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Abstract
Background  Somatic and germline variants are not distinguishable by circulating tumor DNA (ctDNA) testing without ana-
lyzing non-tumor samples. Although confirmatory germline testing is clinically relevant, the criteria for selecting presumed 
germline variants have not been established in ctDNA testing. In the present study, we aimed to evaluate the prevalence of 
pathogenic germline variants in clinical ctDNA testing through their variant allele fractions (VAFs).
Methods  A total of consecutive 106 patients with advanced solid tumors who underwent ctDNA testing (Guardant360®) 
between January 2018 and March 2020 were eligible for this study. To verify the origin of pathogenic variants reported in 
ctDNA testing, germline sequencing was performed using peripheral blood DNA samples archived in the Clinical Bioresource 
Center in Kyoto University Hospital (Kyoto, Japan) under clinical research settings.
Results  Among 223 pathogenic variants reported in ctDNA testing, the median VAF was 0.9% (0.02–81.8%), and 88 variants 
with ≥ 1% VAFs were analyzed in germline sequencing. Among 25 variants with ≥ 30% VAFs, seven were found in peripheral 
blood DNA (BRCA2: n = 6, JAK2: n = 1). In contrast, among the 63 variants with VAFs ranging from 1 to < 30%, only one 
variant was found in peripheral blood DNA (TP53: n = 1). Eventually, this variant with 15.6% VAF was defined to be an 
acquired variant, because its allelic distribution did not completely link to those of neighboring germline polymorphisms.
Conclusion  Our current study demonstrated that VAFs values are helpful for selecting presumed germline variants in clini-
cal ctDNA testing.

Keywords  Circulating tumor DNA testing · Presumed germline pathogenic variants · Variant allele fractions · 
Confirmatory germline sequencing

Introduction

Next-generation sequencing (NGS)-based circulating tumor 
DNA (ctDNA) testing is an alternative method for compre-
hensive genomic profiling. This method is widely used in 

the clinical practice of cancer treatment because of its mini-
mal invasiveness and no requirement for tissues. In ctDNA 
testing, small fractions of ctDNA can be detected among 
the total cell-free DNAs by incorporating a combination of 
molecular barcoding technology and bioinformatics methods 
[1]. Previous studies reported that the variant allele frac-
tions (VAFs) of ctDNA range widely from 0.1 to ≥ 90%, 
although the median VAFs are less than 1% [2, 3]. VAFs 
reported in ctDNA testing are affected by several clinical 
variables, including the cancer type, stage, and overall tumor 
load [4–7].

Comprehensive genomic profiling sometimes results in 
secondary germline findings (SFs). The American College 
of Medical Genetics and Genomics (ACMG) recommended 
reporting SFs for several genes responsible for heredi-
tary diseases [8–10]. However, in tumor-only testing and 
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ctDNA testing, confirmatory germline testing is required, 
which uses non-tumor samples such as peripheral blood 
DNA. The European Society of Medical Oncology Preci-
sion Medicine Working Group recommended a threshold 
of ≥ 30% (or ≥ 20% for small insertions–deletions) for VAFs 
as an indication of presumed germline pathogenic variants 
in tumor-only tissue sequencing [11]. These recommenda-
tions are now widely used for managing SFs in tumor-only 
tissue sequencing in clinical practice. However, if the same 
threshold of ≥ 30% VAFs is feasible in clinical ctDNA test-
ing is not well understood. Previous studies suggested that 
germline variants were presumable based on higher VAFs 
in ctDNA testing [12, 13], but the studies verifying this idea 
by germline testing are still limited.

In this present study, we performed germline sequenc-
ing to investigate the prevalence of true germline variants 
using peripheral blood DNA samples archived in the Clini-
cal Bioresource Center in Kyoto University Hospital under 
clinical research settings.

Patients and methods

Patients

Consecutive 106 patients with unresectable advanced can-
cers who underwent Guardant360® liquid biopsy (Guardant 
Health, Redwood City, CA) in Kyoto University Hospi-
tal between January 2018 and March 2020 were eligible. 
Studies were approved by the Ethics Committee of the 
Kyoto University Graduate School of Medicine (Kyoto, 
Japan; G692 and G1223). All participants provided written 
informed consent to donate their blood samples to Clinical 
Bioresource Center in Kyoto University Hospital (Kyoto, 
Japan) for research use.

Confirmatory germline sequencing

According to the established recommendations for SFs [8, 
9, 14], we selected 18 genes associated with hereditary can-
cer syndromes targeted by Guardant360® and designed a 
custom amplicon sequencing panel covering these 18 genes 
(Ion AmpliSeq On-Demand Panel, Thermo Fisher Scientific, 
MA, USA) (Supplementary Table S1). This panel covered 
the coding sequences and the splice sites of target genes. In 
addition, we also used the Ion AmpliSeq Cancer Hotspot 
Panel v2 (Thermo Fisher Scientific), which covered common 
pathogenic mutations in additional 29 cancer-related genes 
targeted by Guardant360® (Supplementary Table S1). Ger-
mline sequencing was performed in clinical research settings 
regardless of clinical indication.

Peripheral blood DNA was extracted using the Gene Prep 
Star NA-480 system (Kurabo Industries, Osaka, Japan) and 

archived in Clinical Bioresource Center in Kyoto University 
Hospital. To prepare library samples, the DNA was pro-
cessed using the Ion AmpliSeq Library Kit Plus (Thermo 
Fisher Scientific). It was analyzed using an Ion S5 sequenc-
ing system equipped with Torrent Suite 5.10.1 (Thermo 
Fisher Scientific). Variants identified by Torrent Suite vari-
antCaller were annotated using SnpEff tools. To avoid false-
positive mutation calls, variant reads less than ten or VAFs 
less than 1.0% were excluded. Variants detected with VAFs 
between 1 and 30% in peripheral blood DNA were suspected 
to be somatically acquired variants that possibly include 
clonal hematopoiesis (CH) and other genetic mosaicisms 
rather than inherited germline variants [15, 16], and further 
information regarding their copy number and allelic distri-
bution were obtained as follows. Copy-number alterations 
were analyzed using CovCopCan software (v.1.3.3) [17] to 
evaluate possible effects on VAFs. In addition, the distribu-
tion of variant allele was compared with those of heterozy-
gous common single-nucleotide polymorphisms (SNPs) on 
the same sequencing reads using the Integrative Genomics 
Viewer (Broad Institute, MA, USA). Acquired variants were 
defined if their allelic distribution did not completely link to 
those of neighboring SNPs.

Definition of variant pathogenicity

To define variant pathogenicity, we first referred to ClinVar 
(https://​www.​ncbi.​nlm.​nih.​gov/​clinv​ar/). If variants were 
registered as “pathogenic” or “likely-pathogenic” in ClinVar, 
they were classified into pathogenic variants. The variants 
registered as “conflicting interpretations of pathogenicity” 
were also classified as pathogenic if they demonstrated at 
least one pathogenic or likely-pathogenic report in ClinVar. 
For frameshift or truncation variants with no registration in 
ClinVar, their pathogenicity was considered by the annota-
tions of neighboring truncated variants. If variants exhibited 
no information in ClinVar, their pathogenicity was evalu-
ated based on the ACMG and the Association for Molecular 
Pathology guidelines [18].

Results

Patient characteristics

The characteristics of patients who underwent ctDNA test-
ing are summarized in Table 1. The patients’ median age 
was 64 years (28–82), and 57 patients (53.8%) were male. 
The most common type of cancer was pancreatic (n = 37), 
followed by colorectal (n = 12), and lung (n = 11). Twenty 
patients (18.9%) presented with a family history of cancer 
in both first-degree and second-degree relatives.

https://www.ncbi.nlm.nih.gov/clinvar/
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Distribution of pathogenic variant allele fractions 
in ctDNA testing

In total, 409 short variants were reported in 106 patients, 
and 224 of those variants were classified as patho-
genic. The median VAF of pathogenic variants was 
0.9% (0.02–81.8%). The number of pathogenic variants 
with ≥ 1%, ≥ 5%, and ≥ 30% VAFs was 111, 73, and 27, 
respectively (Fig. 1A). Among 27 variants with ≥ 30% 
VAFs (high VAFs), TP53 variants were the most com-
mon (n = 10), followed by BRCA2 (n = 6), and then KRAS 
(n = 4) (Fig. 1B). Similarly, among 84 pathogenic vari-
ants with moderate VAFs ranging from 1 to < 30%, TP53 

variants were most common (n = 28), followed by KRAS 
(n = 17), APC (n = 7), SMAD4 (n = 5), and PIK3CA (n = 5) 
(Fig. 1C).

Results of germline sequencing

To confirm the origin of pathogenic variants, germline 
sequencing was performed using archived DNA from 44 
patients whose ctDNA testing indicated pathogenic variants 
with ≥ 1% VAFs (Fig. 2). As a result, six BRCA2 variants, 
which VAFs ranged from 43.7 to 60.0% in ctDNA testing, 
were confirmed to be germline in patients with pancreatic 
(n = 2), breast (n = 2), ovarian (n = 1), and prostate cancers 
(n = 1) (Fig. 3 and Table 2). In addition, germline sequenc-
ing illustrated possible acquired variants in TP53 and JAK2 
genes (Fig. 3 and Table 2). VAFs of the TP53 C238Y vari-
ant were 14.0 and 15.6% in ctDNA testing and germline 
sequencing, respectively (Table 2). In germline sequencing, 
no copy-number abnormality was detected in the TP53 locus 
(Supplementary Figure S1). Further analysis of allelic read 
distribution in germline sequencing revealed that this variant 
was found only in a fraction of sequencing reads originating 
from haploid genome with two neighboring heterozygous 
SNPs (rs12951053, rs12947788) (Fig. 4). These results indi-
cate that this variant was likely to be an acquired variant 
rather than a germline variant. VAFs of the JAK2 V617F 
variant, commonly found in myeloproliferative neoplasm 
[19], were 37.7 and 46.1% in ctDNA testing and germline 
sequencing, respectively (Table 2). Since no heterozygous 
SNPs existed near this variant to compare the allelic dis-
tributions, we could not further clarify the origin of this 
variant.

Discussion

Since VAFs detected in ctDNA testing tend to be much lower 
(median VAF < 1%) than those in tissue-based testing [2, 3], 
variants with higher VAFs around 50% are expected to be 
of germline rather than somatic origin. The present study 
performed germline sequencing using peripheral blood DNA 
samples for pathogenic variants with ≥ 1% VAFs reported 
in ctDNA testing. Although peripheral blood DNA analysis 
found seven pathogenic variants out of 25 with ≥ 30% VAFs, 
only six were confirmed to be true pathogenic germline vari-
ants. In contrast, out of the 63 variants with VAFs ranging 
from 1 to < 30%, there were no true pathogenic germline 
variants. These results support the idea that a threshold of 
VAFs ≥ 30% is feasible to select presumed germline patho-
genic variants, which require confirmatory germline testing 
in clinical ctDNA testing. A recent study reported that 89% 
of 36 confirmed germline variants exhibited ctDNA VAFs 
between 40 and 60%; the remaining 11% were out of this 

Table 1   Characteristics of the patients who underwent ctDNA testing

VAFs variant allele fractions, FDR first-degree relatives, SDR second-
degree relatives

Characteristics No. of patients (%)

ctDNA tested
n = 106

Ger-
mline 
tested
n = 44

Age, years
 Median [range] 64 [28–82] 65 [38–

80]
Sex
 Male 57 (53.8) 26 (59.1)
 Female 49 (46.2) 18 (40.9)

Cancer type
 Pancreatic 37 (34.9) 19 (43.2)
 Colorectal 12 (11.3) 7 (15.9)
 Lung 11 (10.4) 5 (11.4)
 Breast 10 (9.4) 3 (6.8)
 Bile duct 9 (8.5) 2 (4.5)
 Ovarian 4 (3.8) 3 (6.8)
 Prostate 3 (2.8) 2 (4.5)
 Esophageal 3 (2.8) 1 (2.3)
 Head and neck 3 (2.8) 0 (0)
 Urothelial 2 (1.9) 0 (0)
 Gastric 2 (1.9) 2 (4.5)
 Cervical 2 (1.9) 0 (0)
 Endometrial 1 (0.9) 0 (0)
 Small intestinal 1 (0.9) 0 (0)
 Hepatic 1 (0.9) 0 (0)
 Thyroid 1 (0.9) 0 (0)
 NEC 1 (0.9) 0 (0)
 Other 3 (2.8) 0 (0)

Familial history of any cancers
 Both in FDR/SDR 20 (18.9) 8 (18.2)
 Only in FDR 43 (40.6) 21 (47.7)
 Only in SDR 17 (16.0) 5 (11.4)
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range [20]. Their report is consistent with our results; how-
ever, research also suggests that using a tight threshold of 

the ctDNA VAF range to screen germline variants can lead 
to missing true germline variants.

A

B C

VAF > 30%

VAF > 5%

VAF > 1%

27 73 111

Fig. 1   A The distribution of variant allele fractions of pathogenic 
variants found in ctDNA testing. Two hundred and twenty-four patho-
genic variants detected in ctDNA testing are arranged by their variant 
allele fractions (VAFs) from highest to lowest. B The number of path-
ogenic variants with 30% or higher VAFs arranged by gene in ctDNA 

testing (n = 27). C The number of pathogenic variants with VAFs 
ranged from 1 to < 30% by gene in ctDNA testing (n = 84). Other 
includes one variant in BRAF, BRCA2, CDKN2A, CCNB1, ERBB2, 
FBXW7, FGFR2, NFE2L2, and PTEN 
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In the present study, we confirmed the presence of true 
pathogenic germline variants only in BRCA2, which could 
possibly be due to the following reasons: First, BRCA2 was 
the most common cancer susceptibility gene in patients 
with advanced cancers who undergo universal germline 

sequencing [21]. Second, ctDNA panel (Guardant360®) 
utilized in this study did not cover several of the com-
mon cancer susceptibility genes, such as CHEK2, MSH2, 
MSH6, and PMS2. Third, the sample size was small, and 
over 50% of the patients had one of the top three cancer 
types (pancreatic, colorectal, and lung).

Variants of CH can contaminate the results of the ctDNA 
testing [22, 23]. CH is commonly observed in aged people 
and patients undergoing anticancer therapies [24, 25]. CH 
variants are found in various hereditary cancer-associated 
genes such as TP53 and ATM [15, 23]. The VAFs for the 
TP53 C238Y variant detected in this study were relatively 
low in ctDNA and peripheral blood DNA (14.0 and 15.6%, 
respectively), suggesting that this variant is not likely to be 
of true germline origin. Supporting this idea, the family 
history and clinical course of the patient did not meet the 
criteria for the Li-Fraumeni syndrome. Further analysis of 
allelic read distribution compared to common SNPs located 
nearby the TP53 C238Y variant was helpful to confirm it 
is an acquired genetic variation. The JAK2 V617F variant 
was detected in another patient with 46.1% VAFs in ger-
mline sequencing. This variant is a well-known somatic 
variant hotspot in myeloproliferative neoplasms and CH [19, 
26], and this patient demonstrated a clinical manifestation 
of thrombocytosis. Although we could not obtain further 
information to identify its origin by germline sequencing, 
according to the patient’s phenotype, familial history, and 
known properties of this variant, we presumed that this was 
likely to be an acquired variant rather than a germline one. 
The recent publication of the ACMG statements suggested 
that analyzing additional control samples from other normal 
tissues from the patients or their family members would be 
helpful to distinguish the origin of variants [15].

This study exhibits the other limitation. Because little 
information was available about copy-number alterations 
from ctDNA testing, their effects on VAFs remain unknown 

Pathogenic variants
(n = 224 variants, 85 patients)

Guardant360 ctDNA testing 
(n =  409 variants, 106 patients)

ctDNA VAFs
< 1%

ctDNA VAFs > 30%
(n = 27 variants, 

19 patients)

1% < ctDNA VAFs < 30%
(n = 84 variants, 

46 patients)

Germline sequencing
(n = 25 variants, 

17 patients *)

Germline sequencing
(n = 63 variants, 

35 patients *)

Germline positive
(n = 7 variants)

Germline positive
(n = 1 variant)

clinical significance criteria 
based on (i) ClinVar or (ii) 
ACMG/AMP guideline

(presumed)
acquired variants

True germline variant
(n = 6 variants)

True germline variant
(n = 0 variant)

Fig. 2   Flow chart of the methods in the study showing the down-
stream flow for  germline sequencing and results of ctDNA testing.
(*) Since the data of eightpatients with VAFs >30% overlapped those 
with VAFs ranging from 1% to 30%, the total number of patients who 
underwent germline sequencing was 44

Table 2   Variants detected in germline DNA sequencing

f father, m mother, gf grandfatheric
* indicates the termination codon

Cancer type Age Sex Familial history of cancer Gene Coding Amino acid VAF
ctDNA

VAF
blood

Breast 47 Female Prostate (f) BRCA2 c.5645C > A S1882* 52.2 49.1
Breast 70 Female – BRCA2 c.5576_5579delTTAA​ I1859fs*3 53.6 (1st)

59.9 (2nd)
50.7

Prostate 57 Male – BRCA2 c.9212dupA V3072fs*39 48.2 50.7
Pancreatic 46 Male Breast (m), hepatic (f), head 

& neck (f)
BRCA2 c.9212dupA V3072fs*39 55.2 49.9

Pancreatic 38 Female Gastric (f), esophageal (f) BRCA2 c.8504C > A S2835* 43.7 52.9
Ovarian 44 Female Prostate (gf) BRCA2 c.6405_6509delCTTAA​ N2135fs*3 60.0 50.4
Pancreatic 67 Male Malignancy (f) JAK2 c.1849G > T V617F 37.7 46.1
Bile duct 58 Male – TP53 c.713G > A C238Y 14.0 15.6
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Fig. 3   Distributions of variant allele fractions (VAFs) in ctDNA testing across genes. VAFs (%) in ctDNA testing are plotted by gene. Results of 
germline sequencing (positive, negative, or unconfirmed) are distinguished by symbols. The horizontal red dashed line indicates 30% VAF

p.C238Y
c.713G>Ars12947788

rs12951053

Fig. 4   The distributions of the TP53 C238Y variant and its common 
SNPs on the germline DNA sequencing reads. The TP53 C238Y vari-
ant was detected in a fraction of sequencing reads originating from 

haploid genome harboring two neighboring heterozygous SNPs 
(rs12951053 and rs12947788) in the germline DNA sequencing
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in our germline analysis. Detailed information about copy-
number alterations can improve the presumption accuracy 
of germline variants in ctDNA testing, as shown in previous 
reports [12, 27].

In conclusion, our current study demonstrated that VAFs 
information helps select putative germline variants in clini-
cal ctDNA testing.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10147-​022-​02220-x.
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