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Abstract
Gene regulatory networks are a major focus of interest in molecular biology. A
crucial question is how complex regulatory systems are encoded and controlled by the
genome. Three recent publications have raised the question of what can be learned
about gene regulatory networks from microarray experiments on gene deletion
mutants. Using this indirect approach, topological features such as connectivity and
modularity have been studied. Copyright  2002 John Wiley & Sons, Ltd.
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The collection of large-scale data such as genome
sequences, transcriptome, proteome and interac-
tome data stimulates the development of methods
to predict the functions of genes and proteins. The
genome projects helped to compile ‘parts-lists’ of
the cell; one remaining big task is to find modelling
approaches to identify key regulatory molecules
and unravel regulatory networks directly from
experimental data. For small molecular systems
such as λ-phage, mathematical and computational
models have been developed: techniques such as
Boolean networks, differential equations or mixed
models allow simulations and predictions leading
to experimental verification [16]. These techniques
have been used successfully for well-studied model
systems (e.g. in [10]). Nevertheless, the scaling of
these techniques to the size of eukaryotic genomes
is difficult — not the least because of the limited
information available for many less well known
genes despite of the increasing number of genome-
scale, high-throughput experiments that have been
published. Therefore, one has to start with simpler
questions, aiming to describe only the ‘wiring’ of
the genes and regulators.

Three recently published articles by Featherstone
and Broadie [4], Wagner [19] and Rung et al. [13]
address the question of what can be learned about
gene regulatory networks from microarray data. All

three articles are based on the same comprehen-
sive microarray dataset, studying the effects of over
270 gene deletions in yeast by Hughes et al. [6].
The set of deletion mutants were selected to rep-
resent a wide range of cellular roles in yeast. One
problem with microarray technology is how to be
sure whether or not the measured change in gene
expression is significant. Hughes et al. provide an
error-model that takes wild-type vs. wild-type com-
parisons into account. This allows them to distin-
guish genes that have a high natural variability in
their expression levels from those genes that are
much more tightly controlled. They normalize the
expression data for all genes, so only one threshold
is to be chosen, which applies to all measurements
for all genes. Depending on this threshold, changes
in expression are required to be larger or smaller, to
be considered significant. This error-model allows
the discretization of the expression levels to ‘signif-
icantly upregulated’, ‘significantly downregulated’
and ‘no significant change’.

All three studies make use of this error model
to give an alternative representation of the data
in form of a graph [4,13,19]. Graphs are a well-
established way to represent information in com-
puter science and mathematics [3]. Graphs consist
of nodes, also called vertices, often represented by
boxes or circles and edges, which are connections
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between the nodes, represented by lines connect-
ing the boxes (see Figure 1). The nodes are used
to represent entities like genes; the edges are used
to represent relationships between these entities.
The edges can be undirected or directed, depend-
ing on the type of relationship they are represent-
ing. Directed edges are called arcs. Thus, edges
can be used to represent ‘two-way’ relationships,
e.g. ‘protein A and protein B bind to each other’,
whereas arcs can be used to represent ‘one-way’
relationships, e.g. ‘protein A activates protein B’.
Undirected graphs are graphs consisting of nodes
and edges whereas directed graphs are graphs con-
sisting of nodes and arcs. Graphs have been used to
represent all kinds of networks. Recent biological
examples are protein–protein interaction networks,
where nodes represent proteins, and edges represent
the physical interaction between proteins [9,15]. A
path is an ordered list of edges (or arcs) that con-
nect two nodes. The path length in this context
is the number of edges (arcs) you have to ‘walk
along’ to get from one node to the other. If there
is an edge between two nodes, i.e. the path length
between the two nodes is 1, we will call this a
direct connection. If the path length between two
nodes is larger than 1 we will call it an indirect con-
nection. A component (or subnet) of an undirected
graph is a subgraph, where all nodes are connected
by paths; in a directed graph we can use the same
definition if we ignore the directionality of the arcs.
The diameter of a graph is the average length of
the shortest paths between any two nodes in the
graph. The degree of a node is the number of adja-
cent edges. In a directed graph it is useful to make
a distinction between the indegree, the number of
arcs pointing to a given node, and the outdegree,
the number of arcs pointing from a given node
to other nodes. Nodes with very high degrees are
sometimes called hubs. The representation in the
form of graphs allows the use of powerful algo-
rithms to examine large datasets efficiently, e.g. to
find the shortest path between two nodes.

Interestingly, as we will discuss in the follow-
ing paragraph, common topological properties have
been identified among many large networks as dif-
ferent as the Internet and protein-interaction net-
works. In a typical random network the distri-
bution of edges resembles the Poisson distribu-
tion. The majority of the nodes have roughly the
same degree, of about the average degree over all
nodes. But in many real networks the degree of
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Figure 1. Graphical representation of a graph. Solid arcs
like that from node A to node B indicate direct connections.
The arc between C and E can be circumvented by an indirect
path from C to E via D. The dashed arcs indicate that there
are indirect connections for which there are no direct
connections in the graph

nodes varies considerably, with some nodes hav-
ing a very high degree, but most nodes having a
small degree. The degree distribution has a power-
law tail: the probability p(k) of a random node
to have a particular degree k follows: p(k) ∼ k−γ

[1]. One example of networks with this degree
distribution is the World Wide Web, with nodes
representing home pages, and edges representing
links between home pages. Similarly, this degree
distribution was also found for protein-interaction
networks [12]. Another characteristic property of
these networks is the small-world behaviour. This
property is not exclusively found in graphs with
power-law-distribution. It refers to the fact that
the average distance between two nodes is usually
small. One example for a small-world network is
the social network of acquaintances between peo-
ple in the USA, which has a typical path length of
six between any two persons [1].

The graph models used by all three groups
[4,13,19] represent genes as nodes. The deleted
genes are connected by arcs to all other genes
showing significant differences in expression in the
particular deletion mutants.

We will focus first on the studies by Feath-
erstone and Broadie, and Rung et al., because
they used similar methods for the graph con-
struction: both groups use the data published by
Hughes et al. directly to construct graph models
and study their properties. Whereas the first group
built an undirected graph for one particular thresh-
old of the expression values, Rung et al. examined
directed graphs resulting from a wide range of
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thresholds. Both groups use edges (arcs) to connect
the mutated gene with all genes that show a signifi-
cantly different expression in the particular deletion
mutant in comparison to the wild-type strain.

Featherstone and Broadie, and Rung et al., find
a degree distribution which follows a power-law,
with γ between 0.7 (Featherstone and Broadie) and
∼1 (Rung et al.). This is considerably smaller than
the range of 1.5–3 observed for other networks
(see [7] and, for more examples from physics,
sociology and biology [1]), meaning there are rel-
atively more nodes with high degrees. About 50%
of all edges are connected to only 5–10% of all
nodes. At the significance level studied by Feath-
erstone and Broadie, 18 genes account for about
50% of the edges. Most of these 18 genes belong
to the functional groups protein synthesis and reg-
ulation of transcription. Similar results were found
by Rung et al., who additionally examined the
median outdegree and median indegree of func-
tional groups. The functional groups with the high-
est median outdegrees include regulatory functions
such as RNA turnover, cell stress and meiosis,
whereas the groups with the highest median inde-
grees are involved in metabolism (of amino acids
and nucleotides). This property was found to be
stable over a wide range of significance cut-offs.

One of the main problems in using the dataset
from Hughes et al. is to make the distinction
between direct effects of the gene deletions and
indirect effects. Many proteins are involved in sev-
eral cellular functions, and compensatory regula-
tion might occur to correct the effects of the muta-
tion. If a particular enzyme is deleted, a metabolite
might be missing in the cell. As a result, other
enzymes utilizing this metabolite might be tran-
scribed less, although there is no direct influence
of the first enzyme on the transcriptional control
of the second. In graph representation, this means
there is both an indirect and a direct connection
between two nodes where only an indirect connec-
tion should be (see Figure 1). With the complex
interplay of regulatory processes at the level of
genes, mRNAs, proteins and metabolites, it is not
clear how to construct a ‘pure’ gene regulatory
network. Furthermore, only one growth condition
was tested and, if the deleted gene is not crucial
for the particular condition, little effect is likely to
be found.

A major focus of the study by Wagner is to
deal with differences between direct and indirect

effects. Therefore Wagner chose a different method
for graph construction: graphs constructed from the
Hughes data using a similar approach to Feather-
stone and Broadie, and Rung et al. (using signifi-
cance cut-offs ranging from 2 to 5) are used to esti-
mate the average degree of the nodes. Wagner then
generates two kinds of random networks, using
a degree distribution resembling either the Pois-
son distribution or power-law. For the networks
with power-law distribution, he chose a probabil-
ity distribution proportional to k−γ , with γ = 2.
Generating his own networks gives him the advan-
tage of knowing all direct paths and he can thus
selectively add indirect paths. Therefore, he can
calculate the average degree of the nodes in the ran-
domly generated networks, excluding or including
indirect connections. For further analysis he subse-
quently chooses the randomly generated networks
that have an average degree of the nodes sim-
ilar — when including indirect connections — to
the graphs constructed from Hughes data. These
networks, without the indirect connections, are then
the focus of his study.

Wagner’s results suggest the expectation of about
140–350 components (subgraphs) containing more
than one gene each. Considering the large error
margins and statistical assumptions, he argues in
favour of a modular organization of the network
and against ‘global connectedness of genes and
pervasive pleiotropy’ [19]. This might be in accor-
dance with Thieffry et al., who studied a literature-
derived regulatory network of Escherichia coli.
They report a ‘rather loosely interconnected struc-
ture’ [17].

On the one hand, modular organization for gene
regulatory networks has been proposed, defining
a module as ‘a discrete entity whose function is
separable from those of other modules’ [5]; but
different interpretations of the term ‘module’ exist
[18]. Modules are thought to be evolutionarily
advantageous if they are (a) robust against many
environmental and genetic perturbations, but at
the same time (b) sensitive to genetic changes
in order to be ‘reused’ in different functional
contexts [5]. Vertebrate limb development is a good
example: during the development of an embryo,
a well-regulated gene regulatory system controls
the formation of the limbs; but the comparison
of different vertebrate limbs shows that the same
elements can be used, with slight variations, to
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build a wide variety of limbs, such as wings, legs
and fins [11,14].

On the other hand, Featherstone and Broadie
conclude from their degree distribution ‘that the
gene expression network consists of a single giant
functional component rather than several subnet-
works . . . no subset of genes can be considered
isolated from another’ [4]. Rung et al. also address
the question of how many components their graphs
have. For a wide range of significance cut-offs
they only find one major component, which con-
sists of thousands of nodes, and no, or few, small
other components.

Several explanations are possible for these dif-
ferences, e.g. Maniatis and Reed emphasize the
extensive degree of physical coupling among gene
expression machines [8]. The main question is, how
close are the simulated networks studied by Wag-
ner to the networks studied by Rung et al. and
Featherstone and Broadie? The graphs constructed
by Rung et al. do have direct and indirect connec-
tions between some of the nodes. But there is not
always a direct connection if there is an indirect
connection between two genes. This is different in
the examples given by Wagner and might account
for the differences in the results. Furthermore,
the power-law distribution used by Wagner for
graph construction is considerably different from
that found by Featherstone and Broadie and Rung
et al. There may be even more differences: Maslov
et al. compared protein-interaction networks and
regulatory networks with randomized networks and
found striking differences in the topology: the hubs
of the ‘real’ networks are less likely to be con-
nected to other hubs: ‘. . . links between highly
connected proteins are systematically suppressed,
whereas those between highly connected and low-
connected pairs of proteins are favoured’ [9]. They
conclude that their results are ‘. . . consistent with
compartmentalization and modularity characteristic
of control of many cellular processes . . . it suggests
the picture of functional modules of the cell orga-
nized around individual hubs’. They propose that
this reduces the cross-talk between functional mod-
ules of the cell and increases the robustness against
perturbations.

Featherstone and Broadie are specifically addre-
ssing the question of buffering in gene regula-
tory networks. Why do so many gene deletions
have no obvious phenotypic effect? They argue

that a reason for this might be found in the topol-
ogy of the network. Albert et al. have compared
networks with a power-law degree distribution with
networks having an exponential degree distribu-
tion and found that power-law networks are more
robust towards random errors, but more vulnerable
to targeted attacks [2]. They looked for the change
in the diameter of the network if either random
nodes were removed (error) or hubs were removed
(attack). Thus, the structure of the network might
explain the robustness against mutations of non-
hubs, but would imply more serious effects when
hubs are hit.

Featherstone and Broadie found stronger seq-
uence conservation for hub genes than for non-hub
genes. However, they only found a low correlation
between the growth rate of the yeast mutants and
the degree of the respective genes in the network,
but obviously deletions of genes with the most
severe effect, lethality, cannot be studied in these
experiments.

Since the deletion of the hubs has only minor
effects on the fitness of the yeast organism, Feath-
erstone and Broadie suggest using yeast mutants
with a reduced number of hub-genes as an ideal
genetic background for deletion experiments, in
order to reduce pleiotropic effects and to reduce
interconnectivity. Yet when Rung et al. removed
the hubs from their graphs, the major compo-
nent did not break into several big components.
The major component of the resulting graph was
smaller, but the decrease in size was mainly due
to single nodes falling off. There are only few
more minor components with simple topologies.
Only when removing 10% of all nodes, which leads
to the loss of about 50% of all arcs, were sev-
eral bigger components found at quite stringent
thresholds for the expression data. It remains to
be tested in vivo how many of the hub-genes can
be removed without having a lethal effect on the
yeast cell.

The study of gene deletion networks has led to
interesting claims about the structure of gene reg-
ulatory networks. It remains to be seen how close
networks built from gene deletion experiments are
to the ‘real’ gene regulatory networks. Only one
growth condition was tested by Hughes et al. and
this limits the scope of the models built from that
data. The integration of additional datasets, such as
time course experiments, conditional mutants and
chromatin immunoprecipitation experiments, might
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help to improve the models [20]. Graph theory
will be an important tool in helping us unravel the
structure of the gene regulatory networks.
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