
Original Article
From the
Kuopio, Fin
Physics, Med
Finland (J.K
Eastern Fin
Traumatolog
Finland (A.J
neering, The
Science Servi

The autho
funding: M.
conduct of th
2020 researc
the Finnish
during the c
Near-Infrared Spectroscopy Enables Arthroscopic
Histologic Grading of Human Knee Articular

Cartilage
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Purpose: To develop themeans to estimate cartilage histologic grades and proteoglycan content in ex vivo arthroscopy using
near-infrared spectroscopy (NIRS). Methods: In this experimental study, arthroscopic NIR spectral measurements were
performed on both knees of 9 human cadavers, followed by osteochondral block extraction and in vitro measurements:
reacquisition of spectra and reference measurements (proteoglycan content, and three histologic scores). A hybrid model,
combining principal component analysis and linear mixed-effects model (PCA-LME), was trained for each reference to
investigate its relationshipwith invitroNIR spectra. Theperformanceof thePCA-LMEmodelwasvalidatedwithexvivo spectra
before and after the exclusion of outlying spectra. Model performance was evaluated based on Spearman rank correlation (r)
and root-mean-square error (RMSE). Results: The PCA-LME models performed well (independent test: average r ¼ 0.668,
RMSE¼ 0.892, P< .001) in the prediction of the referencemeasurements based on in vitro data. The performance on ex vivo
arthroscopic data was poorer but improved substantially after outlier exclusion (independent test: average r¼ 0.462 to 0.614,
RMSE¼1.078 to0.950,P¼ .019 to .008).Conclusions: NIRS is capableofnondestructiveevaluationof cartilage integrity (i.e.,
histologic scores and proteoglycan content) under similar conditions as in clinical arthroscopy.Clinical Relevance: There are
clear clinical benefits to the accurate assessment of cartilage lesions inarthroscopy.Visual grading is the current standardof care.
However, optical techniques, such as NIRS, may provide a more objective assessment of cartilage damage.
urrent diagnostic measures of musculoskeletal
Cdisorders involve clinical examination and imag-
ing, e.g., x-ray imaging and magnetic resonance imag-
ing,1 which lack sensitivity to pinpoint localized defects
and their severity (structural damage).2 Conditions and
injuries requiring medical interventions (e.g., a
debridement, or cartilage repair) are treated in mini-
mally invasive arthroscopy, often revealing previously
Department of Applied Physics, University of Eastern Finland,
land (J.K.S., R.S., J.To., I.O.A., J.T.); Department of Medical
ical Imaging Center, Pirkanmaa Hospital District, Tampere,
.S.); A.I. Virtanen Institute for Molecular Sciences, University of
land, Kuopio, Finland (M.P.); Department of Orthopedics,
y and Hand Surgery, Kuopio University Hospital, Kuopio,
., H.K.); School of Information Technology and Electrical Engi-
University of Queensland, Brisbane, Australia (I.O.A., J.T.); and
ce Center, Kuopio University Hospital, Kuopio, Finland (J.T.).
rs report the following potential conflicts of interest or sources of
P. reports grants from the Academy of Finland, during the
e study. R.S. reports grants from the MIRACLE project-Horizon
h and innovation programme H2020-ICT-2017-1; grants from
Cultural Foundation; and grants from State Research Funding,
onduct of the study. J.To. reports grants from the MIRACLE

Arthroscopy, Sports Medicine, and Rehabilitation, V
unobserved focal cartilage defects.3 As current arthro-
scopic measures of evaluation are qualitative and sub-
jective (poor interobserver reliability),4 a quantitative
arthroscopic tool could be beneficial for the objective
evaluation of chondral lesions.
Histology is the gold-standard measure of cartilage

degeneration that is used to assess structural and
compositional changes within the tissue.5 The most
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commonly used histologic grading systems are the
modified Mankin score (0-13),6 Osteoarthritis Research
Society International (OARSI) grading (0-6),5 and In-
ternational Cartilage Repair Society (ICRS) grading (0-
4).7 However, the practical clinical value of histology is
limited due to invasive tissue extraction, which can
greatly jeopardize cartilage integrity. Therefore, a
nondestructive technique capable of providing an
evaluation similar to histology would be of great value.
Optical techniques, such as near-infrared spectroscopy

(NIRS)8 and optical coherence tomography,9 are capable
of beyond-surface evaluation, making these techniques
potentially superior to the current standard of visual
evaluation during arthroscopy. The techniques use the
nonionizing region of light (i.e., no deleterious effects)
and the measurement can be performed in seconds. Pre-
viously, NIRS has been successfully applied for tissue di-
agnostics in the laboratory environment10-13 and more
recently in a few in vivo applications14,15 by using custom
sterilizable probes similar to the traditional arthroscopic
hook. Studies also have evaluated the histologic proper-
ties of cartilage via NIRS with moderate-to-strong corre-
lations, especially the Mankin score, which is the most
common reference for tissue integrity in animals
(bovine16 and ovine17) and humans16,18,19 in the labora-
tory environment. In addition, several NIRS studies have
focused on the estimation of cartilage composition, espe-
cially proteoglycan (PG) content.8,12,20,21

The clinical in situ application of NIRS requires a pre-
trained multivariate model (e.g., chemometrics and
neural networks), arising from the overlapping nature of
spectral peaks in theNIR range, developed using a library
of both spectral and reference measurements.22 Lately,
convolutional neural networks (CNNs) have out-
performed classical chemometrics methods,23 such as
principal component regression. These approaches,
however, are yet to account for the inherent
dependencieswithin the data that can arise, for example,
from repeated measures from the same sub-
ject13,24despecially with valuable human data. Linear
mixed-effects (LME) modeling can resolve this
dependency problem and is often paired with a dimen-
sionality reduction technique, such as principal compo-
nent analysis (PCA),25 due to multicollinearity (i.e., a
high number of collinear variables in spectral data).
In addition to the impactful role of the modeling

approach, spectral preprocessing has a substantial impact
on the signal interpretation and the accuracy of the
resulting model.26 Currently, the optimal preprocessing
pipelines are based on an expert opinion and, to some
extent, trial-and-error. To ease the decision on optimal
pipeline, open-source preprocessing pipelines, such as
nippy,27 have become available to explore vast combi-
nations of different preprocessing operators.
The purpose of this study was to develop the means to

estimate cartilage histologic grades and PG content in
ex vivo arthroscopy using NIRS. We hypothesized that
NIRS would estimate cartilage lesion severity and PG
content during an ex vivo arthroscopy.

Methods
In this experimental study, NIR spectra were collected

in both ex vivo arthroscopy and in vitro, and the
extracted samples were subjected to extensive reference
measurements. Ex vivo spectral measurements from
several standardized locations (n ¼ 19 [9 in the femur,
8 in the tibia, and 2 in the patella]) were recorded from
both knees of human cadavers (N ¼ 9, age ¼ 68.4 � 7.5
years) by an experienced orthopaedic surgeon (no
living cartilage was assessed).13 The inclusion criteria
for the donors were that they were scheduled for a
medical obduction, had no history of knee surgery (also
visually verified), and had no infectious risks. The ex-
aminations and sample extraction of this study were
performed before the medical obduction and post-haste
after postmortem (max 4 days) during which time the
donors were stored at 4 to 7�C. In the arthroscopies, the
inferior extremity of the cadaver was freely movable on
a straight table and stabilized with a lateral post on the
femur to allow valgisating or varisating forces created
by the surgeon, to apply the setting of normal knee
arthroscopy. Anteromedial and anterolateral 1 cm
parapatellar interchangeable portals were created for
the conventional arthroscope (4 mm, 30� inclination;
Karl Storz GmbH & Co, Tuttlingen, Germany) and the
novel NIRS probe, respectively. The knee joint was fil-
led with saline using a hand pump. If necessary, an
arthroscopic shaver was used to flush the intra-articular
space and resect the liposynovia, thereby clearing the
visualization of the areas under examination. The NIRS
probe was aligned perpendicular and in contact with
the cartilage under the examination based on the
visualization of the conventional arthroscope. After the
measurements, the condyles of the tibia and femur, and
patella were harvested, followed by the extraction of
cylindrical osteochondral plugs (diameter ¼ 8 mm, the
total number of extracted plugs ¼ 303 after exclusion of
39 plugs due to completely eroded cartilage) with a drill
punch machine. The plugs were subjected to in vitro
spectral measurements and histologic evaluation. The
local research ethics committee (decision number 134/
2015, Research Ethics Committee of the Northern Savo
Hospital District, Kuopio University Hospital, Kuopio,
Finland) approved the study. The followed procedures
were by the ethical standards of the responsible com-
mittee on human experimentation (institutional and
national) and with the Helsinki Declaration of 1975, as
revised in 2000.

Near-Infrared Spectroscopy
The spectra were collected both ex vivo and in vitro

(Fig 1) with the hardware, consisting of 2 spectrometers



Fig 1. The average (lines) and standard deviation (shaded background) for nonpreprocessed spectra of in vitro (A, C) and ex vivo
measurements (C) before and after outlier exclusion (OE). Similarly, preprocessed versions of the spectra are presented (B and D,
the optimal preprocessing when predicting ICRS and Mankin score).
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(AvaSpec-ULS2048L, l ¼ 0.35-1.1 mm, Dl ¼ 0.6 nm
and AvaSpec-NIR256-2.5-HSC, l ¼ 1.0-2.5 mm, Dl ¼
6.4 nm; Avantes BV, Apeldoorn, Netherlands), a light
source (AvaLight-HAL-(S)-Mini, l ¼ 0.36-2.5 mm,
Avantes BV), and an arthroscopic optical probe.28 The
custom-made probe resembles the conventional
arthroscopic hook and has a total of 114 optical fibers
(fiber diameter ¼ 100 mm) within the sterilizable
stainless-steel housing (outer diameter ¼ 3.25 mm).
Thinner fibers (with a smaller minimum bend radius)
were used to support the hook-based design.
During the ex vivo spectral measurements, joint

cavities were irrigated and distended with saline simi-
larly to routine clinical arthroscopy to enhance the
visibility of the articulating surfaces and to ease probe
alignment. The probe was aligned perpendicular and in
contact with cartilage surface under the guidance of a
conventional endoscope (4 mm, 30� inclination, Karl
Storz GmbH & Co.) to prevent spectral saturation from
the fluid environment (effective absorber of NIR light).
A total of 15 spectra were recorded per location with
each spectrum consisting of 10 coadded spectra
(acquisition time per location ¼ 2.4 seconds).
The spectral measurements were repeated in vitro on

osteochondral plugs extracted from the same ex vivo
measurement locations. Contrary to the ex vivo mea-
surements where optimal probe alignment could not be
always ensured, in in vitro measurements the sample
plugs were fixed into a goniometer (#55-841; Edmund
Optics Inc., Barrington, NJ) to achieve reliable contact
between the probe and the sample surface.
Spectral Preprocessing
Before preprocessing, data from the spectral region of

0.35 to 1.10 mm were downsampled to the same reso-
lution as data from the spectral region of 1.0 to 2.5 mm
and combined. An open-source preprocessing module
nippy27 was used in Python 3.7 to create datasets with
different combinations of preprocessing as highlighted
by Torniainen et al. The preprocessing options used
included smoothing, scatter correction techniques, and
trimming. A third-degree Savitzky-Golay filter with 0th
(i.e., smoothing), first, and second derivatives with
different filter windows (5-47) were evaluated. For
scatter correction, standard normal variate and local-
ized standard normal variate (LSNV, windows ¼ 2i,
i ¼ 1-6) were tested. The spectral regions of 0.70 to 1.90
mm, 0.75 to 1.85 mm, 0.70 to 1.375 mm and 1.525 to
1.90 mm; 0.75 to 1.375 mm and 1.525 to 1.85 mm were
tested separately. The visible spectral region (0.35-0.70
mm) was excluded due to the interference originating
from the endoscope. The spectral region 1.90 to 2.50
mm was excluded due to the poor signal-to-noise ratio
(high water absorption).

Histology
The osteochondral plugs were halved and one half

was decalcified in ethylenediaminetetraacetic acid, cut
into 3-mm thick sections (n ¼ 3), and stained with
Safranin-O (attracted by PGs). Digital densitometry
system, consisting of a light microscope (Nikon Micro-
phot-FXA; Nikon Co., Tokyo, Japan) with a mono-
chromatic light source (wavelength 492 � 8 nm) and a



Fig 2. Boxplots along with individual samples (gray) and outliers (red) of reference variables (A). Four representative
microscopy images (B, I-IV) are presented with their reference parameter values indicated in subfigure A.
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12-bit CCD camera (ORCA-ER; Hamamatsu Photonics
K.K., Hamamatsu, Japan), was used to determine sec-
tions optical density (OD w PG content). The system
was calibrated with neutral density filters (0-3.0). The
severity of OA was evaluated with 3 histologic grading
systems: modified Mankin score,6 OARSI grading,5 and
ICRS grading7 (Fig 2). Four independent assessors
(M.P., R.S., M.H., and N.H.) scored the sections in a
randomized order and the final score for each sample
was determined as the average over the 3 sections. The
same sections were used for digital densitometry and
histologic grading.

Regression Analysis
Before regression analysis, spectral (multivariate) and

reference parameter (univariate) outliers were investi-
gated. The in vitro spectra were visualized to ensure the
absence of hardware-related recording errors. In the
preprocessing of ex vivo spectra, 10 hardware-related
outliers were identified and excluded. For univariate
values, the normality of distribution (non-normal for all
references) was determined with the one-sample
KolmogoroveSmirnov test and, thus, any values
exceeding 3 median absolute deviations from the
reference median were excluded.
PCA was used due to its ability to reduce the high

dimensionality and collinearity of datasets, thereby
enabling less computationally exhaustive modeling and
outlier estimation, as well as reducing the chances of
overfitting. PCA scores along with the nested data
(i.e., patient, left/right, femur/tibia/patella, and mea-
surement site) were used as inputs for the LME model.
In the modeling, 8 cadavers were assigned as the

training set and a single cadaver was assigned as the
independent test set. The test set was subsequently
changed (9 iterations) until all cadavers were used (also
known as nested cross-validation). The in vitro models
were calibrated and optimized using 10-fold cross-
validation with the number of PCA scores limited to
12. The model with the smallest root-mean-square
error of cross-validation (RMSECV) was selected to
minimize overfitting. The optimal preprocessing pipe-
line was selected based on the highest median
Spearman rank correlation in the independent test set.



Table 1. Performance Metrics as Median (Interquartile Range) for Optimized PCA-LME Model, Classifier, and Ex Vivo
Predictions

PG Content ICRS OARSI Mankin

In vitro PCA-LME Train r 0.739 (0.033) 0.757 (0.012) 0.759 (0.009) 0.734 (0.012)
RMSECV 0.185 (0.005) 0.536 (0.014) 0.800 (0.032) 1.381 (0.043)

N 8 (2) 8 (2) 7 (1.25) 8 (1.25)
Test r 0.583 (0.371) 0.687 (0.253) 0.731 (0.291) 0.669 (0.258)

RMSE 0.256 (0.148) 0.628 (0.206) 0.911 (0.282) 1.772 (0.607)
SRL r 0.561 (0.420) 0.715 (0.387) 0.671 (0.263) 0.693 (0.252)

RMSE 0.246 (0.147) 0.602 (0.150) 0.830 (0.368) 1.718 (0.641)
Ex vivo All Test r 0.421 (0.505) 0.492 (0.274) 0.555 (0.230) 0.379 (0.253)

RMSE 0.286 (0.173) 0.825 (0.340) 1.057 (0.201) 2.145 (0.729)
Classifier Train Accuracy 0.775 (0.027) 0.850 (0.010) 0.850 (0.015) 0.807 (0.009)

F1-score 0.775 (0.027) 0.859 (0.010) 0.849 (0.014) 0.710 (0.020)
Test Accuracy 0.484 (0.042) 0.581 (0.125) 0.538 (0.050) 0.687 (0.110)

F1-score 0.431 (0.082) 0.533 (0.138) 0.507 (0.021) 0.503 (0.045)
OutlierS % 52.7 (9.0) 61.1 (21.6) 41.9 (8.7) 78.9 (4.1)
OutlierN % 0 (4.4) 24 (19.6) 0 (15.8) 24 (13.9)

r 0.522 (0.481) 0.716 (0.315) 0.630 (0.227) 0.586 (0.383)
RMSE 0.274 (0.173) 0.703 (0.247) 0.946 (0.193) 1.876 (0.548)

SRL r 0.513 (0.481) 0.686 (0.305) 0.599 (0.210) 0.515 (0.368)
RMSE 0.274 (0.165) 0.703 (0.256) 0.952 (0.171) 1.876 (0.548)

Same locations (SRL) are presented to enable better comparison between in vitro and ex vivo performance. OutlierS presents the percentage of
spectra excluded by the classifier and OutlierN the percentage of excluded measurement locations (i.e., the location was excluded if all 15 spectra
were outliers).
ICRS, International Cartilage Repair Society; OARSI, Osteoarthritis Research Society International; PCA-LME, principal component

analysiselinear mixed-effects; PG, proteoglycan; RMSECV, root mean square error of cross-validation.
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Arthroscopic Outlier Detection
Due to the relatively narrow joint cavities and limited

field of view in the ex vivo measurements, optimal
contact between the cartilage surface and probe could
not always be ensured. Furthermore, the high water
content of cartilage makes the spectral separation be-
tween the measurements with good and bad contact
especially challenging and, thus, a classifier was trained
to identify spectra with non-optimal contact. The per-
formance of classifiers, including fine k-nearest neigh-
bors (kNN), weighted kNN, and support vector
machines (SVM), was investigated due to their superior
performance in the initial testing. The classifier opti-
mization was performed as follows: the cross-validated
PCA-LME model was used to predict the properties
based on the ex vivo spectra of the 8 cadavers (same as
in training). If the error between the predicted and
Table 2. Optimal Preprocessing Pipelines for Different Models W
(filter_win)

Scatter Correction

PCA-LME PG content LSNV_win: 10
ICRS LSNV_win: 6
OARSI LSNV_win: 2
Mankin LSNV_win: 6

Classifier PG content LSNV_win: 6
ICRS LSNV_win: 2
OARSI LSNV_win: 4
Mankin LSNV_win: 6

ICRS, International Cartilage Repair Society; LSNV, localized standard n
PCA-LME, principal component analysiselinear mixed-effects; PG, proteo
reference value was greater than a set threshold
(2 � RMSECV, 3 � RMSECV, or half set as outliers), the
label was set to 1 (¼ outlier), otherwise to 0. These
labels along with PCA scores (N ¼ 12) of ex vivo spectra
were then used to train a 10-fold cross-validated
classifier, which was used to classify the remaining
independent arthroscopic measurements (one
cadaver). The effect of preprocessing pipeline on clas-
sifier performance was also investigated. Ultimately, the
performance of the same retained locations in both
in vitro and ex vivo should be equaldthis was used as
an indicator (along with classifier accuracy and
F1-score) to determine the optimal combination of
algorithm, threshold, and preprocessing. The combi-
nations that classified <10% or >90% of ex vivo
spectra as outliers were not included as these were not
considered realistic.
ith Their Derivative Order (deriv_order) and Window Size

Preprocessing Spectral Range, mm
deriv_order: 1, filter_win: 23 0.70-1.90
deriv_order: 2, filter_win: 15 0.70-1.375, 1.525-1.90
deriv_order: 0, filter_win: 47 0.70-1.375, 1.525-1.90
deriv_order: 2, filter_win: 15 0.70-1.375, 1.525-1.90
deriv_order: 0, filter_win: 35 0.70-1.375, 1.525-1.90
deriv_order: 0, filter_win: 7 0.75-1.375, 1.525-1.85
deriv_order: 0, filter_win: 11 0.75-1.375, 1.525-1.85
deriv_order: 0, filter_win: 31 0.70-1.90

ormal variate; OARSI, Osteoarthritis Research Society International;
glycan.



Fig 3. Predicted and reference values for PG content (A), ICRS (B), OARSI (C), and modified Mankin (D) scores are presented
for the independent test (1 iteration out of 9), including their linear fits (dashed lines) and the median linear fit of the 9 iterations
(solid lines). In vitro, ex vivo, and ex vivo after outlier exclusion (OE) are presented separately. (ICRS, International Cartilage
Repair Society; OARSI, Osteoarthritis Research Society International; PG, proteoglycan.)
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Statistical Analysis
The PCA-LME model performance was evaluated

based on performance in calibration (Spearman rank
correlation [r], RMSECV) and the independent test
(r, RMSE). As a statistic, the median was chosen over
the average as it is less susceptible to outliers. Model and
classifier training were performed in MATLAB (R2020b,
MathWorks, Natick, MA). The level of significance was
set at P < .05. Data of the current study are available
from the corresponding author on reasonable request.

Results
The distributions of reference properties were all non-

normal with a single outlier detected with the Mankin
score (Fig 2). The optimal PCA-LME models had a
moderate performance with the histology scores
(i.e., ICRS, OARSI, and Mankin) and slightly poorer
performance with PG content (Table 1: PCA-LME). The
optimal preprocessing pipelines always included scatter
correction (i.e., LSNV); furthermore, for the histologic
scores, the combination of spectral regions of 0.70 to
1.375 and 1.525 to 1.90 mm was optimal (Table 2). The
optimal preprocessing pipelines for ICRS and Mankin
scores were identical.
Before outlier classification, the initial performance of

the PCA-LME models on ex vivo spectra was assessed
(Table 1: All Test). The optimal combination of
preprocessing, classifier algorithm, and threshold sub-
stantially improved model performance on the ex vivo
performance of the independent test set (r ¼ 0.462 to
0.614, RMSE¼ 1.078 to 0.950, P¼ .019 to .008, Fig 3). To
better compare in vitro and ex vivo performance in the
test set, a comparison of same retained locations revealed
slightly different performance (r¼ 0.660, RMSE¼ 0.849,
P ¼ .001 vs r ¼ 0.578, RMSE ¼ 0.951, P ¼ .018, respec-
tively). In addition, to estimate model reliability, the
prediction error was assessed in 4 classes (i.e., dividing
reference ranges to four equally spaced subranges),which
revealed the prediction error to be smallest with the 2
middle classes. Although the percentage of outlier spectra
(Table 1: OutlierS) was relatively high, the exclusion
percentage of measurement locations was substantially
lower (Table 1: OutlierN). The variability in the percent-
age of outliers between reference properties relates to the
differences in spectral preprocessing, the performance of
the PCA-LME model (RMSECV as a metric for data
labeling), and the accuracy of the classifier (prediction
reliability).
The optimal preprocessing pipelines for classification

systematically included scatter correction (i.e., LSNV)
and smoothing (i.e., no derivative preprocessing,
Table 2). The outlier thresholds of 3 � RMSECV and
50% were optimal for the histology scores and PG
content, respectively. The optimal classifiers for PG
content, ICRS, OARSI, and modified Mankin score were
fine-kNN, SVM, weighted kNN, and fine-kNN, respec-
tively. Overall, none of the algorithms performed sys-
tematically better than the others and SVM classified
more spectra as outliers than the kNN algorithms. We
also investigated classifier performance when using the
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same preprocessing pipeline as in the modelling; how-
ever, the ex vivo performance was systematically worse
compared with the optimized pipeline (r ¼ 0.452 to
0.614, RMSE ¼ 1.032 to 0.950, P ¼ .027 to .008).
Outlier exclusion decreased the standard deviation of

ex vivo spectra by 23.3% and also decreased the ab-
sorption at 1.4 mm (water peak, Fig 1), depicting the
exclusion of spectra with saline interference (i.e., more
water). Most importantly, the visualization of ex vivo
spectra before and after outlier exclusion confirmed
that extreme spectra were excluded.

Discussion
In this study, we demonstrate that NIRS is capable of

estimating cartilage lesion severity and PG content
during an ex vivo arthroscopy, thus validating the hy-
pothesis. The in vitro performance of PCA-LME models
was moderate to strong and the ex vivo arthroscopic
performance was slightly poorer, which was never-
theless substantially improved by excluding outlying
spectra. We therefore, believe the technique could
provide previously unobtainable diagnostic information
during arthroscopic surgery.
NIRS has been previously applied to estimate cartilage

histologic scores in animals29 and humans16,18,19

in vitro. In addition, ICRS scores based on visual evalu-
ation in arthroscopy have been associated with
in vitro19,30 and in vivo31 NIRS measurements. The
human studies16,18,19,30,31 have employed varying
spectral ranges and analysis techniques with none ac-
counting for the spatial dependency caused by multiple
measurements per subject or validating model perfor-
mance by independent testing. McGoverin et al.16 re-
ported a similar cross-validation error (PLS: calibration
R2 ¼ 0.84, RMSECV ¼ 1.3) on modified Mankin score
with the spectral region 1.11-2.27 mm, whereas Afara
et al.18 presented slightly poorer performance (PLS:
calibration R2 ¼ 0.83, RMSECV ¼ 1.6) on Mankin score
using the spectral region of 0.40-1.10 mm. In addition,
Stumpfe et al.19 demonstrated moderate correlation
(PLS: r ¼ 0.54) between the spectral region 0.95 to 1.70
mm and Mankin score but no error statistics or any
means of cross-validation were reported. Marticke
et al.30 reported a negative relationship (r ¼ e0.47)
between arthroscopic ICRS score and a spectral charac-
teristic value (estimated as a linear combination of 2
spectral peaks), whereas Spahn et al.31 reported a posi-
tive association with spectral ratio (ratio of the same 2
peaks). Direct comparison of the aforementioned studies
is limited due to their simplistic analysis approach.
Overall, the findings of this study agree with in vitro
performance of previous studies and extend technique
validity and application for in vivo application.
Previous studies associating PG content with NIR

spectra have focused on bovine20,21 and equine
cartilage.8,12 Few studies have also investigated the
PG content of engineered cartilage constructs.32-34

The bovine studies of Brown et al.20 and Afara
et al.21 both used the spectral region 0.8 to 2.5 mm,
PLS regression, and assessed PG content after various
stages of artificial depletion. Brown et al.20 presented
a significant distinction between normal and PG
depleted samples, whereas Afara et al.21 demon-
strated a superior cross-validated performance (cali-
bration R2 ¼ 93.76, RMSECV ¼ 0.573) based on data
within the spectral regions 0.8 to 1.0 mm and 1.55 to
1.84 mm. The calibration correlation of Afara et al.21 is
substantially greater than that found in this study (r ¼
0.739, RMSECV ¼ 0.185), whereas the cross-
validated errors are similar, considering the ranges
of OD values (0.2-1.5) and PG scores (0-4) in this and
their study,21 respectively. The higher correlation
could be explained by their use of leave-one-out (vs
k-fold) cross-validation and smaller sample size. Sarin
et al.8 applied a similar cross-validation scheme and
also validated the performance for arthroscopy on
equine. The validation performance of their CNN (r ¼
0.691, RMSECV ¼ 0.274) was fairly similar. Further-
more, the validation performance on arthroscopic
spectra was inferior to the aforementioned perfor-
mance, similar to the present study. Most importantly,
it’s evident that prediction of PG content is possible
and reproducible both for equine and human carti-
lage; although, their thickness varies greatly (0.14-
1.36 mm and 1.23-5.90 mm, respectively8,13). Due to
the superior performance of sophisticated machine-
learning approaches over conventional chemo-
metrics techniques,35 the combination of CNN and
protocols accounting for data dependency could
benefit future studies.
The NIRS literature of the aforementioned publications

provides the groundwork for clinical adaptation of NIRS
in cartilage assessment. Nowadays, arthroscopic cartilage
evaluation usually relies on visual estimation and in-
strument palpation, which has limited reliability in
cartilage defect grading.4,36 Here, NIRS enables the
estimation of PG content and defect severity in a situa-
tion resembling that of arthroscopic surgery without the
need for destructive sample extraction. This nonde-
structive evaluation could enable the objective classifi-
cation of cartilage defects and further enable the
monitoring of potential treatment options in cartilage
repair. In addition, the technique enables the mapping of
the extent of traumatic cartilage injuries that would
assist in the treatment decision-making and open new
possibilities to evaluate the prognosis of a cartilage defect
in joint trauma. For example, post-traumatic cartilage
degeneration is a well-known consequence of an ante-
rior cruciate ligament rupture, even after a successful
anterior cruciate ligament reconstruction.37,38 NIRS
could enable the evaluation of this post-traumatic pro-
cess in the knee and other joints.
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Outlier detection is essential in both the initial model
training and validation, followed by ensuring the validity
of new data (i.e., no unreliable predictions). For this
study, median-based statistics were chosen due to their
inherent property of being less sensitive to outliers
(compared with average). Estimation of spectral
(multivariate) outliers is challenging and, thus, dimen-
sion reduction techniques, such as PCA, have been
popular.8,13,15 Furthermore, due to the high water
content of cartilage, the spectral separation between the
measurements with poor and good contact is especially
challenging and requires further validation (i.e., a
designated study). Therefore, the spectral outliers highly
resemble the nonoutlier spectra. In 2 studies by Sarin
et al.,8 a 3-dimensional volume was created based on
PCA scores of in vitro data and arthroscopic spectra
falling outside this volume were deemed outliers. The
exclusion percentages were 4.5% to 23.5% and
3.1%.8,15 Prakash et al.13 used a similar outlier exclusion
as in this study with similar accuracy of 50% to 70% in
the test set but a relatively lower percentage of outliers
(33%). Interestingly, after outlier exclusion, their cor-
relation coefficients improved but error variance sub-
stantially increased. In this study, both the error and its
variance decreased after outlier exclusion. Several
studies14,31,39 focusing on in vivo spectral measurements
do not provide any means for outlier exclusion,
although highlighting the difficulty of in vivo measure-
ments.39 In future studies, outlier detection may also
benefit from the latest innovations, such as extended
isolation forests.40

Limitations
Some limitations were evident in this study. The

number of cadavers was relatively low and could lead to
limited range (nonrepresentative) of reference proper-
ties; however, several locations were assessed in exten-
sive laboratory measurements, thereby sufficiently
increasing the number of observations. A relatively high
percentage of outlier spectra depicts the challenge in
probe alignment within the joint cavity to ensure
optimal contact with the cartilage surface, as also high-
lighted by Spahn et al.39 However, the percentage of
outlier locations (i.e., all 15 spectra excluded) was sub-
stantially lower, indicating that a successful measure-
ment was acquired in most of the locations.
Conclusions
NIRS is capable of nondestructive evaluation of

cartilage integrity (i.e., histologic scores and PG con-
tent) under similar conditions as in clinical arthroscopy.
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