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Abstract

A disturbance of glucose homeostasis leading to type 2 diabetes mellitus (T2DM) is one of

the severe side effects that may occur during a prolonged use of many drugs currently avail-

able on the market. In this manuscript we describe the most common cases of drug-induced

T2DM, discuss available pharmacotherapies and propose new ones. Among various phar-

macotherapies of T2DM, incretin therapies have recently focused attention due to the newly

determined crystal structure of incretin hormone receptor GLP1R. Incretin hormone recep-

tors: GLP1R and GIPR together with the glucagon receptor GCGR regulate food intake and

insulin and glucose secretion. Our study showed that incretin hormone receptors, named

also gut hormone receptors as they are expressed in the gastrointestinal tract, could poten-

tially act as unintended targets (off-targets) for orally administrated drugs. Such off-target

interactions, depending on their effect on the receptor (stimulation or inhibition), could be

beneficial, like in the case of incretin mimetics, or unwanted if they cause, e.g., decreased

insulin secretion. In this in silico study we examined which well-known pharmaceuticals

could potentially interact with gut hormone receptors in the off-target way. We observed that

drugs with the strongest binding affinity for gut hormone receptors were also reported in the

medical information resources as the least disturbing the glucose homeostasis among all

drugs in their class. We suggested that those strongly binding molecules could potentially

stimulate GIPR and GLP1R and/or inhibit GCGR which could lead to increased insulin

secretion and decreased hepatic glucose production. Such positive effect on the glucose

homeostasis could compensate for other, adverse effects of pharmacotherapy which lead

to drug-induced T2DM. In addition, we also described several top hits as potential substi-

tutes of peptidic incretin mimetics which were discovered in the drug repositioning screen

using gut hormone receptors structures against the ZINC15 compounds subset.

Introduction

Since 1980 the number of people living with diabetes has nearly quadrupled according to

World Health Organization [1]. The most predominant form of diabetes is type 2 diabetes

mellitus (T2DM) which starts from developing insulin resistance and usually relative (rather
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than absolute) insulin deficiency. It occurs more frequently in women with prior gestational

diabetes mellitus and in individuals with hypertension or dyslipidemia. Interestingly, its fre-

quency and success in pharmacotherapy varies in different ethnic subgroups [2, 3]. Another,

often neglected, reason is pharmacotherapy of chronic diseases [4]. The risk of developing

T2DM increases with age, obesity and lack of physical activity. Its prevalence among older peo-

ple is bringing interest from public health-care managements for necessity of benefit-risk judg-

ments [5].

Homeostasis of glucose serum levels can be disturbed by pharmacotherapy in three major

areas: pancreas, liver and peripheral tissues which are associated with glucose and insulin pro-

duction and secretion [4]. Growing data in the genomics and metabolomics fields of research

provided evidence that occurring of particular SNPs (single nucleotide polymorphisms) and

particular amino acids in the baseline plasma metabolite level can be associated with the

increased risk for drug-induced diabetes [6]. On the other hand, particular drug classes, e.g.,

glucocorticosteroids, statins, diuretics and beta-blockers [3, 4] may induce diabetes type 2

more frequently than the other drug classes due to their influence on the hepatic glucose pro-

duction, pancreatic insulin secretion and peripheral tissues insulin sensitivity [7]. The complex

molecular mechanism of drug-induced T2DM varies from one drug class to another (e.g. beta-

blockers [3] vs. steroids [8]) and still is not fully understood because there are many pathways

involved in insulin secretion which could be directly or indirectly affected by a given drug [8].

In general, one of the major causes of side effects such as T2DM is a weak selectivity of drugs

resulting in occurrence of the off-target interactions [9, 10]. Such off-target interactions may

not necessarily involve an original drug but, for example, its active metabolites [11, 12]. A

notable example of the experimentally confirmed off-target interaction leading to hyperglyce-

mia was detected between simvastatin, which on-target is HMG-CoA reductase, and L-type

Ca2+ channels [8]. Both, on and off-targets of simvastatin are alpha-helical transmembrane

proteins but they differ in localization (endoplasmic reticulum vs. cellular membrane). The

location of the intended molecular target (on-target) of a given drug in particular body tissues

and organs (gut, liver, pancreas, CNS, blood vessels) is an important premise to trace its unin-

tended targets (off-targets) and prevent associated side effects [13, 14]. For instance, a change

of molecular targets from salt transporters to urea transporters which are expressed specifically

in kidneys [15] could be a way to minimize side effects of diuretics [15]. Another well-known

examples of avoiding side effects in the field of pharmacotherapy of hypertension are: an older

study on angiotensin receptor blockers [16, 17] and a more recent study on SPAK kinase

inhibitors [17].

There are also other ways to deal with drug-induced diabetes and other drug side effects,

for example, a polytherapy. Any polytherapy can be optimized in the direction of side effects

elimination caused by selected groups of drugs, by adding another ‘protecting’ drug to the

therapy, e.g., mentioned above angiotensin receptor blockers to hydrochlorohiazide [18] or a

potassium supplement to chlortalidone (thiazide analog) [19]. Both mentioned examples of

polytherapy protect patients from developing new-onset diabetes while treating hypertension.

Also, broadly understood SAR (structure-activity relationship) studies lead to the introduction

of more pharmacologically effective analogs with much milder side effects, also with regard to

drug-induced T2DM, e.g., beta-1 selective blockers vs. old beta-blockers [9, 20]. Pharmaco-

phore modeling, QSAR studies, ADME/ADME-Tox properties prediction and other in-silico

methods for SAR (structure-activity relationship) determination are standard approaches to

improve drug selectivity not only for the sake of its efficacy but also to reduce its off-target or

toxic effects [21, 22]. For example, in a recent study [23] the molecular docking was used to

discriminate compounds which caused adverse drug reactions involving HLA surface

proteins.
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In the current work, we proposed the in silico solution to drug-induced diabetes problem

which, e.g., could help to select the least harmful pharmacotherapies for diabetics. Our solution

was based on the positive incretin effect which could be enhanced by drugs in the off-target

manner and which could compensate for their negative effect on the glucose homeostasis in

other metabolic pathways. Namely, for several commonly used drug classes, we gathered medi-

cal information on drug-induced diabetes available in the literature and also deposited in

SIDER (Side Effect Resource) [24] and convert it, where possible, into T2DM-related drug

rankings inside each drug class. Then, we selected the compounds library which included

those drug classes (ZINC15 FDA-approved drugs) and carried out the virtual screening (VS)

study against that library using structures of incretin receptors. We limited all known glucose

homeostasis-disruptors among drugs to such drug classes for which the relative diabetogenic

effect among their members was reported in details and thus the T2DM-related ranking for

those drug classes could be easily prepared. Although our results are preliminary, we observed

a correlation between T2DM-related drug rankings and drug-receptor binding affinities

obtained from VS. Based on that, we managed to accurately nominate the least harmful drugs

for the glucose homoeostasis in each drug class from four commonly used drug classes (beta-

blockers [25], statins, diuretics, steroids). The most accurate predictions were obtained for the

beta-blockers drug class and were described in the separate manuscript [25] that is comple-

mentary to the current study. Briefly, in that manuscript, we hypothesized that the new genera-

tion beta-blockers, observed clinically as less T2DM-inducing than the old generation, could

owe that advantage, at least partially, to the compensating incretin effect enhanced by their off-

target interactions with gut hormone receptors. In the current manuscript we described simi-

lar observations made for other drug classes of known glucose homeostasis disruptors. Espe-

cially, in the case of statins, we managed to accurately select the least harmful drugs in that

drug class which could owe that effect, at least partially, to potential off-target interactions with

gut hormone receptors.

We selected gut hormone receptors for the purpose of the current study for two reasons.

One reason is their major role in the glucose metabolism (see below). The other reason is their

expression pattern. Gut hormone receptors are expressed in the gastrointestinal tract where

also orally administrated drugs are absorbed to the circulatory. It was confirmed, e.g., in [13]

that tissue expression and cellular localization of the potential off-target proteins play crucial

role in occurrence of the associated drug side effects. That is why we believe that both, function

and localization of gut hormone receptors are factors which make our computational study on

the drug off-target interactions plausible.

Gut hormone receptors, also known as glucagon receptors, constitute of three G protein-

coupled receptors (GPCRs) from the class B (secretin-like) receptors: glucagon receptor

(GCGR), glucagon-like peptide 1 receptor (GLP1R) and gastric inhibitory polypeptide recep-

tor (GIPR). Only two of them (GIPR and GLP1R) are named incretin hormone receptors.

However, it is common in the literature to refer the incretin effect not only to the stimulation

of GIPR and GLP1R but also to the inhibition of GCGR. Endogenous peptide ligands of GIPR,

GLP1R and GCGR regulate glucose homeostasis and affect insulin secretion [26, 27]. GCGR,

GIPR and GLP1R are expressed mainly in digestive system (pancreatic beta-cells, intestine,

liver and kidney) and also in circulatory (heart, blood vessels) [28], which is the target system

of, e.g., beta-blockers. Thus, the first response of the central nervous system (CNS) to glucose

is observed at the gut level, prior to absorption to the circulation [29]. Moreover, GLP1R

receptors which are expressed in brain activate hypothalamus providing negative feedback

when sensing the oral nutrient overload and thus play a role in appetite regulation and reduc-

ing the body weight [26]. As we mentioned above, such gastrointestinal localization of incretin

hormone receptors might favor off-target interactions with orally administrated drugs. For
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example, it was confirmed in mouse and later in human studies that orally administrated met-

formin can influence the gut-brain axis by stimulating off-target interactions with the incretin

receptor GLP1R [30].

As for the use in pharmacotherapy, incretin hormones GIP and GLP have focused attention

a long time ago during the study on variation of insulin secretion depending on the glucose

administration route (food vs. injection) [28]. Nevertheless, the first peptidic GLP1R agonist

to be used as a drug was approved by FDA in 2005 (exenatide—Byetta) [26] and still the num-

ber of small-molecule non-peptidic compounds targeting incretin hormone receptors to treat

diabetes and obesity is extremely small [28]. Only recently, Food and Drug Administration

and European Medicines Agency have issued an assessment on the incretin-based therapeutics

[31]. Thus, incretin therapies became the second or third line treatment options for diabetes

type 2 [32]. Unfortunately, currently available agonists are peptides (GLP or GIP analogs) of

low bioavailability and half-life [33] and potentially may increase other side effects themselves

[31, 34]. Therefore, discovering of small molecule non-peptidic ligands is of high interest [35].

Progress in crystallography of the class B GPCRs [36–41] will undoubtedly raise the number of

drug discovery studies targeting that class of receptors for the next years [28, 33]. As for the

mechanism of action which is the basis of incretin therapies, the increase in GIP and GLP con-

centration positively affects blood insulin levels, while, on the contrary glucagon increases

hepatic production of glucose [42, 43]. Importantly, GIP stimulates also pancreatic beta-cell

proliferation and prevents beta-cell apoptosis. Both effects, from incretin hormones and gluca-

gon were used to develop anti-diabetes agents: GLP1R and GIPR agonists [44, 45] or antago-

nists [26] and GCGR antagonists [46, 47]. Recently, a dual agonist for GCGR and GLP1R [48]

and a triple-action agonist (triagonist) for all three receptors enhancing the incretin effect and

simultaneously acting as a buffer for diabetogenic effect of glucagon has been developed [49,

50]. Developing new small-molecule ligands for incretin hormone receptors can be carried out

by drug discovery or drug repurposing. We decided to extend the current study on off-target

interactions by the latter approach. Namely, the second part of our work was dedicated to the

drug repositioning (or drug repurposing) concept. According to [51, 52] drug repositioning is

simply finding new uses for existing drugs. That phenomenon is based on the observation of

common molecular pathways for different active pharmaceutical ingredients (APIs). It is

widely known that the occurrence of side effects gives indications for the use of a particular

API in different pathological units than the one for which clinical trials were originally con-

ducted. There are many APIs [51], for which a new functionality was defined based on the

observed adverse reactions. For example, thalidomide mutagenic effect was used for treatment

of cancer. In order to find new APIs to use in incretin therapies we carried out the virtual

screening study using gut hormone receptors structures and the limited ZINC15 subset which

included drugs already available on the market (FDA-approved drugs). As a result, several

pharmaceuticals were proposed as potential substitutes of incretin peptides mimetics in the

incretin therapies.

We decided to use virtual screening as a strategy for drug repositioning because of its docu-

mented usefulness in drug discovery and lead optimization studies described, e.g., in the recent

manuscript of D. Rognan [53]. In general, virtual screening methods can be very effective

when the experimental knowledge is combined with a proper computational approach. The

critical analysis of VS results reports the average hit rates of ca. 13% and that is much higher

than for typical experimental HTS hit rates (0.01%–0.14%) [54]. An example of a successful in
silico approach was described in [55]. Docking of the lead-like ZINC subset with about 1 mil-

lion compounds to a crystal structure of the β2-adrenergic receptor resulted in the final selec-

tion of 25 compounds based only on the high docking score. The following experimental

analysis of those compounds showed that six of them were indeed bound to the receptor and
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one compound exhibited an excellent potency with Ki equal to 9 nM. That provided an excel-

lent hit rate of 24%. In another study [56], authors docked a library of over 3 million com-

pounds against the μ-opioid receptor structure and identified new scaffolds unrelated to

known opioids. Less than 50 tested compounds were selected for further analysis and a final

lead molecule—PZM21, an agonist with potency and efficacy similar to morphine, was discov-

ered. Tested in mouse hotplate assays, PZM21 showed reduced adverse effects and, however

still in the basic research, is considered as a possible first effective and safe opioid pain-killer.

Above examples reflect that VS methods can be a powerful tool in computer-aided drug

discovery.

Results and discussion

Structural features of incretin hormone GPCRs

Available to date crystal structures of gut hormone GPCRs from class B (see Table 1 and Fig 1)

showed a few distinct features of those receptors compared to class A GPCRs. Namely, N-termi-

nal helix is longer than in the case of the class A GPCRs and with a linker, called a stalk, is joined

with extracellular domain (ECD) binding peptide hormones. A long extracellular loop 1 (EC1)

is involved in the peptide binding. The orthosteric peptide binding site surrounded by EC loops

is much more spacious than that in the class A while containing the same disulphide bond con-

necting EC2 with transmembrane helix 3 (TMH3). The most distinct feature of class B GPCRs

is the localization of the additional allosteric binding site between TMH6 and TMH7 that faces

the lipid bilayer [37]. The major determinant of the negative allosteric modulation (NAM)

selectivity between GLP1R and GCGR is C/F6.36 [40] (see Fig 1). C6.36 in GLP1R has been

identified to be crucial for covalent interactions with positive allosteric modulators (PAMs)

[40]. In the current study, we performed docking to both, orthosteric and allosteric binding site

of the selected class B GPCRs. Mechanism of the class B activation involves moving away the

intracellular part of TMH6 from the receptor center and the clockwise rotation of the extracel-

lular ends of TMH1, TMH6 and TMH7 as showed in the partly activated 5NX2 structure of

GLP1R [39]. The cryo-EM active structure of GLP1R (PDB id: 5VAI) [57] revealed also the

extended extracellular end of TMH2 (with shorter ECL1) to form interactions with a peptide.

In Fig 1, we showed representative examples of GPCR models used in the current study.

Two possible binding sites were depicted. The first one was the orthosteric binding site located

inside the transmembrane domain but facing the extracellular space. The second one is the

allosteric binding site between helices TM5-7 that faces the interior of the lipid bilayer. On the

right panel we presented in details residues in the area of the allosteric binding site. Arg6.35

(residue numbering fit Hollenstein et al. [58]) and Asn7.61 are conserved among all studied

class B GPCRs. In the GLP1R structure Arg6.35 forms a hydrogen bond with a side chain of

Asn8.47 located at the beginning of the helix H8. Residues important for the ligand binding

(see 5XEZ and 5XF1): Leu7.56, Lys6.40, Ser6.40 and Thr6.44 are also conserved in the gluca-

gon GPCRs. The mentioned above residue Phe6.36, associated with selectivity of allosteric

modulation, which is located at the N-terminal end of TMH6, is substituted with Leu (GIPR)

and Cys (GLP1R). Leu5.65 at the C-terminal end of TMH5 is conserved among the selected

class B GPCRs (the LxxL motif [59]).

Diabetogenic and potential incretin effects demonstrated by selected drug

classes

Although relative diabetogenic effects of drugs inside the commonly used drug classes are

studied at least to the minor extent in several cases (see Tables B and C in S1 File), there is only
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few studies comparing drug classes to each other such as, e.g., Elliot et al. [60] or [61], where

beta-blockers were compared to diuretics. In those studies, it was emphasized that such infor-

mation is crucial for selection the least harmful pharmacotherapy of hypertension in diabetic

patients. In our study we proposed the in silico approach for performing such selection.

Namely, based on [62–64] we gathered various drug classes which are known to disrupt

glucose metabolism (see Fig 2). Then, we performed the VS study using structures of gut hor-

mone receptors against the compounds library containing those drug classes and computed

the average XP-GScore for all drugs from each class (see Fig 2). Those average XP-GScores

reflected the average strength of the binding affinity of the particular drug class for gut hor-

mone receptors. We suspected that, drug classes (neurosteroids and thiazides) with the weak-

est theoretical binding affinity for the selected GPCRs most probably do not exhibit any off-

target interactions with them. On the other hand, drug classes (beta-blockers and statins)

Table 1. Template structures used for the receptor model building and model quality assessment (partly adapted from [25]).

Receptor Domain, ligand Conformational

state

PDB id PDB structure modifications GPCR models build on this template

GCGR TMD inactive 4L6R MD (only for GCGR and GIPR) GCGR, GIPR, GLP1R

GCGR TMD inactive 5EE7 MD (only for GCGR and GIPR) GCGR, GIPR, GLP1R

GCGR TMD inactive 5XEZ MD (only for GCGR) GCGR

GCGR TMD, ECD,

Glucagon

active MD simulation based on

4L6R and 4ERS

Seven N-terminal residues of

glucagon truncated

Filtering based on steric hindrances—

GCGR, GIPR, GLP1R

GLP1R TMD, ECD active 5NX2 MD GLP1R

GLP1R TMD active 5VAI MD GLP1R

GLP1R TMD inactive 5VEW MD GLP1R

GLP1R TMD inactive 5VEX MD GLP1R

GLP1R ECD, GLP active 3IOL Three N-terminal residues of GLP

were truncated

Filtering based on steric hindrances—

GLP1R

GIPR ECD, GIP active 2QKH Last six residues of GIP were

truncated

Filtering based on steric hindrances—

GIPR

https://doi.org/10.1371/journal.pone.0208892.t001

Fig 1. Structural comparison of the selected class B GPCRs. Yellow—GCGR (5XEZ), pink—GIPR (4L6R), green—

GLP1R (5VEW). Two binding sites (orthosteric and allosteric) were depicted as yellow spheres. The binding site for

allosteric modulators of the selected class B GPCRs was shown in details on the right. The figure was prepared with

Pymol [131].

https://doi.org/10.1371/journal.pone.0208892.g001
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which were of the strongest theoretical binding affinity for the gut hormone GPCRs may

indeed bind to them in the off-target manner and thus may enhance the positive incretin effect

on the glucose homeostasis which could compensate for their negative influence in other met-

abolic pathways. Nevertheless, experimental studies are certainly needed to confirm that.

Among selected drug classes, thiazides [65] and glucocorticosteroids are the most fre-

quently mentioned in the literature as associated with drug-induced T2DM [66]. In our study,

among all included steroid-like drugs, glucocorticosteroids were bound with quite strong

affinity (low absolute values of XP-GScore) to gut hormone GPCRs (see Fig 2). In contrast, the

weakest binding affinity for gut hormone GPCRs, not only among steroids but also among all

included drug classes, showed neurosteroids. Mineralocorticosteroids showed the average

binding affinity for gut hormone GPCRs. We did not include detailed results for every steroid

drug like in the case of statins (see Diabetogenic and potential incretin effects demonstrated

by statins). The reason for this is that for steroids we could not find sufficient medical infor-

mation to compose the T2DM-related ranking describing their relative influence on the glu-

cose serum levels. Nevertheless, among glucocorticosteroids, deflazacort (see Table D in S1

File) is frequently mentioned to be the low-risk drug for diabetics [67] and indeed exhibited

quite strong binding affinity for gut hormone GPCRs in our study (data not shown). The exact

mechanism of steroid-induced diabetes or hyperglycemia is not fully understood but it is

highly correlated with therapeutic doses [68–70]. In general, glucocorticosteroids increase

insulin resistance and glucose intolerance and simultaneously inhibit pancreatic insulin pro-

duction by inducing β-cell dysfunction [66]. Interestingly, there are studies on treatment of

steroid-induced diabetes with incretins [71]. Depending on the type, steroids bind to different

molecular targets: nuclear transcription factors such as glucocorticoid receptor (GR) and

mineralocorticoid receptor (MR) and cell surface receptors such as ion channels and GPCRs

(neurosteroids). Recently, a novel interaction between beta-arrestin signaling and glucocorti-

costeroid receptor (GR) has been reported [72]. Nevertheless, due to a difference in the cell

Fig 2. VS results for the selected drug classes. Here, we presented average values of XP-GScores obtained from virtual screening

against all gut hormone receptors structures. We indicated error bars equal to standard deviations.

https://doi.org/10.1371/journal.pone.0208892.g002
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localization of GPCRs and GR, we have not found any literature data confirming direct inter-

actions of gluco- and mineralocorticosteroids with TMD or ECD domains of GPCRs, though

it was reported that they can suppress GLP-1 secretion [73]. It is possible, that strong binding

affinities observed in our VS study were only a result of structural similarities between binding

sites of GR or MR and GPCRs. The case of curcumin [74], a false positive in many virtual

screenings for anti-diabetes drugs (a so-called pan-assay interference compound—PAIN),

shows the need for a critical approach to VS results. Nevertheless, there is a case of endogenous

hormone estrogen (also classified as a steroid), which binds to both, nuclear estrogen receptor

(ER) and the membrane GPCR named GPER1 [75]. Certainly, experimental studies are

needed to confirm if any off-target interaction between glucocorticosteroids and incretin hor-

mone receptors takes place.

Thiazides, weakly bound to the gut hormone receptors in our study (see Fig 2) are known

to induce diabetes the most among diuretics drug class [76] (see Table C in S1 File based on

the currently available medical information [77–80]). The main drug targets for thiazides are

cell membrane proteins: Na+/Cl- symporter and Na+/Ca2+ antiporter. Other diuretics men-

tioned in the current study target Na+-K+-2Cl- symporter (loop diuretics), metalloenzyme car-

bonic anhydrase (carbonic anhydrase inhibitors), sodium channel (sodium channel blockers)

or compete with aldosterone (e.g., spironolactone). The mechanism of diuretic-induced diabe-

tes is complex and not fully understood at the molecular level but certainly involves many cell

signaling pathways [81, 82]. Among all known diuretics subclasses, except thiazides, also loop

diuretics were associated with the increased risk of drug-induced T2DM [79]. On the other

hand, the smallest diabetogenic effect was reported for carbonic anhydrase inhibitors and

potassium-sparing diuretics (see Table C in S1 File) [83, 84]. Also, the least influence on the

glucose serum level was observed for analogs of thiazides recently introduced to the market

[80, 85–87]. In our study, analogs of thiazides indeed exhibited relatively strong binding affin-

ity for all gut hormone GPCRs on average (see Fig 2) comparing the basic drug class of thia-

zides. We believe that chemical modifications introduced to analogs of thiazides comparing

thiazides in order to minimize their side effects could also result in their increased binding

towards incretin hormone receptors leading to indeed minimized risk of T2DM observed in

clinical trials.

As we mentioned above, statins and beta-blockers showed the highest binding affinity for

all gut hormone GPCRs, among all tested drug classes. Interestingly, the recently discovered

beta-blocker—Compound no. 15 [88] was ranked relatively high in all carried out virtual

screenings which was described in our second manuscript [25] that is complementary to the

current one. We believe that such off-target interactions are possible due to the fact, that beta-

blockers’ on-targets belong to the same family of membrane proteins (GPCRs) as gut hormone

receptors. Namely, beta-blockers’ on-targets are beta-adrenergic receptors from the class A

GPCRs. What is more, both groups of receptors, beta-adrenergic receptors and incretin hor-

mone receptors are expressed in the membrane of heart and vessels cells. Structure and

sequence similarity together with similar cellular and tissue localization of those two groups of

receptors are factors which make off-target interactions between beta-blockers and incretin

hormone receptors likely. That is why we dedicated a separate study to those potential off-tar-

get interactions between beta-blockers and gut hormone receptors and described it in [25].

The main target (on-target) of another drug class—statins, which are well-known choles-

terol-lowering agents, is HMG-CoA reductase which requires high glucose levels to be acti-

vated. HMG-CoA reductase is a transmembrane helical protein expressed in the membrane of

endoplasmic reticulum with the statin binding site located in the cytosol C-terminal domain.

It is known that statins can affect GPCR signaling, but rather through change in cholesterol

levels and influence on the prenylation of the Rho family proteins [89] than a direct interaction
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with GPCRs. The mechanism of statin-induced diabetes [90, 91] is most probably linked to

impaired insulin secretion and diminished insulin sensitivity [92, 93]. To our knowledge, no

off-target interactions between statins and GPCRs have been confirmed experimentally. Yet, it

was confirmed that simvastatin may block L-type Ca2+ channels, located in the cellular mem-

brane like GPCRs, which regulate insulin secretion [8]. Moreover, a recent study [94] empha-

sized that statins can exhibit various pleiotropic effects in a cell, useful for drug repositioning

[95, 96], especially atorvastatin [97] which was also among top VS hits discovered in our study

(see the subsection: New incretin therapies proposed by the in silico drug repositioning).

Therefore, we believe that the connection between statins and gut hormone GPCRs demon-

strated by off-target interactions should not be excluded but certainly it needs the experimental

confirmation.

As for the relative differences in binding affinities for three different incretin hormone

receptors (GCGR vs. GIPR and GLP1R), they were rather insignificant. There is, however, an

exception in the case of neurosteroids which were bound to GIPR stronger than to GCGR and

GLP1R. Yet, neurosteroids were in general weakly bound to those receptors so that observa-

tion could be neglected. However, it is important to mention that GIPR models used in this

study were based on GCGR receptor crystal structures (see Table 1). Yet, due to sequence simi-

larity the best template for GIPR would be GLP1R. However, GLP1R crystal structures were

not available at the time this study had been started. To test indisputably, whether the struc-

tural similarity of our GIPR models to GCGR structures influenced VS results, we computed

Pearson correlation coefficients between XP-GScores obtained in VS with GIPR models and

with GCGR and GLP1R models. On average, correlation coefficients between GIPR and

GCGR were only slightly higher than between GIPR and GLP1R models. In the case of the

orthosteric binding site, correlation coefficients were in the range of 0.49–0.81 (GCGR) and

0.48–0.80 (GLP1R) and in the case of the allosteric site in the range of 0.18–0.66 (GCGR) and

0.12–0.67 (GLP1R). Therefore, we believe that the bias introduced by using GCGR templates

instead of GLP1R, although existing, could be ignored in this study.

Diabetogenic and potential incretin effects demonstrated by drugs from

SIDER

Although there is little data in the literature comparing drugs from different classes in the

aspect of drug-induced T2DM, we managed to find such information, though highly limited,

in SIDER [24]. SIDER (Side Effect Resource) is a database of side effects of drugs derived from

clinical trials and medical literature. From SIDER we extracted (see Methods) data for several

well-known drugs (see Table A in S1 File) which could be described as ‘small molecules’: daru-

navir, raloxifene, rosuvastatin, simvastatin, BCNU and eplerenone. Darunavir is an antiviral

drug to treat AIDS, carvedilol belongs to beta-blockers, while rosuvastatin with simavastatin

are statins. Raloxifene is used for treatment of osteoporosis. Eplerenone is a potassium-sparing

diuretic which exhibits the antimineralocorticoid activity while BCNU (carmustine) is a che-

motherapeutic. The medical information on the influence of those drugs on the glucose

homeostasis was deposited in SIDER, i.e., in the form of the percentage of diabetes cases

occurred during the pharmacotherapy. We converted that data into the ranking of those drugs

(see Table A in S1 File). The best rank (1) was assigned to the drug which induced the lowest

percentage of diabetes cases among all reported in SIDER drugs (darunavir). Again, as above

(see Fig 2), we compared that ranking with results from the VS study using incretin hormone

receptors structures (see Fig 3). And again, statins and beta-blockers together with darunavir

exhibited the strongest binding affinity for gut hormone receptors and indeed were reported

in SIDER as the least harmful among all reported glucose homeostasis disruptors. Based on
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that, we suggested that those strongly binding drugs among SIDER-derived drugs could owe

their least T2DM-inducing ability to the compensating incretin effect which can regulate the

glucose serum levels. Based on the current knowledge, such a beneficial side effect of those

drugs cannot be discarded, yet should be certainly confirmed experimentally. In contrast, we

observed also drugs (eplerenone and BCNU) that exhibited rather weak binding affinity for

incretin hormone receptors (high values of XP-GScores). Most probably those drugs do not

bind to incretin hormone receptors and consequently do not enhance the positive incretin

effect which could compensate for their negative influence on the glucose serum level. Eplere-

none and BCNU were both reported to jeopardize diabetic patients according to SIDER (see

Table A in S1 File).

In addition to the above results, we computed Pearson correlation coefficients between

drug-induced T2DM ranking derived from SIDER and the ranking based on XP-GScores

derived from the VS results. The highest Pearson correlation coefficient between the SIDER-

based ranking and the VS-based ranking in the aspect of drug-induced T2DM for all tested

template structures and receptors was equal to 0.860 (GCGR, the orthosteric site), 0.724

(GLP1R, the allosteric site) and 0.713 (GIPR, the orthosteric site). We believe, that those high

correlation coefficients confirm our hypothesis on the potential incretin effect, enhanced by

off-target interactions with gut hormone receptors, which could compensate for other, T2DM-

related side effects. As it was mentioned above, to enhance the incretin effect, a drug should

stimulate GLP1R and GIPR and, on the contrary, inhibit GCGR. Yet, a more detailed compu-

tational study, involving both active and inactive conformations for each incretin receptor is

needed to assess whether the suspected off-target interactions for drugs derived from SIDER

are associated with the receptor stimulation or inhibition.

Fig 3. VS results for drugs selected from SIDER. Here, we presented values of XP-GScores for drugs selected from the SIDER

database. Drugs were ranked with respect to the percentage of DM cases reported during the treatment. VS results for each gut

hormone receptor were presented separately. For the sake of clarity, only one binding site for each receptor was presented here. We

selected the binding site for which the Pearson correlation coefficient between the drug ranking based on XP-GScores and the drug

ranking based on SIDER was the highest.

https://doi.org/10.1371/journal.pone.0208892.g003
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Diabetogenic and potential incretin effects demonstrated by statins

Only for statins and beta-blockers we managed to find in the literature the detailed, quantita-

tive information on their relative diabetogenic effect. Based on that data, we prepared the

T2DM-related ranking for all drugs from the statin drug class (see Table B in S1 File), as in the

previous case of SIDER-derived drugs. We derived XP-GScores from VS using gut hormone

receptors structures for all included statins and used it to prepare the ranking of their binding

affinities for those selected GPCRs. Then, like in the case of data derived from SIDER, we com-

puted Pearson correlation coefficients between the ranking of statins describing their T2DM-

inducing risk and the ranking reflecting strength of their potential off-target interactions with

gut hormone GPCRs. Comparing similar data for beta-blockers, described in our accompa-

nying manuscript [25], the correlation was less significant, though still existing (see Fig 4).

That may suggest that statins interact with incretin hormone receptors much weaker than

beta-blockers or not all of them demonstrate such off-target interaction. Yet, still the relatively

high Pearson correlation coefficient equal to 0.800 was observed, e.g., for the allosteric site of

GCGR. In the case of GIPR and GLP1R the highest correlation coefficient was equal to 0.455

(allosteric) and 0.677 (allosteric), respectively. It is not to be missed, that the medical informa-

tion on statin-induced diabetes is contradictory in some cases. For example, in [98] rosuvasta-

tin was described as less harmful for the glucose homeostasis than simvastatin. The same

observation was deposited in SIDER (see Table A in S1 File). However, in [99] it was stated

that rosuvastatin had elevated glucose levels to the greater extent comparing to simvastatin.

The above-mentioned clinical trials differ by the patient population included which could be

the reason for such contradictory results. Interestingly, our approach successfully predicted

that rosuvastatin can disturb the glucose serum levels to the smaller extent than simvastatin

due to the potential enhancement of the compensating incretin effect. Namely, the binding

affinity for both binding sites and to all gut hormone receptors of simvastatin was weaker

Fig 4. VS results for statins. Comparison of binding affinities (best XP-GScore) for the selected GPCRs with the drug ranking based

on clinical trials involving diabetic patients. Assigned ranks according to [98]: 1 –pitavastatin, 2 –pravastatin, 3 –rosuvastatin, 4—

atorvastatin, 5 –simvastatin, 6 –fluvastatin.

https://doi.org/10.1371/journal.pone.0208892.g004
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comparing not only rosuvastatin but all included statins (see Fig 4). Interestingly, we observed

the same result when using crystal structures of receptors for VS. In Figure A in S1 File we pre-

sented VS results for statins which were obtained using crystal structures of GCGR and

GLP1R (PDB id: 5XEZ and 5VEW, respectively) and two MD-refined models (see Table E in

S1 File) of those receptors instead of one best model like in Fig 4. Again, in all cases, rosuvasta-

tin was bound to gut hormone receptors stronger than simvastatin regardless of slight differ-

ences between MD-refined and crystal receptor structures.

Concerned with the above results, we examined binding modes of rosuvastatin and simva-

statin in details. In Fig 5 we compared the top-ranked binding modes for two GCGR com-

plexes with rosuvastatin (A) and simvastatin (B) inside the allosteric binding site. Both statins

formed polar contacts with R6.35, but only in the case of rosuvastatin the salt bridge was

formed due to its charged carboxyl group. We believe that this interaction could be crucial for

differences in binding of those two statins. XP-GScores computed with Glide for the described

binding modes were equal to -6.472 (rosuvastatin) and -3.620 (simvastatin).

We compared above results with the GUT-DOCK output (see Fig 6). In GUT-DOCK,

ligands are flexibly docked to rigid receptors using Autodock VINA. Although for both statins

most of their functional groups were located approximately in the same place as in Fig 5 some

Fig 5. Rosuvastatin vs. simvastatin—The allosteric binding mode to GCGR predicted by Glide. (A) Binding mode of rosuvastatin

—the allosteric site of GCGR. The salt bridge was formed between the carboxyl group of the statin and the amino group of the well-

conserved R6.35 (B) Binding mode of simvastatin—the allosteric site of GCGR. Several polar contacts were formed with the

receptor, e.g., with S6.41. Polar contacts were depicted with yellow dashed lines. The figure was prepared with Pymol [131].

https://doi.org/10.1371/journal.pone.0208892.g005
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of them were rotated, e.g., a lactone ring of simvastatin was rotated by 180 degrees which

resulted in the loss of a polar contact with Arg320 (R6.35). Autodock VINA provided the sim-

vastatin binding mode with less polar contacts with GCGR than Glide, yet polar contacts with

Ser324 (S6.41) were observed in both results. The rosuvastatin binding mode generated by

Autodock VINA differed from the Glide-generated pose in the orientation of the fluorophenyl

moiety. Autodock VINA (GUT-DOCK) located that functional group in the intracellular

direction while Glide located it oppositely. Nevertheless, that phenyl ring was not involved in

any interactions in both cases. On the contrary, the remaining N-methylmethanesulfonamid

moiety of rosuvastatin was close to the Thr327 (T6.44) and Lys323 (K6.40) in both cases.

As for the theoretical binding energy, Autodock VINA docking scores for the presented

ligand poses (see Fig 6) were surprisingly similar for rosuvastatin and simvastatin (-7.2 and

-7.3, respectively) which did not reflect that rosuvastatin can bind gut hormone receptors

stronger than simvastatin. We decided to rescore that binding modes with Glide to assess if

the obtained binding energy is due to the binding modes their selves or to the force field. We

used the ‘score in place’ option in Glide and similarly to Autodock VINA results we obtained:

Fig 6. Rosuvastatin vs. simvastatin—The allosteric binding to GCGR predicted by Autodock VINA. Rosuvastatin (A) and

simvastatin (B) binding modes were obtained with Autodock VINA implemented in GUT-DOCK. Here, we submitted to

GUT-DOCK the mol2 files with ligands coordinates. Polar contacts with side chains were depicted with dashed yellow lines. Polar

contacts with the main chain atoms were excluded for the sake of the figure clarity. Like presented in Fig 5, rosuvastatin formed

polar contacts with R6.35, while simvastatin only with S6.41. The figure was prepared with Pymol [131] and Ligplot [132]

implemented in GUT-DOCK.

https://doi.org/10.1371/journal.pone.0208892.g006
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-1.739 (rosuvastatin) and -2.816 (simvastatin) which meant that both force fields provided the

same result. We suspected that in this case, the heuristic algorithm of Autodock VINA for con-

formational search did not find the best-fitted ligand poses to the clinical data for both statins

like Glide did. A comment is needed regarding the conformational search algorithm of Auto-

dock VINA. Each step during the Broyden-Fletcher-Goldfarb-Shanno local optimization in

Autodock VINA is accepted according to the Metropolis criterion. Consequently, each Auto-

dock VINA simulation run starting with the system-generated random seed is slightly differ-

ent. Yet, providing the sufficient number of simulation runs, the convergence of docking

results should be finally reached [100]. Being aware of that, we examined the average score for

all 10 poses generated with Autodock VINA instead of scores for only top-ranked poses, like

described above. Indeed, rosuvastatin demonstrated better average binding energy than simva-

statin (-6.99 comparing -6.46, respectively) in this case. What is more, rosuvastatin demon-

strated more converged binding modes comparing simvastatin. Namely, the average RMSD of

all 10 poses generated by Autodock VINA with respect to the top-ranked pose it was only 2.52

Å for rosuvastatin and 3.16 Å for simvastatin. As it was described in our previous study [101],

not only the binding mode itself should be examined during the ligand docking but also the

docking run convergence. In other words, high affinity ligands should not only be docked to a

receptor with high scores (low binding energy values) but also the docking results should be

converged which means that the standard deviations of RMSD values with respect to, e.g., the

top-ranked pose should be rather small.

Pitavastatin, ranked as first and pravastatin ranked as second in both mentioned above clin-

ical trials, are expected to be the least harmful for the glucose homeostasis among all statins

(see Table B in S1 File). In our VS results both of those pharmaceuticals were of the strongest

binding affinity for all incretin hormone receptors (the lowest values of XP-GScore). We

believe our results on the statins drug class could suggest that at least in the case of statins of

the strongest theoretical binding affinity for gut hormone receptors, pitavastatin, pravastatin

and rosuvastatin, the compensating incretin effect on the glucose metabolism could indeed be

demonstrated which could lead to the clinically observed decreased risk of T2DM. Certainly,

our VS results should be confirmed with experimental studies. Yet, we believe that the current

study is the first step in research on that topic and is sufficient to start such experimental

studies.

New incretin therapies proposed by the in silico drug repositioning

The last part of the current study was focused on a different aspect of gut hormone receptors.

Namely, it was dedicated to in silico drug discovery targeting that distinct group of the class B

GPCRs. Based on the concept of the drug repositioning we limited our investigations to phar-

maceuticals which have been already registered in US (FDA-approved). We examined top-

ranked in VS, compounds which could be used to improve the glucose metabolism by enhanc-

ing the incretin effect. VS top hits which were provided in Table 2 were not tested experimen-

tally but were selected solely on the XP-GScore values. Thus, Table 2 may potentially include

false-positive hits for the gut hormone receptors (e.g., contrast media) and should be examined

with caution.

As it was described above (see Fig 4), ligand poses obtained from VS using cavity-like

orthosteric binding sites were better scored by XP-GScore than those targeting surface-like

allosteric binding sites. Nevertheless, most of hit compounds (e. g., a small molecule ligand

acarbose) were ranked high in both screenings—targeting orthosteric and allosteric sites,

respectively. Acarbose is the FDA-approved drug used to treat diabetes type 2 [102]. Acarbose

inhibits alpha glucosidase and it acts as a starch blocker delaying absorption of carbohydrates.
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Suggestion that gut hormone receptors could be off-targets for acarbose is plausible and highly

beneficial. That would mean that the therapeutic action of acarbose on T2DM may be twofold:

delaying absorption of carbohydrates and launching the incretin effect. Among known drug

classes which are associated with drug-induced diabetes type 2 the highest rank was assigned

to statins and beta-blockers: atorvastatin [103] and nebivolol (and salmeterol) (see Table 1).

Other top hit compounds were antibiotics and antiviral drugs and also antiplatelet and antico-

agulant drugs. Top hits discovered in this in silico study should be tested in vitro and in vivo to

exclude false-positives.

Conclusions

One of the directions of modern drug discovery is toxicology and side effects predictions. The

current study and the accompanying study on beta-blockers [25], which was expanded by

development of the web-service for small-molecule docking to the class B GPCRs (GUT--

DOCK: http://gut-dock.miningmembrane.com), are guided towards that direction. Although

more detailed, experimental studies, followed by years of thorough clinical observations of

patients, are certainly needed to confirm our findings it is plausible that gut hormone receptors

are off-target of many currently available pharmaceuticals as we showed in this study. Such

Table 2. Top hits from virtual screening for GCGR, GLP1R and GIPR receptors.

Name Drug class / Target The best XP-GScore [kcal/mol]

Valrubicin Antibiotic -12.758

Acarbose Glycemic control / inhibitor of alpha glucosidase -12.649

Paromomycin Antibiotic -12.050

Atorvastatin Statin -11.993

Iopromide Contrast medium -11.834

Pradaxa Thrombin inhibitor -10.975

Salmeterol Beta-2 adrenergic receptor agonist -10.673

Iohexol Contrast medium -10.664

Atazanavir Antiretroviral drug -10.581

Cangrelol Antiplatelet drug -10.418

Loversol Contrast medium -10.406

Ticagrelol Platelet aggregation inhibitor -10.241

Cobicistat Antiretroviral drug -10.193

Brexpiprazole Dopamine D2 receptor partial agonist -10.181

Ioxilan Contrast medium -10.010

Isavuconazonium Antifungal drug -9.975

Bimatoprost Prostaglandin analog (ocular hypertension) -9.936

Nebivolol Beta-1 receptor blocker -9.795

Ravicti Urinary tract -9.778

Aliskiren Renin inhibitor -9.719

Vilanterol Beta-2 adrenergic receptor agonist -9.595

Montelukast Anti-asthma drug -9.593

Cleocin Antibiotic -9.588

Lincomycin Antibiotic -9.574

Empagliflozin Anti-diabetes drug -9.564

Tirofiban Antiplatelet drug -9.494

Centany Antibiotic -9.473

Ospemifene Selective estrogen receptor modulator -9.421

https://doi.org/10.1371/journal.pone.0208892.t002
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off-target interactions of drugs enhancing the positive incretin effect could compensate for the

negative influence of those drugs on the glucose serum level frequently leading to drug-

induced T2DM. We believe that hypothetical compensation effect (stimulation of incretin

GPCRs) could be used, e.g., in lead optimization to minimize T2DM-related side effects. To

date, other ways of avoiding drug-induced T2DM are very few due to the fact that the exact

molecular mechanism of such adverse reaction still remains too complex or unknown. Also,

information derived from clinical trials is often contradictory, like shown in the case of statins.

The major drawback of our study is a lack of experiments which could confirm our findings.

Yet, such experiments, targeting gut hormone receptors are still of high cost and effort like in

the case of any receptor belonging to the GPCR family. Only recently, gut hormone receptors

have been characterized structurally by crystallography after long and tedious experimental

studies. Although there are some experimental (and computational, e.g., ADME and ADME--

TOX implemented in Schrodinger) methods for testing of drug bioavailability (its intestinal

absorption, blood-brain permeability, unbound concentrations in serum and skin permeabil-

ity) and pharmacodynamics they are not fitted explicitly to detect the off-target interactions.

Interestingly, in the Schrodinger package, the concentration of unbound drug is predicted by

computing its binding affinity for human serum albumin. Similarly, in our study, we tried to

predict the drug effect on the glucose homeostasis by computing its binding affinity for

GCGR, GIPR and GLP1R of GPCR family. Such off-target interactions can be valuable, e.g.,

when the drug acts as either a positive allosteric modulator or an agonist of GIPR and GLP1R,

enhancing the incretin effect and improving the insulin secretion, or as a negative allosteric

modulator or an antagonist of GCGR decreasing the glucose serum levels. Although CNS

response to nutrients has been studied for some time [104], still little is known about gastroin-

testinal tract response to various pharmacotherapies. For that reason, we believe that our study

brings valuable observations in the field of potential off-target interactions targeting gut hor-

mone GPCRs which could help to improve the risk-benefit balance between the treatment

effectiveness and developing new-onset diseases induced by pharmacotherapy.

Methods

The GPCR model building procedure

The current study had been started before releasing recent GLP1R crystal structures (see

Table 1). For that reason, we included in the study also homology models of GLP1R and GIPR

which were built using the glucagon receptor crystal structures (PDB id: 4L6R, 5EE7). There

are only two templates representing an active conformation of GLP1R: 5NX2 and 5VAI and

there are a few structures of an extracellular domain with a peptide ligand inside the orthos-

teric binding site (5NX2, 3IOL, 4ERS, 2QKH). In case of glucagon receptor only an inactive

conformation was determined with X-ray. However, a recent molecular dynamics (MD) study

[105] provided insights also into the active conformational state of GCGR and orientation and

localization of its ECD domain together with a peptide agonist. That active GCGR model was

obtained from the 2 microsec MD simulation starting from the homology model based on

4L6R (TMD) and 4ERS (ECD) PDB entries. Here, we used that GCGR model as a template to

locate GIP and GLP peptides in the orthosteric binding sites of respective receptors homology

models and to assess them with our program, described previously [25], which provided steric

hindrance scores for every model.

Homology models of GIPR and GLP1R receptors were prepared with GPCRM [106] (see

Fig 6) and our previously developed methodology for membrane proteins [101, 107–110]. A

total number of 3000 models per each template/receptor pair were generated. 1500 models

were discarded based on the steric hindrances scores to prevent congestion of the orthosteric
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binding site by extracellular loops. The remaining 1500 models were clustered using the

Rosetta3.5 cluster application and evaluated with BCL::Score using knowledge-based poten-

tials derived specifically for membrane proteins [111]. Five lowest energy models from five

largest clusters were selected for the virtual screening study (VS).

GCGR and GLP1R crystal structures were used in the 20 ns MD simulation to generate an

ensemble of receptor conformations. The structures of 4LR6, 5EE7, 5XEZ, 5VEW, and 5VEX

contained only the transmembrane domain, the other structures contained additionally frag-

ments of the extracellular domain. Each system, containing the protein embedded within the

membrane and solvated, was prepared using the CHARMM-GUI Membrane Builder (http://

www.charmm-gui.org) [112–115]. The membrane was formed of POPC and cholesterol mole-

cules with proportion of 5:1. Each system was neutralized by addition of Na+ and Cl- ions,

with ionic concentration of 0,15 M. Boundaries of the simulation box were set at least 15 Å
away from protein atoms. The number of POPC and cholesterol molecules was equal to 100

and 20, respectively. The Charmm36 force field was used in each simulation [116]. The mini-

mization stage included 2500 steps of steepest descent minimization followed by 2500 steps of

conjugate gradient minimization. The force constant of 10.0 kcal mol-1 Å-2 was applied to all

atoms of the protein (except P atoms of POPC and O3 atoms of cholesterol—with the force

constant of 2.5 kcal mol-1 Å-2) to restrain their position during minimization. During the fol-

lowing six short runs of the equilibration process (first two runs– 100 ps in NVT, the next four

runs of 100 ps in NPT), position restraints were gradually released. The Langevin thermostat

was used to control temperature (310 K, the friction coefficient of 1.0 ps-1). The Berendsen

barostat (1 bar) was used to control the external pressure. The time integration step was equal

to 0.001 ps (first three runs), and then it was set to 0.002 ps. Hydrogen bonds were constrained

using the SHAKE algorithm. The production run for each system lasted 20 ns. The GPU ver-

sion of the pmemd module of AMBER14 package was used for all MD simulations [117]. Con-

formational fluctuations stabilized after about 10 ns of production runs and RMSD for the

transmembrane helices region was equal to about 2.0 Å (see Figure A in S1 File). RMSD of the

whole TMD was higher—about 2.2–3.3 Å because of the loops movement. We believe that

observed slight structural changes were due to the fact that we removed ligands from the crys-

tal structures which were used to build simulation systems. However, in our opinion, all MD

simulations performed during this study were too short to observe significant structural

changes leading to, e.g., unbound-ligand inactive conformations of receptors. By means of

MD refinement simulations we only obtained a dynamic picture of each receptor structure yet

still close to the crystal structure. RMSD observed for MD refinement simulations starting

from the crystal structure which originally contained a ligand (PDB id: 5EE7, 5XEZ, 5VEW,

5VEX) did not differ substantially from RMSD observed for simulations starting from crystal

structures without ligands (PDB id: 4L6R, 5NX2, 5VAI). For example, the highest RMSD fluc-

tuations comparing the starting crystal structure was observed for 5VAI which did not contain

any ligand but included a highly deformed by the receptor activation helix VI. Noteworthy,

extending MD simulations could indeed change significantly binding sites resulting in the loss

of characteristic structural features of studied receptors and worst enrichment factors (see Fil-

tering of GPCR models based on enrichment studies). On the other hand, MD refinement

simulations including ligands could result in obtaining very similar receptor conformations to

their starting crystal structures. Such similar conformations would most probably provide in

VS only such ligands which are similar to already known actives. 2000 snapshots per each

structure were recorded (see Figures A and B in S1 File). 1000 structures were discarded based

on the steric hindrances scores computed for the orthosteric binding site and the respective

endogenous ligand (peptide). The procedure of the models filtering based on steric hindrances

scores was described in our recent work [25]. The remaining 1000 structures were clustered
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and evaluated with BCL::Score. Five lowest energy structures from five largest clusters were

selected for VS studies.

Filtering of GPCR models based on enrichment studies

In the next step of our modeling pipeline GPCR models were evaluated in the first stage VS

procedure (enrichment studies) to retrieve the best-performing in VS receptors structures, fol-

lowing a well-established approach described, e.g., in [118]. For that first stage VS we used a

set of 10 known active ligands retrieved from BindingDB [119] and Pubchem databases [120]

for each receptor (see [25]) and 500 decoys (50 for each active ligand) generated via the

DUD-E website (http://dude.docking.org/) [121]. Each enrichment study was carried out with

SP-Glide (Schrodinger) [122]. Two binding sites, orthosteric and allosteric (see Fig 1), were

treated here separately.

Typical metrics were used for evaluation of VS results: EF1%, EF5%, EF10%, ROC, AUC

and BEDROC(alpha = 20) [123]. Our results were comparable to results of the reference study

describing the usage of the Schrodinger package in virtual screening [124]. Based on the

enrichment factors, the best model was selected for each receptor and each binding site (see

Table F in S1 File and results presented in our recent study [25]). In case of GLP1R active and

inactive conformations were treated here separately. For each template/structure/active site

two best-performing models (see Table F in S1 File and [25]) were selected for the final virtual

screening on the ZINC15 FDA-approved database of compounds. There were two cases for

GLP1R based on 5NX2 –with and without ECD domain. Structures without ECD domain did

not produce satisfying EF values (data not shown) so we decided to use for VS the GLP1R

model based on 5NX2 with ECD included. In our second manuscript [25], we compared the

above results of EF study for MD-refined models with the EF study for crystal structures of

GCGR and GLP1R receptors. We observed that with the currently available set of active

ligands, crystal structures of both receptors were not superior to MD-refined models in retriev-

ing actives from non-binding decoys.

Virtual screening against the ZINC15 FDA-approved drug library

GPCR models selected with the above VS procedure were used in the second stage VS of the

ZINC15 database of ready-to-dock compounds [125]. We used SDF files belonging to a subset

of ZINC15 which included coordinates of drug compounds approved by Food and Drug

Administration (FDA) in USA. Additionally, we included several drugs which were not in the

FDA-approved subset but were important for the current study because they belonged to the

statin, diuretics or steroid drug class approved in Europe. Those additional ligands were down-

loaded in the SDF format from other subsets of ZINC15 (http://zinc15.docking.org/) or from

the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). All SDF files with ligands coordi-

nates were prepared with LigPrep [126]. Multiple conformations per each ligand were kept

providing finally a total number of 2240 ligand conformations for VS. XP-GScore was used to

rank docked compounds [127]. We kept multiple ZINC15 entries for one active compound, if

existing, e.g., ZINC000001530639 and ZINC000001886617 for fluvastatin (see Figure A in S1

File). As we observed in that example, such multiple ZINC15 entries included different confor-

mational states of an active compound and thus docking results could be different. In Figure A

in S1 File we presented VS results using crystal structures and MD-refined models of GCGR

and GLP1R. In the case of crystal structures we presented results for ZINC000001886617 (a

trade name Lescol) and ZINC000001530639 separately. In most cases, for the GLP1R crystal

structure and for MD-refined models of GCGR and GLP1R (data not shown), we observed

slight differences (less than 0.5) in values of XP-GScore with Lescol poses always ranked

Drug-induced diabetes type 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0208892 January 16, 2019 18 / 27

http://dude.docking.org/
http://zinc15.docking.org/
https://pubchem.ncbi.nlm.nih.gov/
https://doi.org/10.1371/journal.pone.0208892


worse. Yet, in one case—VS using a crystal structure of GCGR (see Figure A in S1 File), we

observed a significant difference (more than 3) in values of XP-GScore with again the Lescol

pose ranked worse than the ZINC000001530639 pose.

Receptors grids were centered on the terminal peptide residue in the case of the orthosteric

binding sites or on the NAM position derived from the GCGR crystal structure (5XEZ). Crys-

tal structures of GLP1R 5NX2 and 5VAI did not include allosteric modulators, so the receptor

model was aligned to 5XEZ prior to the grid generation. However, such definition of the recep-

tor grid box center provided (most probably) some failed results in virtual screening. Namely,

resulting ligands poses were docked inside TMD close to the intracellular part of the receptor

instead of being docked to the allosteric binding site defined in crystallographic studies of

GCGR. Therefore, we manually moved the receptor grid to face it more to the membrane

rather than inside of TMD. Such settings provided VS results with less satisfying XP-GScores

(the best ligand pose with XP-GScore equal to -8.866 instead of -13.957) but all ligands were

properly docked to the allosteric binding site facing the membrane. We believe that the above

difference in docking scores is due to limitations of Glide which do not include the mem-

brane-specific energy terms during the docking. To analyze VS results we used the ‘Select top

poses’ functionality in Schrodinger with maximum 50 poses as an output and all poses gener-

ated in this study for GCGR, GIPR and GLP1R (both, the orthosteric and allosteric binding

sites together).

Extracting medical information on diabetes mellitus from SIDER

To extract information of the relative diabetogenic effect of various drugs from SIDER we

searched that database with the MeDRA preferred term: ‘diabetes mellitus’ (DM). That pro-

duced 176 drug entries, out of which only 16 had quantity (percentage of cases) rather than

quality (rare, uncommon, postmarketing, infrequent, etc.) description of occurrence of that

side effect among patients. Out of those 16 drugs we selected 7 which were of low molecular

weight, acceptable for the small-molecule docking procedure. Thus, we excluded peptide ana-

logs such as goserelin and Signifor or a cyclic everolimus and tacrolimus. We also excluded

Methotrexate but for other reason. Namely, the percentage range associated with the number

of DM cases among patients was equal to: 1–10%. Such broad, imprecise range was difficult to

be interpreted into a relative rank with respect to the rest of drugs selected from SIDER.

Although T2DM-oriented clinical trials are still being carried out providing new medical data,

SIDER is also constantly updated (see corresponding manuscripts published in 2008 [128],

2010 [129] and 2016 [24]) and linked with another database of chemical-protein interaction

network STITCH [130].
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80. Bozkurt Ö, De Boer A, Grobbee DE, De Leeuw PW, Kroon AA, Schiffers P, et al. Variation in renin—

angiotensin system and salt-sensitivity genes and the risk of diabetes mellitus associated with the use

of thiazide diuretics. American journal of hypertension. 2009; 22(5):545–51. https://doi.org/10.1038/

ajh.2009.38 PMID: 19247266

81. Manrique C, Johnson M, Sowers JR. Thiazide diuretics alone or with beta-blockers impair glucose

metabolism in hypertensive patients with abdominal obesity. Hypertension. 2010; 55(1):15–7. https://

doi.org/10.1161/HYPERTENSIONAHA.109.142620 PMID: 19917873

82. Mandal AK, Hiebert LM. Is Diuretic-Induced Hyperglycemia Reversible and Inconsequential? Journal

of Diabetes Research and Clinical Metabolism. 2012; 1(1):4.

83. Konstantopoulos N, Molero JC, McGee SL, Spolding B, Connor T, de Vries M, et al. Methazolamide is

a new hepatic insulin sensitizer that lowers blood glucose in vivo. Diabetes. 2012; 61(8):2146–54.

https://doi.org/10.2337/db11-0578 PMID: 22586591

84. Preiss D, Veldhuisen DJ, Sattar N, Krum H, Swedberg K, Shi H, et al. Eplerenone and new-onset dia-

betes in patients with mild heart failure: results from the Eplerenone in Mild Patients Hospitalization

and Survival Study in Heart Failure (EMPHASIS-HF). European journal of heart failure. 2012; 14

(8):909–15. https://doi.org/10.1093/eurjhf/hfs067 PMID: 22611047

85. Cutler JA. Thiazide-associated glucose abnormalities: prognosis, etiology, and prevention: is potas-

sium balance the key? Hypertension. 2006; 48(2):198–200. https://doi.org/10.1161/01.HYP.

0000231339.51310.b3 PMID: 16801479.

86. Messerli FH, Bangalore S. Half a century of hydrochlorothiazide: facts, fads, fiction, and follies. The

American journal of medicine. 2011; 124(10):896–9. https://doi.org/10.1016/j.amjmed.2011.05.009

PMID: 21962309.

87. Brown MJ, Williams B, Morant SV, Webb DJ, Caulfield MJ, Cruickshank JK, et al. Effect of amiloride,

or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood

pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial. The Lancet Diabe-

tes & Endocrinology. 2016; 4(2):136–47.

88. Ahn S, Kahsai AW, Pani B, Wang QT, Zhao S, Wall AL, et al. Allosteric "beta-blocker" isolated from a

DNA-encoded small molecule library. Proceedings of the National Academy of Sciences of the United

States of America. 2017; 114(7):1708–13. https://doi.org/10.1073/pnas.1620645114 PMID:

28130548

89. Gerthoffer WT, Solway J, Camoretti-Mercado B. Emerging targets for novel therapy of asthma. Cur-

rent opinion in pharmacology. 2013; 13(3):324–30. https://doi.org/10.1016/j.coph.2013.04.002 PMID:

23639507

90. Bell D, DiNicolantonio J, O’keefe J. Is statin-induced diabetes clinically relevant? A comprehensive

review of the literature. Diabetes, Obesity and Metabolism. 2014; 16(8):689–94. https://doi.org/10.

1111/dom.12254 PMID: 24373206

91. Thakker D, Nair S, Pagada A, Jamdade V, Malik A. Statin use and the risk of developing diabetes: a

network meta-analysis. Pharmacoepidemiology and drug safety. 2016; 25(10):1131–49. https://doi.

org/10.1002/pds.4020 PMID: 27277934

Drug-induced diabetes type 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0208892 January 16, 2019 24 / 27

https://doi.org/10.1155/2013/636053
https://doi.org/10.1155/2013/636053
http://www.ncbi.nlm.nih.gov/pubmed/24348712
http://www.ncbi.nlm.nih.gov/pubmed/11874937
https://doi.org/10.1016/j.amjcard.2004.08.059
https://doi.org/10.1016/j.amjcard.2004.08.059
http://www.ncbi.nlm.nih.gov/pubmed/15619390
https://doi.org/10.1111/bcp.12543
http://www.ncbi.nlm.nih.gov/pubmed/25377481
https://doi.org/10.1016/j.yexmp.2014.06.007
https://doi.org/10.1016/j.yexmp.2014.06.007
http://www.ncbi.nlm.nih.gov/pubmed/24960275
http://www.ncbi.nlm.nih.gov/pubmed/15365284
https://doi.org/10.1038/ajh.2009.38
https://doi.org/10.1038/ajh.2009.38
http://www.ncbi.nlm.nih.gov/pubmed/19247266
https://doi.org/10.1161/HYPERTENSIONAHA.109.142620
https://doi.org/10.1161/HYPERTENSIONAHA.109.142620
http://www.ncbi.nlm.nih.gov/pubmed/19917873
https://doi.org/10.2337/db11-0578
http://www.ncbi.nlm.nih.gov/pubmed/22586591
https://doi.org/10.1093/eurjhf/hfs067
http://www.ncbi.nlm.nih.gov/pubmed/22611047
https://doi.org/10.1161/01.HYP.0000231339.51310.b3
https://doi.org/10.1161/01.HYP.0000231339.51310.b3
http://www.ncbi.nlm.nih.gov/pubmed/16801479
https://doi.org/10.1016/j.amjmed.2011.05.009
http://www.ncbi.nlm.nih.gov/pubmed/21962309
https://doi.org/10.1073/pnas.1620645114
http://www.ncbi.nlm.nih.gov/pubmed/28130548
https://doi.org/10.1016/j.coph.2013.04.002
http://www.ncbi.nlm.nih.gov/pubmed/23639507
https://doi.org/10.1111/dom.12254
https://doi.org/10.1111/dom.12254
http://www.ncbi.nlm.nih.gov/pubmed/24373206
https://doi.org/10.1002/pds.4020
https://doi.org/10.1002/pds.4020
http://www.ncbi.nlm.nih.gov/pubmed/27277934
https://doi.org/10.1371/journal.pone.0208892


92. Okuyama H, Langsjoen PH, Ohara N, Hashimoto Y, Hamazaki T, Yoshida S, et al. Medicines and

Vegetable Oils as Hidden Causes of Cardiovascular Disease and Diabetes. Pharmacology. 2016; 98

(3–4):134–70. https://doi.org/10.1159/000446704 PMID: 27251151

93. Aiman U, Najmi A, Khan RA. Statin induced diabetes and its clinical implications. Journal of pharma-

cology & pharmacotherapeutics. 2014; 5(3):181–5. https://doi.org/10.4103/0976-500X.136097 PMID:

25210397

94. Sandhu K, Mamas M, Butler R. Endothelial progenitor cells: Exploring the pleiotropic effects of statins.

World journal of cardiology. 2017; 9(1):1. https://doi.org/10.4330/wjc.v9.i1.1 PMID: 28163831

95. Jiao M, Liu G, Xue Y, Ding C. Computational drug repositioning for cancer therapeutics. Current topics

in medicinal chemistry. 2015; 15(8):767–75. PMID: 25732789

96. Lohinai Z, Dome P, Szilagyi Z, Ostoros G, Moldvay J, Hegedus B, et al. From bench to bedside:

attempt to evaluate repositioning of drugs in the treatment of metastatic small cell lung cancer (SCLC).

PloS one. 2016; 11(1):e0144797. https://doi.org/10.1371/journal.pone.0144797 PMID: 26735301

97. Ji Y, Rounds T, Crocker A, Sussman B, Hovey RC, Kingsley F, et al. The effect of atorvastatin on

breast cancer biomarkers in high-risk women. Cancer Prevention Research. 2016; 9(5):379–84.

https://doi.org/10.1158/1940-6207.CAPR-15-0300 PMID: 26908565

98. Yoon D, Sheen SS, Lee S, Choi YJ, Park RW, Lim HS. Statins and risk for new-onset diabetes melli-

tus: A real-world cohort study using a clinical research database. Medicine. 2016; 95(46):e5429.

https://doi.org/10.1097/MD.0000000000005429 PMID: 27861386

99. Carter AA, Gomes T, Camacho X, Juurlink DN, Shah BR, Mamdani MM. Risk of incident diabetes

among patients treated with statins: population based study. Bmj. 2013; 346:f2610. https://doi.org/10.

1136/bmj.f2610 PMID: 23704171

100. Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF. AutoDockFR: Advances in Protein-

Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS computational biology. 2015; 11

(12):e1004586. Epub 2015/12/03. https://doi.org/10.1371/journal.pcbi.1004586 PMID: 26629955

101. Latek D, Bajda M, Filipek S. A Hybrid Approach to Structure and Function Modeling of G Protein-Cou-

pled Receptors. Journal of chemical information and modeling. 2016; 56(4):630–41. https://doi.org/10.

1021/acs.jcim.5b00451 PMID: 26978043.

102. Zhang W, Kim D, Philip E, Miyan Z, Barykina I, Schmidt B, et al. A Multinational, observational study to

investigate the efficacy, safety and tolerability of acarbose as add-on or monotherapy in a range of

patients: The GlucoVIP Study. Clinical drug investigation. 2013; 33(4):263–74. https://doi.org/10.

1007/s40261-013-0063-3 PMID: 23435929

103. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al. Primary pre-

vention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin

Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. The Lancet. 2004; 364

(9435):685–96.

104. Myers MG Jr., Olson DP. Central nervous system control of metabolism. Nature. 2012; 491

(7424):357–63. https://doi.org/10.1038/nature11705 PMID: 23151578.

105. Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V, et al. Conformational states of the

full-length glucagon receptor. Nature communications. 2015; 6:7859. https://doi.org/10.1038/

ncomms8859 PMID: 26227798

106. Latek D, Pasznik P, Carlomagno T, Filipek S. Towards improved quality of GPCR models by usage of

multiple templates and profile-profile comparison. PloS one. 2013; 8(2):e56742. https://doi.org/10.

1371/journal.pone.0056742 PMID: 23468878

107. Latek D. Rosetta Broker for membrane protein structure prediction: concentrative nucleoside trans-

porter 3 and corticotropin-releasing factor receptor 1 test cases. BMC structural biology. 2017; 17

(1):8. https://doi.org/10.1186/s12900-017-0078-8 PMID: 28774292

108. Latek D, Kolinski M, Ghoshdastider U, Debinski A, Bombolewski R, Plazinska A, et al. Modeling of

ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic beta 2 AR. J Mol

Model. 2011; 17(9):2353–66. Epub 2011/03/03. https://doi.org/10.1007/s00894-011-0986-7 PMID:

21365223.

109. Miszta P, Pasznik P, Jakowiecki J, Sztyler A, Latek D, Filipek S. GPCRM: a homology modeling web

service with triple membrane-fitted quality assessment of GPCR models. Nucleic acids research.

2018. Epub 2018/05/23. https://doi.org/10.1093/nar/gky429 PMID: 29788177.

110. Yuan S, Ghoshdastider U, Trzaskowski B, Latek D, Debinski A, Pulawski W, et al. The role of water in

activation mechanism of human N-formyl peptide receptor 1 (FPR1) based on molecular dynamics

simulations. PloS one. 2012; 7(11):e47114. Epub 2012/11/29. https://doi.org/10.1371/journal.pone.

0047114 PMID: 23189124

Drug-induced diabetes type 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0208892 January 16, 2019 25 / 27

https://doi.org/10.1159/000446704
http://www.ncbi.nlm.nih.gov/pubmed/27251151
https://doi.org/10.4103/0976-500X.136097
http://www.ncbi.nlm.nih.gov/pubmed/25210397
https://doi.org/10.4330/wjc.v9.i1.1
http://www.ncbi.nlm.nih.gov/pubmed/28163831
http://www.ncbi.nlm.nih.gov/pubmed/25732789
https://doi.org/10.1371/journal.pone.0144797
http://www.ncbi.nlm.nih.gov/pubmed/26735301
https://doi.org/10.1158/1940-6207.CAPR-15-0300
http://www.ncbi.nlm.nih.gov/pubmed/26908565
https://doi.org/10.1097/MD.0000000000005429
http://www.ncbi.nlm.nih.gov/pubmed/27861386
https://doi.org/10.1136/bmj.f2610
https://doi.org/10.1136/bmj.f2610
http://www.ncbi.nlm.nih.gov/pubmed/23704171
https://doi.org/10.1371/journal.pcbi.1004586
http://www.ncbi.nlm.nih.gov/pubmed/26629955
https://doi.org/10.1021/acs.jcim.5b00451
https://doi.org/10.1021/acs.jcim.5b00451
http://www.ncbi.nlm.nih.gov/pubmed/26978043
https://doi.org/10.1007/s40261-013-0063-3
https://doi.org/10.1007/s40261-013-0063-3
http://www.ncbi.nlm.nih.gov/pubmed/23435929
https://doi.org/10.1038/nature11705
http://www.ncbi.nlm.nih.gov/pubmed/23151578
https://doi.org/10.1038/ncomms8859
https://doi.org/10.1038/ncomms8859
http://www.ncbi.nlm.nih.gov/pubmed/26227798
https://doi.org/10.1371/journal.pone.0056742
https://doi.org/10.1371/journal.pone.0056742
http://www.ncbi.nlm.nih.gov/pubmed/23468878
https://doi.org/10.1186/s12900-017-0078-8
http://www.ncbi.nlm.nih.gov/pubmed/28774292
https://doi.org/10.1007/s00894-011-0986-7
http://www.ncbi.nlm.nih.gov/pubmed/21365223
https://doi.org/10.1093/nar/gky429
http://www.ncbi.nlm.nih.gov/pubmed/29788177
https://doi.org/10.1371/journal.pone.0047114
https://doi.org/10.1371/journal.pone.0047114
http://www.ncbi.nlm.nih.gov/pubmed/23189124
https://doi.org/10.1371/journal.pone.0208892


111. Woetzel N, KarakaşM, Staritzbichler R, Müller R, Weiner BE, Meiler J. BCL:: Score—knowledge

based energy potentials for ranking protein models represented by idealized secondary structure ele-

ments. PloS one. 2012; 7(11):e49242. https://doi.org/10.1371/journal.pone.0049242 PMID:

23173051

112. Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, et al. CHARMM-GUI Membrane

Builder toward realistic biological membrane simulations. Journal of computational chemistry. 2014;

35(27):1997–2004. https://doi.org/10.1002/jcc.23702 PMID: 25130509

113. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator

for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the

CHARMM36 Additive Force Field. Journal of chemical theory and computation. 2016; 12(1):405–13.

https://doi.org/10.1021/acs.jctc.5b00935 PMID: 26631602

114. Jo S, Lim JB, Klauda JB, Im W. CHARMM-GUI Membrane Builder for mixed bilayers and its applica-

tion to yeast membranes. Biophysical journal. 2009; 97(1):50–8. https://doi.org/10.1016/j.bpj.2009.04.

013 PMID: 19580743

115. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. Jour-

nal of computational chemistry. 2008; 29(11):1859–65. https://doi.org/10.1002/jcc.20945 PMID:

18351591.

116. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, et al. Optimization of the additive CHARMM all-

atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1)

and chi(2) dihedral angles. Journal of chemical theory and computation. 2012; 8(9):3257–73. https://

doi.org/10.1021/ct300400x PMID: 23341755

117. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr., et al. The Amber biomolecular

simulation programs. Journal of computational chemistry. 2005; 26(16):1668–88. https://doi.org/10.

1002/jcc.20290 PMID: 16200636

118. Lim VJY, Du W, Chen YZ, Fan H. A benchmarking study on virtual ligand screening against homology

models of human GPCRs. Proteins. 2018. Epub 2018/07/28. https://doi.org/10.1002/prot.25533

PMID: 30051928.

119. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: A public database for

medicinal chemistry, computational chemistry and systems pharmacology. Nucleic acids research.

2016; 44(D1):D1045–D53. https://doi.org/10.1093/nar/gkv1072 PMID: 26481362

120. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound

databases. Nucleic acids research. 2015; 44(D1):D1202–D13. https://doi.org/10.1093/nar/gkv951

PMID: 26400175

121. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): bet-

ter ligands and decoys for better benchmarking. Journal of medicinal chemistry. 2012; 55(14):6582–

94. Epub 2012/06/22. https://doi.org/10.1021/jm300687e PMID: 22716043

122. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for

rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of medicinal

chemistry. 2004; 47(7):1750–9. https://doi.org/10.1021/jm030644s PMID: 15027866

123. Truchon J-F, Bayly CI. Evaluating virtual screening methods: good and bad metrics for the “early rec-

ognition” problem. Journal of chemical information and modeling. 2007; 47(2):488–508. https://doi.

org/10.1021/ci600426e PMID: 17288412

124. Toledo Warshaviak D, Golan G, Borrelli KW, Zhu K, Kalid O. Structure-based virtual screening

approach for discovery of covalently bound ligands. Journal of chemical information and modeling.

2014; 54(7):1941–50. https://doi.org/10.1021/ci500175r PMID: 24932913

125. Sterling T, Irwin JJ. ZINC 15—Ligand Discovery for Everyone. Journal of chemical information and

modeling. 2015; 55(11):2324–37. https://doi.org/10.1021/acs.jcim.5b00559 PMID: 26479676

126. Schrödinger Release 2015–3: LigPrep v, Schrödinger, LLC, New York, NY, 2015.

127. Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Discovery of thienoquinolone deriva-

tives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening.

Bioorganic & medicinal chemistry. 2014; 22(22):6409–21.

128. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P. Drug Target Identification Using Side-Effect

Similarity. Science. 2008; 321(5886):263–6. https://doi.org/10.1126/science.1158140 PMID:

18621671

129. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic

effects of drugs. Mol Syst Biol. 2010; 6:343. Epub 2010/01/21. https://doi.org/10.1038/msb.2009.98

PMID: 20087340

Drug-induced diabetes type 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0208892 January 16, 2019 26 / 27

https://doi.org/10.1371/journal.pone.0049242
http://www.ncbi.nlm.nih.gov/pubmed/23173051
https://doi.org/10.1002/jcc.23702
http://www.ncbi.nlm.nih.gov/pubmed/25130509
https://doi.org/10.1021/acs.jctc.5b00935
http://www.ncbi.nlm.nih.gov/pubmed/26631602
https://doi.org/10.1016/j.bpj.2009.04.013
https://doi.org/10.1016/j.bpj.2009.04.013
http://www.ncbi.nlm.nih.gov/pubmed/19580743
https://doi.org/10.1002/jcc.20945
http://www.ncbi.nlm.nih.gov/pubmed/18351591
https://doi.org/10.1021/ct300400x
https://doi.org/10.1021/ct300400x
http://www.ncbi.nlm.nih.gov/pubmed/23341755
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1002/jcc.20290
http://www.ncbi.nlm.nih.gov/pubmed/16200636
https://doi.org/10.1002/prot.25533
http://www.ncbi.nlm.nih.gov/pubmed/30051928
https://doi.org/10.1093/nar/gkv1072
http://www.ncbi.nlm.nih.gov/pubmed/26481362
https://doi.org/10.1093/nar/gkv951
http://www.ncbi.nlm.nih.gov/pubmed/26400175
https://doi.org/10.1021/jm300687e
http://www.ncbi.nlm.nih.gov/pubmed/22716043
https://doi.org/10.1021/jm030644s
http://www.ncbi.nlm.nih.gov/pubmed/15027866
https://doi.org/10.1021/ci600426e
https://doi.org/10.1021/ci600426e
http://www.ncbi.nlm.nih.gov/pubmed/17288412
https://doi.org/10.1021/ci500175r
http://www.ncbi.nlm.nih.gov/pubmed/24932913
https://doi.org/10.1021/acs.jcim.5b00559
http://www.ncbi.nlm.nih.gov/pubmed/26479676
https://doi.org/10.1126/science.1158140
http://www.ncbi.nlm.nih.gov/pubmed/18621671
https://doi.org/10.1038/msb.2009.98
http://www.ncbi.nlm.nih.gov/pubmed/20087340
https://doi.org/10.1371/journal.pone.0208892


130. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-

chemical interaction networks with tissue and affinity data. Nucleic acids research. 2016; 44(D1):

D380–4. Epub 2015/11/22. https://doi.org/10.1093/nar/gkv1277 PMID: 26590256

131. The PyMOL Molecular Graphics System, Version 1.6.

132. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of

protein-ligand interactions. Protein engineering. 1995; 8(2):127–34. PMID: 7630882.

Drug-induced diabetes type 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0208892 January 16, 2019 27 / 27

https://doi.org/10.1093/nar/gkv1277
http://www.ncbi.nlm.nih.gov/pubmed/26590256
http://www.ncbi.nlm.nih.gov/pubmed/7630882
https://doi.org/10.1371/journal.pone.0208892

