroup (Supplementary Table 5); in ADNI-MEM and 
ADNI-EF analyses, higher DBP was associated with 
worse memory performance, and when stratified by age, 
the association still persisted within very old subgroup 
while higher DBP was associated with worse executive 
function performance in MCI subgroup when stratified 
by cognitive diagnosis (Supplementary Table 5). 
 
Hypertension exhibited the same pattern of associations 
with CSF biomarkers and AV45 PET imaging found in 
the DBP analyses (Supplementary Table 6); in MRI 
measurements analyses, we found hypertension was 
negatively correlated with hippocampal volume, 
entorhinal volume, and mid-temporal volume in the 
young old subgroup (Supplementary Table 6); in 
ADNI-MEM and ADNI-EF analyses, hypertension was 
associated with worse executive function performance, 
and when stratified by age and cognitive diagnosis, the 
association still persisted within MCI, the young old 
and very old subgroups while association between 
hypertension and memory performance was found in 
the young old subgroup (Supplementary Table 6). 
 
DISCUSSION 
 
In this study, PP elevation was found to be associated 
with CSF Aβ42, T-tau, P-tau, T-tau/ Aβ42 and P-tau/Aβ42, 
as well as cortical Aβ load at baseline; and longitudinally, 
an increase in PP was associated with an accelerated 
decline in hippocampal and entorhinal volumes, and with 
worsening episodic memory. These associations seemed 
to be more obvious in MCI and very old patients, 
suggesting that the relationships between pulse pressure 
and cognitive disorders were age- and diagnosis- 
dependent [17]. Individuals with higher PP also had a 
higher incidence of conversion to AD. Taken together, 
these findings supported that PP elevation could increase 
risk of AD, and the associations maybe driven by 
amyloid plaques and subclinical neurodegeneration, 
which was consistent with the conclusion from previous 
studies that elevated PP had a negative impact on 
hallmark neuropathological markers of AD [8, 12, 13, 
18]. These likely suggested PP can be added to the 
current dementia risk models for dementia prevention, if 
controlled effectively, it would help delay the onset and 
reduce the number of demented people in the future.  
 
In CSF biomarkers analyses, when stratified by cognitive 
diagnosis, the associations between PP and P-tau, P-
tau/Aβ42 still persisted among MCI and CN groups, while 
the relationship between Aβ42 and PP only persisted 
within MCI group, which possibly revealed that the 
relationship between PP and P-tau was detected at early 
stages. These findings indicated that PP may be related  
to both amyloid plaques and tau-mediated 
neurodegeneration, and the latter mechanism may be 
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more salient, which was consistent with previous articles 
[8, 19]. Although AD is characterized by both amyloid- 
and tau-based pathologies, P-tau is more strongly 
associated with neurodegeneration and cognitive decline; 
besides, we also find that PP is associated with brain 
atrophy and cognitive decline, suggesting that high PP 
may convey AD risk through its closer association with 
tau phosphorylation [8]. Previous work has indicated that 
amyloid is not cause of AD but the downstream result 
[20] and nearly 23% of elderly exhibit P-tau elevation in 
the absence of amyloidosis [21]. And the update of an AD 
model indicates that neurodegeneration may occur 
independently and ahead of amyloid pathology and may 
be exacerbated by the later development of amyloidosis 
[22, 23]. However, the underlying pathological 
mechanisms warrant further investigation. Longitudinally, 
baseline high PP was associated with lower T-tau/Aβ42 in 
the young old subgroup, it seemed conflicting, which may 
be explained by the large number of subjects lost to 
follow-up, especially in the 3-, 4-, 5-year follow-up.  
 
In MRI analyses, increased PP accelerated the decrease 
in hippocampal and entorhinal volumes, which was 
consistent with the previous finding that blood pressure 
can preferentially affect the hippocampal volume [24]. 
Though the responsible mechanism linking PP to reduced 
hippocampal volume has not been elucidated, Beauchet 
et.al have showed preferential global and regional effects 
of blood pressure on the brain, including the 
hippocampus [25]. These effects may be mediated in part 
by blood pressure-related arteriolosclerosis, low blood 
flow, and consequent hypoperfusion in the hippocampal 
[25]. Importantly, loss of vascular elasticity and increased 
vascular resistance, caused partly by increased vascular 
amyloid deposit, may mediate such effects [26–28]. 
 
Despite the growing recognition that vascular risk factors 
may have an impact on the development of AD, the 
pathophysiological mechanism needs further 
understanding. In fact, mounting evidence suggests that 
the pulsation of the arteries contributes to the clearance of 
wastes from the central nervous system [29, 30]. Besides, 
some studies suggest that circulatory injuries, such as 
those caused by stiffening of the vasculature system, may 
result in failure of clearance of Aβ from the brain [31]. 
To be more specific, elevated PP may stimulate vascular 
hypertrophy, remodeling, or rare in the microcirculation, 
leading to increased vascular resistance, impaired 
microvascular reserve [32–34], which may subsequently 
cause structural changes, impair clearance of Aβ42 along 
the perivascular spaces [35], as well as decrease arterial 
pulsatility and capacity for amyloid drainage [36]. 
Therefore, dysfunction of this system may promote 
neurodegeneration [37]. It is also possible that changes in 
vascular function could lead to reduced tissue perfusion 
and arteriolar hypercontractility, or blood-brain barrier 

(BBB) leakage, either of which may result in 
neurodegeneration and increased P-tau [38]. More 
animal-model studies are needed to shed light on the 
potential mechanisms via which PP influences AD. 
 
Although PP was the primary focus of the study, we also 
examined SBP, DBP and hypertension in relation to 
biomarkers to determine their contributions to PP. We 
found that increased SBP was associated with CSF 
biomarkers, cortical Aβ load, brain volume and cognition, 
and the associations seemed to be more obvious in MCI 
and very old patients, which revealed that SBP may 
exhibit the similar pattern of association found in PP, 
while associations between DBP, hypertension and AD 
biomarkers mainly reflected in MRI measurements and 
cognition, this likely reflected the greater relative 
contributions of SBP to PP. PP elevation represented 
either increased SBP or decreased DBP, which may 
provide insight into the relationship between blood 
pressure and neurodegeneration. Furthermore, the 
associations above supported that higher SBP, DBP and 
hypertension may increase AD risk. 
 
In Table 1, we found participants in the high PP group 
were more likely to be T2DM (P = .055), it seemed a 
link between PP and T2DM in AD, which may be 
mediated in part by vascular injuries. Some studies 
suggest that micro-vascular damage, sympathetic 
damage, and enhanced renin-angiotensin system, caused 
by diabetes mellitus, may aggravate systolic blood 
pressure elevation [39], resulting in high PP; besides, 
vascular damage such as arteriosclerosis caused by 
T2DM glycosylation was associated with low blood 
flow, leading to BBB leakage [40], which may result in 
neurodegeneration.  
 
The study have several limitations. (1) Although the 
relationship between PP and dementia is supported by 
longitudinal analyses in the present study, the attrition 
bias due to loss to follow-up was not corrected in the 
analyses. Future studies with larger sample sizes, longer 
follow-up duration, and lower attrition rates will assist 
in exploring whether the associations support causality; 
(2) blood pressure was not an a priori outcome in the 
ADNI study and its assessment did not employ strict 
standards (such as average of multiple measurements), 
which may result in measurement bias; (3) the sample 
of participants who received pressure-controlled 
treatment (like anti-hypertension medicine) was small, 
therefore the analyses about it didn’t performed. 
 
In conclusion, this large-scale study identified the cross-
sectional as well as the longitudinal associations of PP 
and the known biomarkers of AD, suggesting high PP 
could increase AD risk, and found the PP effects may 
be modified by cognitive diagnosis and age, and may be 
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driven by amyloid plaques and subclinical 
neurodegeneration. Furthermore, our study encourages 
future studies to consider PP as a target for AD 
prevention. However, the potential pathological 
mechanisms linking age-related vascular stiffening to 
neurodegeneration warrant further investigation, such as 
reduced brain blood flow, increased blood-brain barrier 
permeability, and decreased clearance of misfolded 
proteins, and pharmacological modulation in human 
subjects or configured animal models maybe helpful to 
elucidate the underlying mechanisms.  
 
MATERIALS AND METHODS 
 
ADNI 
 
The data used for this analysis were downloaded from the 
ADNI database (adni.loni.usc.edu). The ADNI, an 
ongoing, multisite longitudinal, large-scale study launched 
in 2003, was designed to develop clinical, imaging, genetic 
and biochemical biomarkers for the early detection and 
tracking of AD [41]. Participants in the ADNI study 
underwent baseline and periodic physical and neurological 
examinations, standardized neuropsychological 
assessments, and biological sampling (blood, urine, and 
CSF) [13]. Regional ethical committees of all participating 
institutions approved the ADNI. All study participants 
provided written informed consent. 
 
Participants 
 
A total of 2,046 participants from ADNI1, ADNI Grand 
Opportunity, and ADNI 2 completed the blood pressure 
assessment at baseline. Among them, 335 participants 
without demographic and clinical information, and 336 
who were classified as dementia were excluded. Finally, 
the remaining 1,375 non-demented participants were 
enrolled in this study (Figure 4). Clinical disease 
progression was ascertained for a large subset of 
participants (n = 1,338) who were followed up with 
serial clinical assessments at varying intervals for 
different length of time ranging from 0 year to 5 years. 
 
PP measurements 
 
Seated brachial artery SBP and DBP were obtained and PP 
was calculated as the difference between SBP and DBP. 
PP of 60 mmHg or higher was defined as high PP [42].  
 
Covariates 
 
Accumulating evidence supports a role of vascular risk 
factors in the development and etiology of AD [43]. For 
purposes of this study, participant medical history data of 
vascular risk factors was obtained until the date of 
baseline blood pressure. The covariates consisted of age, 

gender, education, APOE Ɛ4 carrier status, body mass 
index (BMI) which was calculated as weight in kilograms 
divided by the square of height in meters, and vascular 
risk factors, such as type 2 diabetes mellitus (T2DM), 
hyperlipemia, hypertension, as well as medical history of 
cardiovascular disease (CVD) including myocardial 
infarction, angina, heart failure and atrial fibrillation. We 
classified these diseases based on the medical history 
information and/or use of anti-medications. 
 
CSF biomarker measurements 
 
The CSF collection and procedural protocols have been 
described previously [44]. All participants underwent 
lumbar puncture which was performed with a 20- or 24-
gauge spinal needle as described in the ADNI 
procedures manual (http://www.adni-info.org/) and AD 
biomarkers including Aβ1-42, P-tau, and T-tau were 
measured using the multiplex xMAP Luminex platform 
(Luminex Corp, Austin, TX) with Innogenetics (INNO-
BIA AlzBio3; Ghent, Belgium; for research use–only 
reagents) immunoassay kit–based reagents. All tests 
were administered at baseline and at 12, 24, 36, 48 and 
60 months. 
 
18F florbetapir AV45 PET imaging 
 
Preprocessed florbetapir imaging data were downloaded 
from the LONI ADNI site (http://adni.loni.usc.edu). The 
data preprocessing is accessible online (http://adni.loni. 
usc.edu/data-samples/access-data/). For quantifying 
cerebral cortical Aβ, preprocessed florbetapir image data 
and co-registered structural MRI were analyzed using 
Freesurfer (version 4.5.0) (https://surfer.nmr.mgh. 
harvard.edu/) as described previously and online 
(http://adni.loni.usc.edu/methods/pet-analysis-method/). 
Briefly, image data were acquired in four 5-min frames 
50–70 minutes after injection of approximately 10mCi of 
18F florbetapir, the four frames were co-registered to one 
another, averaged, interpolated to a uniform image and 
voxel size (160×106×96, 1.5 mm3), and smoothed to a 
uniform resolution (8 mm FWHM) to account for 
differences between scanners [45]. The mean Aβ retention, 
measured by the florbetapir AV45 SUVR, was normalized 
to the whole cerebellum as a summary measure of 
florbetapir retention for each participant in cross-sectional 
analyses; and a composite reference region, which was 
made up of whole cerebellum, brainstem/pons, and eroded 
subcortical white matter, has been evaluated for 
longitudinal analyses. All tests were administered at 
baseline and at 12, 24, 36, 48 and 60 months. 
 
Brain structure 
 
The process for MRI acquisition has been described 
elsewhere in ADNI publications [2, 46–48]. Structural 

http://www.adni-info.org/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
http://adni.loni.usc.edu/methods/pet-analysis-method/
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brain images were acquired using 1.5T or 3T MRI 
systems with T1-weighted scans using a sagittal 
volumetric magnetization-prepared rapid acquisition 
gradient echo sequence. The ADNI project offers scans 
that have been preprocessed (gradient warping, scaling, 
B1 correction, and N3 inhomogeneity correction) to 
correct for different scanners across sites [49]. All tests 
were administered at baseline and at 3, 6, 12, 18, 24, 36, 
48 and 60 months. 
 
Neuropsychological composites 
 
The ADNI neuropsychological protocol, including 
calculation of ADNI-MEM and ADNI-EF composite 
measures, has been reported previously [50, 51]. The 
ADNI-MEM included a composite z score based on 
item-level data from the Rey Auditory Verbal Learning 
Test, the Mini-Mental State Examination (MMSE), the 
AD Assessment Scale Cognitive Test, and Logical 
Memory I and II. The ADNI-EF included item-level 
data from the Trail Making Test Parts A and B, Digit 
Span Backward, Digit Symbol, Animal Fluency, 
Vegetable Fluency, and Clock Drawing Test [52]. All 
tests were administered at baseline and at 6, 12, 18, 24, 
36, 48 and 60 months. 
 
Clinical disease progression 
 
CN and MCI participants were divided into group of 
clinical disease progression and stable, respectively. 
Participants were defined as having clinical disease 
progression if their global CDR/MMSE or clinical 
classification score changed (CN subjects converted to 
MCI or AD, or their global CDR scores rose to 0.5 or 

greater; MCI subjects lost more than 3 points between 
first and last MMSE, or converted to AD at follow-up, or 
got a score less than 24 on the last MMSE) [53–55]. If the 
above criteria have not been met at follow-up, participants 
were considered stable; regardless of the lost of subjects, 
once the progression criteria have been met during 5-year 
follow-up, they were deemed progressive.  
 
Statistical analyses 
 
Baseline demographic, clinical and diagnostic 
characteristics were compared between PP groups 
using Mann-Whitney U test for continuous variables 
and χ2 analyses for categorical variables, respectively. 
We used means and standard errors for continuous 
measures and proportions for categories. Multiple 
linear regression was used to explore the association 
between PP and biomarkers in cross-sectional 
analyses after adjusting for age, gender, education, 
APOE Ɛ4 carrier status, vascular risk factors and 
cognitive diagnosis at baseline. Before regression 
analyses, participants who had a value >3 or <3 SD 
from the mean value were regarded as extreme 
outlines and excluded. In case of skewed distribution 
(Shapiro-Wilk test > 0.05) of biomarker data, 
transformation was performed to approximate a 
normal distribution via “car” package of R software. 
Interaction terms for age were used to explore 
whether strata effect existed, in order to minimize the 
difference between subgroup sample sizes, we chose 
75 years old as the cutoff value (<75 years old vs. ≥ 
75 years old). In case of any potential interactions 
(P < 0.1), subgroup analyses were further performed. 
Mixed-model regression with time modeled as years

 

 
 

Figure 4. Flow diagram of participant selection. Abbreviations: CSF, cerebrospinal fluid; MRI, magnetic resonance imaging. 
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from baseline for each participant was used to explore 
the longitudinal influences of PP at baseline on AD 
biomarkers and cognition after adjusting with age, 
gender, education, APOE Ɛ4 carrier status, vascular risk 
factors, cognitive diagnosis. The time-by-exposure 
interaction terms tested whether PP were associated 
with changes in the given outcomes (CSF biomarkers, 
AV45 PET imaging biomarkers, MRI structure, as well 
as ADNI-MEM and ADNI-EF) over the follow-up 
period. Kaplan-Meier survival analysis investigated the 
relationship between baseline PP and clinical disease 
progression using years to cognitive decline as the time 
variable. Cox proportional hazards models (adjusted for 
age, gender, education, APOE Ɛ4 carrier status, 
diagnosis, and vascular risk factors) were used to test 
the predictive ability of baseline PP for clinical disease 
progression. All tests were two-tailed. Statistical 
significance was set at P < .05. R version 3.5.1 and 
GraphPad Prism 7.00 software were used for statistical 
analyses and figure preparation. 
 
Although PP was the focus of the study, primary cross-
sectional analyses which were identical to those used in 
PP were repeated to examine SBP (< 120mmHg, ≥ 120 
and < 140mmHg, ≥ 140mmHg), DBP (< 80mmHg, ≥ 80 
and < 90mmHg, ≥ 90mmHg) [56], and hypertension 
(based on the medical history information and/or use of 
anti-medications) in relation to biomarkers to determine 
their contributions to the PP findings. We did this 
because it was highly correlated with SBP and 
disambiguated the relative contributions of systolic and 
diastolic pressure to results, which may have provided 
mechanistic insight.  
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 

 
 

 
 

 
 

Supplementary Figure 1. Associations between baseline pulse pressure and brain aging measurements in cognitive diagnosis 
subgroups. Data from linear mixed-effects models adjusted for age, gender, education, APOE Ɛ4 carrier status, vascular risk factors, 
cognitive diagnosis, as well as intracranial volume. (A, B) Increased PP level was associated with an accelerated decline in entorhinal volume 
and episodic memory within mild cognitive impairment group. 
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Supplementary Tables 
 
 
Supplementary Table 1. Participant demographic and clinical information of CSF, AV45 PET imaging and MRI 
measurements analyses. 

Participant features CSF biomarkers analyses AV45 PET imaging analyses MRI measurements analyses 
Normal PP High PP P Value Normal PP High PP P Value Normal PP High PP P Value 

N 517 460  381 358  583 554  
Age(Mean ± SD, year) 71.79±6.895 74.18±6.98 <0.0001 70.67±6.595 73.63±7.072 <0.0001 71.92±6.632 74.3±6.776 <0.0001 
Gender (M/F) 287/230 250/210 0.715 201/179 180/178 0.457 325/258 296/258 0.433 
Education (Mean ± SD, 
year) 

16.2±2.723 16.17±2.679 0.757 16.5±2.545 16.22±2.662 0.164 16.21±2.798 15.92±2.837 0.068 

APOE Ɛ4 carrier status 
(2/1/0) 

301/174/42 273/156/31 0.711 220/131/30 215/119/24 0.746 331/201/51 328/190/36 0.338 

BMI (Mean ± SD, kg/m2) 27.22±4.95 27.16±4.751 0.827 27.84±5.175 27.74±5.168 0.636 27.08±4.732 27.06±4.82 0.697 
CVD(yes/no) 103/416 89/371 0.845 50/331 55/303 0.384 129/454 124/430 0.918 
Hyperlipemia (yes/no) 246/271 226/214 0.243 190/191 177/181 0.908 272/311 262/292 0.830 
Hypertension (yes/no) 211/306 233/227 0.002 156/225 183/175 0.006 245/338 281/273 0.003 
T2DM (yes/no) 
Cognitive diagnoses 

31/486 38/402 0.116 27/354 34/324 0.234 40/543 47/507 0.304 

CN/MCI  192/326 173/287 0.830 140/241 140/218 0.509 223/360 220/334 0.614 

Abbreviations: Normal PP=normal pulse pressure; High PP=high pulse pressure; CSF, cerebrospinal fluid; SD=standard 
deviation; APOE, apolipoprotein epsilon; BMI, Body Mass Index; CVD, Cardiovascular Disease; T2DM, Type 2 diabetes mellitus; 
CN, cognitively normal; MCI, mild cognitive impairment. 
 

Supplementary Table 2. Association between PP and CSF biomarkers and AV45 PET imaging in cross-sectional and 
longitudinal analyses. 

Variables 
Total cognitive diagnostic strata Age subgroups 

CN MCI Young old group Very old group 
β P Value β P Value β P Value β P Value β P Value 

Cross-sectional outcomes 
Aβ42 -0.525 0.015 -0.477 0.923 -0.068 0.002 -0.483 0.084 -0.063 0.019 
T-tau 0.077 0.011 0.064 0.154 0.104 0.009 0.035 0.084 0.102 0.031 
P-tau 0.097 0.003 0.112 0.026 0.099 0.018 0.078 0.062 0.111 0.024 
T-tau/ Aβ42 0.131 0.004 0.094 0.309 0.155 0.002 0.141 0.041 0.156 0.009 
P-tau/Aβ42 0.157 0.001 0.230 0.047 0.159 0.004 0.142 0.065 0.201 0.002 
Summary 
SUVR 

0.018 0.011 -2.888*e-4 0.974 0.034 0.003 0.027 <0.001 0.025 0.211 

Longitudinal outcomes 
Aβ42 0.079 0.919 0.075 0.960 -0.035 0.965 1.458 0.161 -1.650 0.138 
T-tau -1.032 0.183 -0.279 0.750 -1.485 0.191 -1.477 0.140 -0.028 0.980 
P-tau 0.201 0.759 1.617 0.096 -0.833 0.365 -1.061 0.241 1.669 0.134 
T-tau/ Aβ42 -0.010 0.123 -4.239*e-3 0.468 -0.015 0.119 -0.020 0.019 0.004 0.707 
P-tau/Aβ42 -7.114*e-4 0.889 9.941*e-3 0.123 -8.105*e-3 0.273 -0.012 0.090 0.013 0.104 
Summary 
SUVR 

1.457*e-3 0.144 3.277*e-4 0.840 2.293*e-3 0.069 1.525*e-3 0.221 1.033*e-4 0.953 

Abbreviations: PP, pulse pressure; CSF, cerebrospinal fluid; CN, cognitively normal; MCI, mild cognitive impairment; Young old 
group, <75 years old; Very old group, ≥75 years old; Aβ42, β-amyloid 42; T-tau, total tau; P-tau, phosphorylated tau.  
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Supplementary Table 3. Association between PP and brain aging biomarkers in cross-sectional and longitudinal 
analyses. 

Variables Total cognitive diagnostic strata Age subgroups 
CN MCI Young old group Very old group 

β P Value β P Value β P Value β P Value β P Value 
Cross-sectional outcomes 
Hippocampal 
Volume -1.084*e3 0.312 -1.242*e1 0.863 -8.861*e1 0.222 -1.114*e4 0.251 -8.833*e1 0.279 

Entorhinal 
Volume -2.311*e1 0.554 -1.053*e1 0.848 -3.245*e1 0.545 -1.522*e1 0.750 -3.575*e1 0.592 

Mid-temporal 
Volume 4.364*e1 0.752 1.030*e2 0.606 2.378*e1 0.900 1.085*e2 0.558 -9.282*e1 0.663 

ADNI-MEM -0.030 0.343 -0.016 0.729 -0.031 0.467 -0.092 0.036 0.036 0.437 
ADNI-EF -0.042 0.298 -0.074 0.235 -0.015 0.777 -0.090 0.103 -0.005 0.940 
Longitudinal outcomes 
Hippocampal 
Volume -16.903 0.039 -12.534 0.222 -18.935 0.094 -11.173 0.307 -19.181 0.121 

Entorhinal 
Volume -20.014 0.031 -2.800 0.837 -32.776 0.007 -23.673 0.046 -12.120 0.426 

Mid-temporal 
Volume -23.890 0.382 -39.120 0.167 -16.890 0.664 -54.620 0.128 17.348 0.683 

ADNI-MEM -1.829*e-2 0.058 0.001 0.896 -0.034 0.012 -0.016 0.214 -0.009 0.526 
ADNI-EF 1.395*e-4 0.991 4.115*e-5 0.998 -6.049*e-4 0.972 -0.001 0.937 0.013 0.409 

Abbreviations: PP, pulse pressure; CN, cognitively normal; MCI, mild cognitive impairment; Young old group, <75 years old; 
Very old group, ≥75 years old. 
 

Supplementary Table 4. Association between SBP and AD biomarkers and brain aging in cross-sectional analyses. 

Variables Total cognitive diagnostic strata Age subgroups 
CN MCI Young old group Very old group 

β P Value β P Value β P Value β P Value β P Value 
Aβ42 -0.373 0.014 -5.575 0.113 -0.027 0.065 -0.164 0.417 -0.061 <0.001 
T-tau 0.047 0.026 0.024 0.464 0.073 0.008 0.006 0.685 0.106 0.001 
P-tau 0.060 0.007 0.077 0.032 0.060 0.037 0.050 0.097 0.082 0.014 
T-tau/ Aβ42 0.084 0.008 0.063 0.341 0.098 0.006 0.044 0.370 0.148 <0.001 
P-tau/Aβ42 0.106 0.002 0.223 0.007 0.081 0.034 0.078 0.160 0.151 <0.001 
Summary SUVR 0.011 0.037 0.003 0.596 0.016 0.041 0.015 0.003 0.012 0.362 
Hippocampal Volume -3.019*e2 0.690 4.465*e1 0.392 -6.319*e1 0.209 -1.711*e3 0.809 -2.560*e1 0.642 
Entorhinal Volume -3.313*e1 0.228 -2.351*e1 0.556 -3.582*e1 0.334 -4.856*e1 0.162 -1.369*e1 0.761 
Mid-temporal Volume -1.837*e2 0.059 6.416*e1 0.658 -3.200*e2 0.014 -2.062*e2 0.127 -1.379*e2 0.337 
ADNI-MEM -0.036 0.108 -0.029 0.386 -0.040 0.175 -0.064 0.042 -4.794*e-4 0.988 
ADNI-EF -0.055 0.053 -0.036 0.424 -0.063 0.079 -0.080 0.046 -0.035 0.396 

Abbreviations: SBP, systolic blood pressure; CN, cognitively normal; MCI, mild cognitive impairment; Young old group, <75 
years old; Very old group, ≥75 years old; Aβ42, β-amyloid 42; T-tau, total tau; P-tau, phosphorylated tau. 
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Supplementary Table 5. Association between DBP and AD biomarkers and brain aging in cross-sectional analyses. 

Variables Total cognitive diagnostic strata Age subgroups 
CN MCI Young old group Very old group 

β P Value β P Value β P Value β P Value β P Value 
Aβ42 0.018 0.923 -3.756 0.394 0.017 0.346 0.217 0.369 -0.019 0.426 
T-tau -0.016 0.537 0.055 0.174 -0.063 0.063 -0.016 0.361 -0.021 0.609 
P-tau -0.033 0.232 -0.009 0.832 -0.036 0.307 -0.039 0.279 -0.014 0.755 
T-tau/ Aβ42 -0.017 0.662 0.126 0.136 -0.068 0.114 -0.059 0.316 -0.002 0.969 
P-tau/Aβ42 -0.033 0.437 0.027 0.793 -0.048 0.300 -0.070 0.291 -0.005 0.933 
Summary SUVR -0.005 0.460 0.006 0.425 -0.001 0.246 -0.005 0.425 0.003 0.835 
Hippocampal Volume 1.447*e3 0.109 -7.129*e1 0.247 -6.045*e1 0.316 3.431*e2 0.967 -5.790*e1 0.396 
Entorhinal Volume -3.808*e1 0.246 -5.520*e1 0.242 -1.974*e1 0.657 -1.814 0.964 -6.853*e1 0.219 
Mid-temporal Volume -3.337*e2 0.004 -3.049*e2 0.074 -3.178*e2 0.042 -2.807*e2 0.072 -2.895*e2 0.104 
ADNI-MEM -0.055 0.044 -0.067 0.091 -0.040 0.277 -0.015 0.698 -0.084 0.034 
ADNI-EF -0.055 0.117 0.026 0.625 -0.099 0.028 -0.024 0.621 -0.075 0.145 

Abbreviations: DBP, diastolic blood pressure; CN, cognitively normal; MCI, mild cognitive impairment; Young old group, <75 
years old; Very old group, ≥75 years old; Aβ42, β-amyloid 42; T-tau, total tau; P-tau, phosphorylated tau. 
 

Supplementary Table 6. Association between Hypertension and AD biomarkers and brain aging in cross-sectional 
analyses. 

Variables Total cognitive diagnostic strata Age subgroups 
CN MCI Young old group Very old group 

β P Value β P Value β P Value β P Value β P Value 
Aβ42 -1.916 0.529 3.783 0.456 -0.023 0.301 -0.320 0.273 -0.011 0.687 
T-tau -3.578 0.169 -0.054 0.239 -0.012 0.764 -0.026 0.217 0.007 0.889 
P-tau -1.104 0.359 -0.023 0.652 -0.012 0.782 - - - - 
T-tau/ Aβ42 -0.032 0.498 -0.109 0.255 0.013 0.801 -0.029 0.682 0.017 0.778 
P-tau/Aβ42 -0.009 0.857 -0.079 0.512 0.020 0.727 0.040 0.615 -0.021 0.751 
Summary SUVR -0.005 0.531 -0.006 0.538 -0.002 0.841 0.008 0.290 -0.023 0.277 
Hippocampal Volume -5.023*e3 0.186 -8.436*e1 0.313 -7.653*e1 0.400 -2.357*e2 0.008 2.108*e5 0.753 
Entorhinal Volume -5.063*e1 0.269 -8.490*e1 0.182 -1.631*e1 0.799 -1.221*e2 0.033 2.820*e1 0.714 
Mid-temporal Volume -2.049*e2 0.213 -9.223*e1 0.698 -2.500*e2 0.264 -5.001*e2 0.021 1.158*e2 0.658 
ADNI-MEM -0.063 0.103 -0.063 0.247 -0.069 0.190 -0.125 0.018 -0.032 0.570 
ADNI-EF -0.163 0.001 -0.122 0.112 -0.182 0.005 -0.245 <0.001 -0.159 0.031 

Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment; Young old group, <75 years old; Very old group, ≥75 
years old; Aβ42, β-amyloid 42; T-tau, total tau; P-tau, phosphorylated tau. 


