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Abstract
Although discrete approaches are increasingly employed tomodel biological phenom-
ena, it remains unclear how complex, population-level behaviours in such frameworks
arise from the rules used to represent interactions between individuals. Discrete-to-
continuum approaches, which are used to derive systems of coarse-grained equations
describing the mean-field dynamics of a microscopic model, can provide insight into
such emergent behaviour. Coarse-grained models often contain nonlinear terms that
depend on the microscopic rules of the discrete framework, however, and such non-
linearities can make a model difficult to mathematically analyse. By contrast, models
developed using phenomenological approaches are typically easier to investigate but
have a more obscure connection to the underlying microscopic system. To our knowl-
edge, there has been little work done to compare solutions of phenomenological and
coarse-grained models. Here we address this problem in the context of angiogenesis
(the creation of new blood vessels from existing vasculature). We compare asymp-
totic solutions of a classical, phenomenological “snail-trail” model for angiogenesis
to solutions of a nonlinear system of partial differential equations (PDEs) derived via a
systematic coarse-graining procedure (Pillay et al. in Phys Rev E 95(1):012410, 2017.
https://doi.org/10.1103/PhysRevE.95.012410). For distinguished parameter regimes
corresponding to chemotaxis-dominated cell movement and low branching rates, both
continuummodels reduce at leading order to identical PDEswithin the domain interior.
Numerical and analytical results confirm that pointwise differences between solutions
to the two continuum models are small if these conditions hold, and demonstrate how
perturbation methods can be used to determine when a phenomenological model pro-
vides a good approximation to a more detailed coarse-grained system for the same
biological process.
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1 Introduction

Continuum and discrete approaches are widely used to develop theoretical models for
biological systems. In the former framework, one approximates quantities of interest
using continuous variables andmeasures their evolution in space and/or time via differ-
ential equations. By contrast, discrete approaches describe the behaviour of individual
“agents” (such as cells or molecules) in simulations (An et al. 2009; Van Liedekerke
et al. 2015; Metzcar et al. 2019). These two modelling frameworks are not mutually
exclusive: for instance, “hybrid models” use continuous approaches to represent cer-
tain quantities of interest (e.g., the concentration of a drug), but apply discrete methods
for other quantities such as cells (Rejniak and Anderson 2011). Hybrid and discrete
models for a biological process can typically incorporate more faithful representa-
tions of underlying cellular and/or molecular mechanisms than phenomenological
continuum systems, and they are becoming increasingly prevalent in the mathemati-
cal biology community (Van Liedekerke et al. 2015; Metzcar et al. 2019).

Despite the advantages and wide use of agent-based models (ABMs), we still have
a poor understanding of how different parameter values and agent interaction rules
affect their solutions over large spatial and temporal scales. Kursawe et al. (2017), for
example, found that results from a particular discretemodel (the vertexmodel) are sen-
sitive to themanner inwhich it is numerically implemented. Another study byOsborne
et al. (2017) compared discrete approaches for modelling cell proliferation, adhesion,
and signalling using a single computational framework. The models that they inves-
tigated (which included cellular automata, the Cellular Potts model, the overlapping
spheres model, Voronoi tessellations, and the vertex model) did not always generate
equivalent summary statistics; their work thereby illustrated how inferred biological
conclusionsmay depend on themodelling approach used to generate results. Although
such studies represent a much needed first step for evaluating discrete approaches
and their underlying rules, it is challenging to gain rigorous insight into the general
behaviour of ABMs unless there is a common mathematical framework in which to
analyse them.

Coarse-grained macroscopic partial differential equations (PDEs) represent a pos-
sible candidate for this framework. They are constructed from discrete-to-continuum
derivations, rather than from phenomenological arguments, and describe how the aver-
age distribution of agents in a discrete model evolves over time and space (Othmer
et al. 1988; Baker et al. 2010; Simpson and Baker 2011; Markham et al. 2013; Bonilla
et al. 2016; Dyson and Baker 2015; Spill et al. 2015; Buttenschön et al. 2018; Motsch
and Peurichard 2018; Chaplain et al. 2020). Since continuum models are often easier
to analyse and simulate than discrete ones, they can be used to (indirectly) determine
how the microscopic rules of a discrete model generate complex collective dynamics.
However, mean-field models derived from discrete-to-continuum approaches tend to
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be highly nonlinear, and the degree of nonlinearity depends on the rules in the under-
lying discrete model (Simpson et al. 2009; Penington et al. 2011; Bruna and Chapman
2012; Penington et al. 2014; Pillay et al. 2018). To our knowledge, little recent attention
has focussed on the systematic comparison of nonlinear mean-field models derived
from discrete-to-continuum approaches (Horstmann et al. 2004). In this article, we
aim to shed light on the connection between coarse-grained and phenomenological
models by analysing solutions from two particular continuum systems for angiogen-
esis (the growth of new blood vessels from pre-existing vasculature). Angiogenesis is
implicated in many essential biological processes, such as wound healing and tissue
growth, because the resulting blood vessels provide a source of nutrients for damaged
and/or developing tissue (Potente et al. 2011; Viallard and Larrivée 2017; Duran et al.
2017; Barrientos et al. 2008; Risau 1997). Angiogenesis also constitutes a crucial step
in cancer development, since it supplies cancerous cells with nutrients for continued
growth, creates a system to remove metabolic waste, and facilitates metastasis, which
is the invasion of tumour cells into new regions of tissue (Folkman 1995; Byrne 2010;
Carmeliet and Jain 2011; Duran et al. 2017; Viallard and Larrivée 2017).

The models we consider in this article describe the dynamics of two cell types
involved in angiogenesis: tip and stalk cells (Duran et al. 2017;Betz et al. 2016;Viallard
and Larrivée 2017; Carmeliet and Jain 2011; Phng and Gerhardt 2009; Gerhardt et al.
2003; Hellström et al. 2007). Tip cells guide the migration of new sprouts by moving
chemotactically up gradients of angiogenic factors (also known as tumour angiogenic
factors, or TAFs), which include such molecules as vascular endothelial growth factor
(Yadav et al. 2015; Lin et al. 2016). Aside from migrating through the extracellular
matrix, tip cells can also branch to create multiple angiogenic sprouts and fuse with
other tip or stalk cells, in a process called anastomosis, to create closed loops in the
network. Stalk cells, meanwhile, have a more proliferative phenotype than tip cells
and are located along the path of tip cell migration. They provide structural support to
the new network, and help to establish a lumen through which blood can flow (Duran
et al. 2017; Betz et al. 2016; Szymborska and Gerhardt 2018; Iruela-Arispe and Davis
2009).

A variety of continuum and discrete approaches have been used to model tip and
stalk cell dynamics; they include (but are not limited to) compartment-based models
(Spill et al. 2015), cellular automata (Anderson and Chaplain 1998; Qutub and Popel
2009; Jackson and Zheng 2010; Pillay et al. 2017), the Cellular Potts model (Bauer
et al. 2007; Boas et al. 2018), deterministic PDEs (Flegg et al. 2015; Connor et al.
2015), and stochastic differential equations (Bonilla et al. 2014, 2016; Perfahl et al.
2017; Bonilla et al. 2020). They may be implemented in specialised computational
frameworks such as Microvessel Chaste or CompuCell3D, to name but two (Grogan
et al. 2017; Swat et al. 2009). For a more detailed list of mathematical models for
angiogenesis, we refer the interested reader to the following reviews (Scianna et al.
2013; Mantzaris et al. 2004; Heck et al. 2014; Flegg et al. 2020).

The first continuummodel that we consider is a coarse-grained system derived from
a rule-based ABM in Pillay et al. (2017). The Pillay et al. ABM (henceforth denoted
P–ABM) tracks the movement and proliferation of tip and stalk cells in response to
a generic TAF on a 2D unit square lattice. Tip cells move via a biased random walk
towards increasing TAF concentrations and proliferate to create new sprout branches.
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Stalk cells are created at sites left vacant when tip cells move, and anastomosis occurs
when a tip cell moves into an occupied lattice site.

The coarse-grainedPDEdescribes theP–ABM’s averagedistributionof tip and stalk
cells over time and space. Although the full system of equations is formulated in 2D, it
may be reduced to one spatial variable by column averaging the dependent variables,
making a mean-field approximation, and non-dimensionalising the equations with
appropriate length and time scales. The resulting 1D coarse-grained system can be
written in Cartesian coordinates as follows: we denote by N (x, t) and E(x, t) the
column averaged tip and stalk cell densities, respectively, at location x ∈ [0, L] and
time t ∈ [t0,∞), with t0 ≥ 0, and by C(x, t) the column averaged concentration
of a generic TAF that regulates the cell dynamics. The system is closed by imposing
no-flux boundary conditions for the tip cells (boundary conditions are not required for
the stalk cell equation because it is a first-order differential equation with respect to t
– see below). We assume that the source of TAF is located at x = L > 0, that there is
no TAF at the original vessel where x = 0, and that the decay of TAF and its uptake
by cells are negligible. Under these assumptions, the coarse-grained model is given
by

∂N

∂t
=

(
D

∂2N

∂x2
− χ

∂

∂x

(
N

∂C

∂x

))
︸ ︷︷ ︸
random motion + chemotaxis

(1 − anN − aeE︸ ︷︷ ︸
anastomosis

) + λNC︸ ︷︷ ︸
branching

−μanN
2 − μaeN E︸ ︷︷ ︸

anastomosis

,

(1)

∂E

∂t
= μN︸︷︷︸

production from tip cell movement

+ anμN2 + anN

(
D

∂2N

∂x2
− χ

∂

∂x

(
N

∂C

∂x

))
︸ ︷︷ ︸

production from tip-to-tip anastomosis

, (2)

γ
∂C

∂t
= ∂2C

∂x2
,

︸ ︷︷ ︸
diffusion of TAF

(3)

D
∂N

∂x
− χN

∂C

∂x
= 0 at x = 0, L,

C(0, t) = 0, C(L, t) = 1,

N (x, t0) = G(x), E(x, t0) = H(x),

(4)

where D > 0 is the tip cell random motility coefficient, χ > 0 represents tip cell
sensitivity to TAF, λ > 0 is related to the rate of tip cell branching, μ > 0 is related
to tip cell movement, and the non-negative functions G(x) and H(x) represent the
tip and stalk cell densities at time t0 ≥ 0, respectively. The values of D, χ , μ, and
λ may be written in terms of the P–ABM parameters (Pillay et al. 2017). In Eq. (1),
the parameter 0 ≤ ae ≤ 1 is related to the prevalence of tip-to-sprout anastomosis,
and in practice is estimated by fitting to data from the P–ABM using a nonlinear least
squares method. The parameter an , by contrast, is a model choice parameter: it either
takes the value 0 or 1, depending on whether tip-to-tip anastomosis is included in the
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microscopic model. For the remainder of this article, we fix an = 1. We refer to Eqs.
(1)–(4) as the Pillay PDE system, or P–PDE for short (see Table 1).

In Eq. (1), the expressions representing tip cell movement are multiplied by the
nonlinear term (1 − anN − aeE), which derives from the volume exclusion rules
incorporated in the P–ABM and models the effects of cell elimination due to tip-
to-tip and tip-to-sprout anastomosis. This term, however, may cause the P–PDE to
become ill-posed if anN + aeE > 1 (Pillay et al. 2017, 2018). When this occurs, the
coarse-grained tip cell equation becomes similar to a negative diffusion model, which
is known to yield ill-posed solutions that do not depend continuously on the initial
data. Thus, the PDE solutions have the potential to be ill-posed if there are sufficiently
large densities of tip and stalk cells. Although in practice multiple signalling cues act
to prevent the emergence of such high cell density regions, for instance by creating
a “salt-and-pepper” pattern of tip cells as they emerge from a pre-existing vessel
(Bentley et al. 2008; Blanco and Gerhardt 2013; Duran et al. 2017), these subcellular
processes are outside the scope of this coarse-grained model. Therefore, to ensure
well-posedness of the PDE solutions, we simulate the system from t0 > 0, by which
time regions of high tip cell density have been sufficiently eliminated by anastomosis
so that (1 − anN − aeE) ≥ 0. Guided by previous numerical implementations from
Pillay et al. (2017), we choose t0 = 0.2 with column averaged P–ABM results as
initial conditions (see Appendix E for details on the numerical methods).

Equation (3) describes the TAF dynamics.Byrne and Chaplain (1995) determined
that for typical parameter values 0 < γ � 1, hence a quasi-steady state approximation
can be made for C(x, t) by setting γ = 0. The solution to Eq. (3) in this limit, subject
to boundary conditions (4), isC(x, t) ≈ C(x) = νx , where ν = L−1. We will assume
for the remainder of the article that the TAF concentration is given by this expression.

The second continuum angiogenesis model that we investigate is based on the clas-
sical “snail-trail” framework. Its defining feature is that the stalk cell density increases
at a rate proportional to the magnitude of net tip cell flux, which models the experi-
mental observation that stalk cells proliferate along the path of tip cells (Balding and
McElwain 1985; Byrne and Chaplain 1995; Connor et al. 2015). Although originally
constructed from a phenomenological scheme proposed by Balding and McElwain
(1985), snail-trail modelsmay also be derived from discrete, compartment-basedmod-
els for angiogenesis (Spill et al. 2015). In these PDE systems, tip cells are assumed to
move via chemotaxis up TAF gradients and by random motion. Other processes can
also be modelled, such as branching of new tip cells and tip cell elimination by anas-
tomosis (Byrne and Chaplain 1995; Pettet et al. 1996). If N (x, t), E(x, t), C(x, t),
D, χ , an , ae, μ, and λ have the same physical interpretations as in the P–PDE, then
the non-dimensional 1D version of the snail-trail model may be written in Cartesian
coordinates as

∂N

∂t
= D

∂2N

∂x2
− χ

∂

∂x

(
N

∂C

∂x

)
︸ ︷︷ ︸
random motion + chemotaxis

+ λNC︸ ︷︷ ︸
branching

− anμN 2 − aeμNE,︸ ︷︷ ︸
anastomosis

(5)

∂E

∂t
= κ(x)

∣∣∣D ∂N

∂x
− χN

∂C

∂x

∣∣∣.︸ ︷︷ ︸
production from net tip cell flux

(6)
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The initial conditions, boundary conditions, and TAF dynamics for this system are
given by Eqs. (3)–(4). We again make a quasi-steady state approximation for the TAF
dynamics to conclude that the TAF concentration in the snail-trail model is given by
C(x, t) ≈ C(x) = νx .

The absolute value sign in Eq. (6) ensures that the stalk cell density is always non-
negative, even when the net tip cell flux is negative. In Martinson et al. (2020), we
argued that the factor κ(x)must be included in the snail-trail framework as a correction
for using a net quantity (namely, the net tip cell flux) to estimate the total stalk cell
density rate of change. Its derivation, which is reproduced in Appendix F, makes use
of the P–ABM rules to obtain the following approximate formula for κ(x), which is
valid in situations where the TAF gradient is non-zero:

κ(x) = μ

χ

∣∣∣ ∂C
∂x

∣∣∣ . (7)

The corrective factor is a function of x because the TAF gradient may vary with respect
to space. We have already noted, however, that in this article our column averaged
TAF field is C(x) = νx ; since the gradient of this field is constant, this means that
κ(x) = μ/(χν) is also constant. We will refer to Eqs. (5)–(6) as the snail-trail model
(ST–PDE, see Table 1).

Although the P–PDE has a different stalk cell evolution equation than the ST–PDE
and contains additional nonlinear terms, Pillay et al. (2017) found that, for certain
parameter regimes, numerical solutions to the two continuum models were indistin-
guishable. We observe this behaviour in Fig. 1, where we present numerical solutions
to the ST–PDE and P–PDE. In Fig. 1a, we find that at each time point shown, the
largest pointwise difference between solutions is less than 5% of the maximum tip
cell density. Similarly, in Fig. 1b the largest pointwise difference between stalk cell
solutions is less than 3% of the maximum stalk cell density for each time point shown.
Results such as these raise the question of whether solutions to the ST–PDE and P–
PDE agree for larger regions of parameter space. Addressing this issue is important,
as it would establish conditions under which nonlinear coarse-grained models such
as the P–PDE can be represented well by simpler phenomenological systems like the
ST–PDE.

1.1 Article outline

In this article, we compare the behaviour of solutions to the ST–PDE and P–PDE in
order to determinewhen theywill be in good agreement. In Sect. 2, we use perturbation
methods to identify the dominant dynamics of the ST–PDE and P–PDE in parameter
regimes that correspond to chemotaxis-dominated tip cellmovement and small branch-
ing rates. We find that, in such regions of parameter space, both PDE models reduce
to the same system at leading order within the domain interior. Numerical simulation
confirms that pointwise differences between both solutions are relatively small under
the conditions outlined above. In Sect. 3, we construct asymptotic solutions to the
leading order systems, which are valid for early times. Numerical simulation demon-
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(b) Stalk Cell Density

Fig. 1 Numerical results of the ST–PDE and P–PDE showing a the tip cell density, N (x, t), and b the
stalk cell density, E(x, t), at times t = 0.2, 1.4, . . . , 19.4 within the domain x ∈ [0, 10]. The insets in
both figures show zoomed-in views of the results at (left inset) t = 1.4 and (right inset) t = 19.4. Key:
P–PDE solutions (solid blue lines), ST–PDE solutions (dashed red lines). Parameter values: D = 5×10−4,
χ = 0.425, μ = 150, λ = 0.1, ae = 0.05, an = 1. The PDEs were initialised at t = 0.2 with data from
the P–ABM, column averaged in the y-direction. For colours, we refer to the online version of this article

strates that such analytic expressions are in good agreement with ST–PDE and P–PDE
results. The approach taken in this paper may be used in the future to compare other
nonlinear coarse-grained and/or phenomenological models for a given biophysical
process.

2 Leading order model dynamics

The procedure we use to reduce the ST–PDE and P–PDE to their dominant, leading
order dynamics is presented below. For clarity, the details are shown only for the
ST–PDE: the analysis for the P–PDE follows mutatis mutandis, and is presented in
Appendix A. We focus our analysis only on the domain interior: as we have already
noted, the continuum models are simulated from t0 = 0.2; at this time point, most of
the tip cell mass has moved away from the left-hand boundary into the domain interior.
Furthermore, both continuum models represent the migration of cells towards a TAF
source, and not the subsequent infiltration of cells into the region producing TAF; this
means that both models cease to be valid biological descriptions when the majority of
the tip cell mass reaches the right-hand boundary at x = L . We therefore restrict our
attention to solutions within the domain interior rather than near the boundaries.

We make the following assumptions:

(A1) All parameter values in the ST–PDE are equal to their counterparts in the P–PDE.
(A2) The initial and boundary conditions for the ST–PDE and P–PDE are identical.

After substituting equation (7) into the ST–PDE stalk cell evolution equation, we
simplify our analysis by reducing the number of parameters in the ST–PDE. We do
this by recasting the dependent and independent variables with the following trans-
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formations:

u = anμ

λ
N , w = aeμ

λ
E, c = C, τ = λt, X = x

√
λ

D
, (8)

so that the time scale of interest is λ−1 and the length scale is
√
D/λ. We write the

TAF concentration as a function c(X , τ ) for purposes of clarity, as this allows us to
avoid explicitly writing x in terms of the new independent variables. Equations (5)–(6)
then transform to give

∂u

∂τ
= ∂2u

∂X2 − 1

ε

∂u

∂X
+ u(c − u − w), (9)

∂w

∂τ
= β

∣∣∣ε ∂u

∂X
− u

∣∣∣, (10)

with boundary and initial conditions given by

ε
∂u

∂X
− u = 0 at X = 0, L

√
λ

D
, (11)

u(X , τ0) = an
α
G(X

√
D/λ) =: g(X),

w(X , τ0) = ae
α
H(X

√
D/λ) =: h(X). (12)

InEqs. (9)–(12),we have introduced the following dimensionless parameter groupings

ε :=
√
Dλ

χν
, α := λ

μ
, β := aeμ

anλ
= ae

anα
.

We remark that, for this specific scenario, β is a constant because κ(x) and the TAF
gradient are constant; in more general scenarios where the TAF gradient varies in
space, however, β would be a function that also depends on the rescaled spatial vari-
able. Equations (9)–(12) may be compared to the rescaled P–PDE (Eqs. (21)–(22) in
Appendix A). Under the following assumption, we may further reduce the ST–PDE
using perturbation methods (Bender and Orszag 1999; Hinch 1991; Verhulst 2005):

(A3) Tip cell movement is dominated by chemotaxis and the branching rate is suffi-
ciently small so that 0 < ε � 1 and 0 < α = ε2Ψ � 1, with Ψ ∼ O(1).

Assumption (A3) is motivated by research that suggests chemotaxis up TAF gradi-
ents is the dominant mechanism by which tip cells migrate (Duran et al. 2017; Betz
et al. 2016; Bowersox and Sorgente 1982; Carmeliet and Jain 2011). The relation-
ship between ε and α follows from assumption (A1) and the relationship between the
coarse-grained model parameters and those of its underlying discrete model (Simpson
et al. 2009; Pillay et al. 2017). Namely, if k and h represent P–ABMparameters related
to the response of tip cells to TAF and the spatial step size of the lattice, respectively,

123



21 Page 10 of 34 W. D. Martinson et al.

then the continuum parameters D and χ may be written as

D = μh2

4
, χ = μkh2.

Substituting these expressions into the formula for ε, we find that ε = √
α/(2khν) =√

αΨ −1/2.
We will also assume for the remainder of this section that the ratio ae/α is bounded

in the limit as α → 0, so that β ∼ O(1). In practice, this latter assumption may be
relaxed: in Appendix B, we show that the leading order dynamics of the ST–PDE and
P–PDE are identical for a wider range of values of β.

With 0 < ε � 1, we seek asymptotic solutions for u(X , τ ) and w(X , τ ) of the
form

u(X , τ ) ∼ u0(X , τ ) + εu1(X , τ ), w(X , τ ) ∼ w0(X , τ ) + εw1(X , τ ).

Substitution into Eq. (10), and equating coefficients of O(ε0), leads to the following
PDE, which describes the dynamics of w0(X , τ ):

∂w0

∂τ
= β|u0|. (13)

Ideally, the same procedure would be used to identify the leading order dynamics of
the tip cell rate Eq. (9); however, this naive approach will fail because the equation
contains a term of O(ε−1): in particular, we would find that the leading order tip cell
solution gradient is 0, which clearly does not match our observations of the ST–PDE
and P–PDE solutions in Fig. 1. We may circumvent this issue by making a change of
variables: we let

y = X − τ + X0

ε
, U = u, W = w, C̃ = c,

where X0 is an arbitrary constant that ensures the right boundary location, y∗ =
(λL/(χν)−τ −X0)/ε, is strictly positive over the time interval of interest. Once again,
we have written the steady state TAF concentration as a function C̃(y, τ ) for purposes
of clarity. We remark that C̃(y, τ ) is still bounded between 0 and 1. Substitution of
these transformations into Eq. (9) yields

∂U

∂τ
= ∂2U

∂ y2
+U (C̃ −U − W ), (14)

with boundary conditions

ε
∂U

∂ y
−U = 0 at y = −τ

ε
,

λ
χν

L − τ − X0

ε
. (15)
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Fig. 2 Numerical solution of the leading order dynamics showing how a the tip cell density, u(X , τ ), and
b the stalk cell density, w(X , τ ), evolve over times τ = 0.2λ, 0.4λ, . . . , 2λ, with λ = 0.16, along with
ST–PDE results (the independent variables of the leading order tip cell solution have been transformed back
into the variables X and τ for ease of comparison). The insets in both a and b show a zoomed-in view of the
results at time τ = 2λ. Key: ST–PDE solution (solid black lines), leading order solutions (dashed red lines).
Parameter values: D = 10−3, χ = 0.4, an = 1, ae = 0.0391, μ = 160 (this corresponds to ε = 10−3/2,

α = 10−3, and β = 39.1). The PDEs were simulated on τ ∈ [0.2λ, 2λ], X ∈ [0,
√

λ
D ]. P–ABM solutions

at τ = 0.2λ, column averaged in the y-direction, were used as initial conditions. For colours, we refer to
the online article

We seek a regular perturbation series solution for U of the form

U (y, τ ) ∼ U0(y, τ ) + εU1(y, τ ).

At leading order, we recover the following PDE describing the dynamics of U0:

∂U0

∂τ
= ∂2U0

∂ y2
+U0(C̃ −U0 − W0), (16)

where the dynamics of W0 are described by Eq. (13) (after a suitable change of vari-
ables). The boundary conditions for the leading order solution, found in the limit as
ε → 0+, are

lim
y→±∞U0(y, τ ) = 0, (17)

which are homogeneous Dirichlet boundary conditions. We show in Appendix C that
tip cell solutions to Eq. (16) with boundary conditions (17) are non-negative, provided
the initial condition is also non-negative. We may therefore ignore the absolute value
sign in Eq. (13). The resulting system is identical to that obtained from the P–PDE
(see Appendix A).

Figure 2 presents the numerical solution to the leading order system, with the tip
cell solution transformed back into the independent variables X and τ , along with
numerical results from the original ST–PDE. We observe good agreement between
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both sets of tip cell densities in Fig. 2a: at each time point shown, for instance, the
largest pointwise difference between the two solutions is less than 2% of themaximum
tip cell density. Similarly, we observe in Fig. 2b that the numerical solution to Eq. (13)
is almost indistinguishable from that of the original ST–PDE when the leading order
tip cell solution is used to calculate the stalk cell density rate of change. Indeed, at
each time point shown the maximum pointwise difference between the two solutions
is less than 2% of the maximum stalk cell density. These results support our earlier
hypothesis that the leading order dynamics of the ST–PDE within the domain interior
are accurately described by Eqs. (13) and (16) when 0 < ε � 1 and 0 < α � 1.

Crucially, we show in Appendix A that, under assumptions (A1)-(A3) listed above,
wemay reduce the P–PDE to Eqs. (13) and (16) as well. This result holds regardless of
the value of β, the non-dimensional parameter that depends on the rate of tip-to-sprout
anastomosis (see Appendix B for details). In biological terms, this suggests that the
ST–PDE and P–PDE are identical to leading order if chemotaxis dominates tip cell
movement and if the branching rate is sufficiently small; additionally, the agreement
between the two models does not depend on the rate of tip-to-sprout anastomosis.
Since the higher-order terms in the tip and stalk cell asymptotic series will be small
when 0 < ε � 1 and 0 < α � 1, this implies that solutions to the original ST–
PDE and P–PDE models will be indistinguishable within the domain interior for such
parameter regimes.

We have validated these conclusions with numerical results. Figure 3 presents
numerical solutions of the original ST–PDE and P–PDE models listed in Table 1,
using a parameter regime for which 0 < ε � 1, 0 < α � 1, and β ∼ O(1) (parame-
ter values are listed in the figure caption; see Appendix E for details of the numerical
methods). We observe in Fig. 3a that at each time point, the tip cell solution profile
resembles a bell curve. We provide a possible explanation for this in Sect. 3, where
we show that the leading order tip cell solution has a bell curve profile for early times,
regardless of the value of β. We also see that the amplitude of the tip cell density
increases gradually as the solution travels to the right. This most likely occurs because
the tip cell branching rate increases near the right-hand boundary (the proliferation
rate is proportional to the TAF concentration, which itself is linear with respect to X ).

The ST–PDE and P–PDE tip cell solutions appear to travel with similar speeds
in Fig. 3a. In fact, further investigation shows that the P–PDE speed is within 0.5%
of the ST–PDE wave speed, and that in both models the waves accelerate gradually
over time (see Appendix E for details on the numerical methods used to arrive at this
conclusion).

The ST–PDE tip cell solutions appear to be indistinguishable from those of the
P–PDE. We investigated this further by computing the largest pointwise difference
between the ST–PDE and P–PDE tip cell solutions over the spatial domain and nor-
malising that value by the maximum tip cell density at each time point (results are
presented in Fig. 3c). We observe that the maximum relative pointwise difference
between the two sets of solutions lies within the approximate range [0.015, 0.035] (or
1.5%–3.5% of the maximum tip cell density) for the time points shown.

Figure 3b shows the corresponding ST–PDE and P–PDE stalk cell densities for this
parameter regime. We see that the P–PDE solution is greater than that of the ST–PDE,
even though the solutions to both models appear to have similar profiles. Nevertheless,
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Fig. 3 Numerical solutions of the ST–PDE and P–PDE systems showing how a the tip cell density, u(X , τ ),
and b the stalk cell density, w(X , τ ), evolve over times τ = 0.2λ, 1.8λ, ..., 19.4λ, where λ = 0.16. The
insets in a and b show a zoomed-in view of the solutions at (left inset) τ = 1.8λ and (right inset) τ = 19.4λ.
The graph in c shows themaximum relative difference between tip cell solutions of the ST–PDE, uST (X , τ ),
and P–PDE, uP (X , τ ), against τ . The log-log plot d shows how themaximum tip cell density in bothmodels
evolves over time τ . The inset in that graph shows a zoomed-in view for small values of τ . Key: ST–PDE
(dashed red lines), P–PDE (solid blue lines). Parameter values: D = 10−3, χ = 0.4, ae = 0.0391,
an = 1, μ = 160 (this corresponds to ε = 10−3/2, α = 10−3, β = 39.1). The PDEs were simulated on

τ ∈ [0.2λ, 20λ], X ∈ [0, 10
√

λ
D ]. The P–ABM solutions at τ = 0.2λ, column averaged in the y-direction,

were used as initial conditions for the PDE models. For colours, we refer to the online article

the size of differences between theST–PDEandP–PDEsolution is small:we calculated
the maximum relative pointwise difference between stalk cell solutions using a similar
method to the one described above for tip cell solutions (results not shown). In this
case, the relative difference between the two sets of stalk cell solutions lies within the
approximate range [0.01, 0.02] (1%–2% of the maximum stalk cell density) for the
time interval considered here.

In Fig. 3a, the tip cell density initially decreases at a relatively rapid rate. We
investigated this behaviour further by creating a log-log plot of the maximum tip cell
density against time τ in Fig. 3d. The graph resembles a straight line until τ ≈ 0.4,
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after which point it begins to curve upwards. In fact, we found that a line with slope
−1.02 approximates the graph with less than 2% error until τ ≈ 0.4 (the equation
for the line was computed using least squares regression). We conclude that, for this
parameter regime, the maximum tip cell density is approximately proportional to τ−1

at early times. We explain this observation in Sect. 3, where we find that for this
parameter regime there exist self-similar solutions to the leading order ST–PDE and
P–PDE dynamics that are initially proportional to τ−1.

We confirmed that increasing the value of ε in the ST–PDE and P–PDE increases
the magnitude of differences between their solutions. We numerically simulated the
PDEmodels for cases in which the randommotility coefficient, D, was increased from
10−3 to 10−1, and in which the chemotactic sensitivity of cells, χ , was decreased from
0.4 to 0.04; in both cases ε increases from about 0.03 to approximately 0.3 but α and
β are the same as in Fig. 3 (see Figures 1-2 of the Supplementary Material). In both
situations, we were able to visually distinguish between the tip and stalk solutions of
the two models. Further numerical calculation also revealed that, for such parameter
regimes, the relative differences between tip and stalk cell solutions of the two models
were larger than the differences shown in Fig. 3.

We have also investigated the case in which the values of α and ε increase simulta-
neously by changing the value of λ, the parameter in the ST–PDE and P–PDE related to
the branching rate, from 10−3 to 0.0625 (see Figure 3 of the Supplementary Material).
Interestingly, for this parameter regime the differences between the ST–PDE and P–
PDE tip/stalk solutions grow noticeably large only over long time periods: the two sets
of solutions are indistinguishable from each other at early time points. This apparent
discrepancy from our analysis likely arises because the branching rate is proportional
to λ and to the TAF concentration. Near the left-hand boundary, the TAF concentration
is small because it is linear with respect to X . In such regions, the overall branching
rate remains low even when the value of λ increases, and it follows that solutions
travelling in such regions are less likely to be affected by changes in λ. As the tip cell
density travels to the right, however, the TAF concentration and branching rate both
increase and become more important to solution behaviour. Thus if only the value of λ
were to increase, then differences between ST–PDE and P–PDE solutions would grow
only over long time periods, when the tip cells have invaded regions with sufficiently
large TAF concentrations.

Our analysis suggests that β does not play an important role at leading order, hence
its value is not expected to affect the degree of similarity between the ST–PDE and P–
PDE solutions. We confirmed this conclusion via numerical simulation, by increasing
the value of ae in the ST–PDE and P–PDE from 0.0391 to its maximum value of 1
(see Figure 4 of the Supplementary Material; this corresponds to increasing β from
39.1 to 103 but keeping ε and α the same values as in Fig. 3).

We have thus found that numerical simulation corroborates the conclusions from
our analysis in Sect. 2. Namely, we have found that increasing the value of ε =√
Dλ/(χν) and/or α = λ/μ increases differences between the ST–PDE and P–PDE

solutions. However, changing the value of β does not affect whether the two sets of
numerical solutions appear indistinguishable from each other. Hence if 0 < ε � 1
and 0 < α � 1, then solutions for the ST–PDE are in good agreement with those of
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the P–PDE. This corresponds to biological scenarios in which chemotaxis dominates
tip cell movement and sprout branching is rare.

3 Self-similar leading order tip cell solutions can exist for small time
periods

In this section, we construct asymptotic solutions to the leading order tip cell dynamics
derived in Sect. 2. Specifically, we show that Eq. (16), which describes the leading
order dynamics of the ST–PDE and P–PDE within the domain interior, admits self-
similar solutions for early times (i.e., in the limit as τ → 0). The results in Fig. 3d
motivate our search for such solutions since we observe that, for early times, the
maximum values of the tip cell solutions to the original ST–PDE and P–PDE models
are proportional to the same fixed power of τ .

We present the derivation of such self-similar solutions in Appendix D and list
the main results of that analysis here. In the case where β ∼ O(1), for instance, we
find that the leading order tip cell solution U0(y, τ ) may be written in terms of the
self-similar expression τ−1Ũ0(z), where z = τ−1/2(y − σ(τ)τ ) and σ(τ) is the wave
speed at time τ . Using the principles of dominant balance, we find that in the limit as
τ → 0 the ordinary differential equation (ODE) describing the dynamics of Ũ0(z) is

d2Ũ0

dz2
+ z

2

dŨ0

dz
+ Ũ0 = Ũ 2

0 , Ũ0(±∞) = 0, (18)

which describes the self-similar tip cell solution profile. The terms that appear in
Eq. (18) represent tip-to-tip anastomosis and the movement of tip cells. Terms due
to branching and tip-to-sprout anastomosis are proportional to τ (see Appendix D
for details, these correspond to the terms C̃U0 and U0W0 in Eq. (16)), and hence
are ignored in the limit as τ → 0. Since these terms will become non-negligible for
sufficiently large values of τ , we also conclude that this self-similar solution breaks
down as τ increases because it becomes impossible to reduce the dynamics for Ũ0 to
one independent variable. We thus reason that this self-similar solution exists when
terms representing branching and tip-to-sprout anastomosis are negligible compared
to those describing tip-to-tip anastomosis.

To our knowledge, there is no closed-form solution to the boundary value problem
given by Eq. (18) that is non-trivial (i.e., not Ũ0(z) ≡ 0). However, a non-trivial
numerical solution to the boundary value problem can be computed; it is presented in
Fig. 4a. We see that the solution resembles a bell curve, which is consistent with our
earlier observations of numerical tip cell solutions.We further compared the similarity
solution to results for the ST-PDE and P-PDE by transforming the function in Fig. 4a
from an expression in terms of the independent variable z into one in terms of the
unscaled variable X : if we redefine the wave speed as φ(τ) := 1/ε + σ(τ), then this
transformation is given by

X = z
√

τ + φ(τ)τ + X0

ε
,

123



21 Page 16 of 34 W. D. Martinson et al.

(a) (b)

Fig. 4 Numerical solution of the boundary value problem given by Eq. (18) in a the self-similar variable
z, and b the independent variable X for τ = 0.2λ, 0.6λ, ..., 5λ, where λ = 0.16. In b, we have plotted the
numerical ST–PDE and P–PDE results from Fig. 3 for comparison, and have multiplied the solution to Eq.
(18) by τ−1. In order to better compare the self-similar solution to the ST–PDE and P–PDE results in b,
we set the maximum value of the self-similar solution at τ = 0.2λ equal to that of the ST–PDE and P–PDE
tip cell densities at τ = 0.2λ. The insets in b show a zoomed-in view of the results at (top inset) τ = 0.6λ
and (bottom inset) τ = 5λ. Key for b: P–PDE solutions (solid blue lines), ST–PDE solutions (dashed red
lines), solution to Eq. (18) (dashed-dot black line). For colours, we refer to the online article

Table 2 Dimensionless
quantities used to generate the
self-similar solution results
presented in Fig. 4b. A
description of how these values
were calculated is in Appendix E

ε X0 φ(τ)

10−3/2 5.5 × 10−5 33.45

which follows from the relationships listed above and in Sect. 2 (see Appendix E for
details on the numerical methods used to estimate φ(τ) and X0). The transformed self-
similar solution is plotted in Fig. 4b over several values of τ for a parameter regime
in which ε = 10−3/2, α = 10−3, β = 39.1, and λ = 0.16; the numerical solutions to
the original ST–PDE and P–PDE models are also plotted for comparison.

We observe in Fig. 4b that the self-similar solution is in good agreement with the
numerical solutions for the ST–PDE and P–PDE for small values of τ (the largest
pointwise difference between the self-similar solution and the numerical results is
on the order of 10% of the maximum tip cell density). As τ increases, however, the
self-similar solution begins to underestimate the ST–PDE and P–PDE solutions. This
observation is consistent with our earlier argument that self-similar solutions break
down as τ increases. The results shown in Fig. 4 thus provide evidence that the leading
order systemadmits a similarity solutionwhen τ is sufficiently small, and that its profile
is well described by Eq. (18).

At this point, we have only presented self-similar solutions to the leading order
inner tip cell density in the case where β ∼ O(1). However, similarity solutions also
exist for awider range of values ofβ (this can be shown using a similar procedure to the
one presented in Appendix D). When β � 1, for instance, the self-similar solution is
identical to the one described above. This makes sense, since we show in Appendix B
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that terms representing tip-to-sprout anastomosis in the PDEs describing the leading
order dynamics are negligible for this parameter regime; thus, this result is consistent
with our conclusion that Eq. (18) is an appropriate description of the leading order
solutionwhen terms describing branching and tip-to-sprout anastomosis are negligible
compared to those for tip-to-tip anastomosis.

When β  1, however, the self-similar solution is different to the one described
by Eq. (18). This is because we find in Appendix B that, for this parameter regime,
terms corresponding to tip-to-tip anastomosis are negligible in the leading order tip
cell solution. A similar procedure to the one listed in Appendix D demonstrates that
in the limit as τ → 0, the ODE describing the self-similar solution profile is given by

d2Ũ0

dz2
+ z

2

dŨ0

dz
− AŨ0 = 0, Ũ0(±∞) = 0, (19)

where z = τ−1/2(y − σ(τ)τ ) is the same similarity variable as before and A is a
constant such that U0(y, τ ) = τ AŨ0(z). The terms in this equation represent tip cell
movement only: terms describing tip-to-sprout anastomosis and branching vanish as
τ → 0. We conclude that the self-similar solution described by Eq. (19) is applicable
in cases where terms that represent branching, tip-to-tip anastomosis, and tip-to-sprout
anastomosis are negligible compared to those for tip cell movement. The value of A is
uniquely determined by solving the ODE, satisfying the two boundary conditions, and
enforcing the constraint that the solution must be non-negative. This sets A = −1/2,
and the solution to Eq. (19) is

Ũ0(z) = C1e
−z2/4, (20)

where C1 is a non-negative constant. The solution is a Gaussian function and thus
has a bell curve profile. We have verified that it can be in good agreement with the
ST–PDE and P–PDE numerical solutions for early times and parameter regimes for
which 0 < ε � 1, 0 < α � 1, and β  1 (see Figure 5 of the Supplementary
Material).

4 Discussion and conclusion

In this article, we have analysed two continuummodels for angiogenesis: the snail-trail
and Pillay PDE systems. The P–PDE is a nonlinear mean-field model that describes
the coarse-grained behaviour of a discrete, rule-based ABM (Pillay et al. 2017). By
contrast, the snail-trail model is a simpler system constructed from phenomenological
arguments (Byrne and Chaplain 1995; Balding and McElwain 1985; Orme and Chap-
lain 1997; Flegg et al. 2020; Connor et al. 2015). Despite such differences, asymptotic
solutions to the two models are identical at leading order within the domain interior
under parameter regimes in which chemotaxis dominates tip cell movement and sprout
branching is rare. Hence in such biological situations we anticipate that solutions to
the ST–PDE will be in good agreement with P–PDE results; we confirmed this with
numerical simulation.
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In Sect. 3 we demonstrated that the system describing the leading order dynamics
of the ST–PDE and P–PDE admits self-similar solutions for early times. Differences
in numerical results between the similarity solution, ST–PDE, and P–PDE are rela-
tively small, which indicates that higher order terms in the asymptotic expansions are
indeed negligible under parameter regimes in which tip cell movement is dominated
by chemotaxis and branching is rare. Our analysis of leading order solutions also pro-
vides insight into some observations of the numerical results. For instance, the leading
order similarity solution has a bell curve shape regardless of the value of β, the non-
dimensional parameter that is proportional to the rate of tip-to-sprout anastomosis;
this may explain why tip cell solutions evolve to such a profile over time.

There are several possible extensions to our work in this article. We limited our
search of asymptotic solutions to those only within the domain interior, as we reasoned
that they were most relevant to the numerical results given the models and initial
conditions. However, this does not exclude the possibility that boundary layers may
exist: indeed, numerical results (not shown) reveal that stalk cell solutions of the ST–
PDE and P–PDE are different to each other near the left-hand boundary. Thus, one
extension of our analysis is to identify potential boundary layers in the leading order
ST–PDE and P–PDE solutions, and match them to the dynamics derived in Sect. 2.We
also made a quasi-steady state approximation for the TAF dynamics, which simplified
our analysis by making the TAF field linear. TAF dynamics may be more complicated
in reality, however, and can play a more significant role in the migratory dynamics:
cell-induced gradients, for instance, can provide time-dependent guidance cues for
tip cells, and will generate spatial heterogeneities in the TAF gradient that were not
considered here (Tweedy et al. 2020).

The approach taken in this paper may be generalised to study the relationship
between the ST–PDE, P–PDE, and other nonlinear continuum models for angiogen-
esis. As a particular example, we cite a coarse-grained system from Bonilla et al.
(2016), which has been derived from a discrete model that relies on stochastic differ-
ential equations to update cell and vessel locations (Bonilla et al. 2014). The continuum
model of Bonilla et al. is different from the ST–PDE and P–PDE, but its solutions nev-
ertheless have similar behaviours to the ones investigated in this article: for instance,
the leading order tip cell solution in the Bonilla et al. PDE model has been shown
to have a profile that resembles a bell curve, and is a travelling wave (Bonilla et al.
2016, 2020). It would be interesting in future work to apply our approach to these
other continuum angiogenesis models, as it would provide analytic insight into when
solutions from different angiogenesis models can be distinguished from each other,
and when simple phenomenological models will be accurate representations of more
complicated systems.

Although we identified parameter regimes for which two continuum models are
expected to be in good agreementwith each other, one open questionwedid not address
in this work is when the continuum models will also closely approximate solutions of
discretemodels for angiogenesis (which are closer representations of the true biology).
Some insight into this question may be gained by considering the derivation of the
P–PDE, since this continuum model describes the mean-field behaviour of an ABM
and has the same leading order solution as the ST–PDE. In particular, mean-field
models such as the P–PDE are appropriate representations of discrete models when

123



Comparative analysis of continuum angiogenesis models Page 19 of 34 21

spatial correlations between agents can be neglected. In the case of on-lattice ABMs,
for instance, this means that the average occupancy of a given lattice site must be
independent of the occupancy of its neighbours (Simpson and Baker 2011; Pillay
et al. 2017, 2018). However, this mean-field assumption will be violated in most
discrete angiogenesis models because of volume exclusion rules due to anastomosis,
and the effect of this violation will become more noticeable when many cells are
located within a given spatial region (Simpson et al. 2010). We thus expect the P–PDE
(and, by extension, the ST–PDE) to be a poor description of discrete angiogenesis
results when tip cells branch often.

Figure 5 presents column averaged P–ABM solutions for a parameter regime in
which the branching probability Pp has been increased from 10−3 to 5× 10−2, along
with ST–PDE and P–PDE solutions (several continuum parameters have been fitted
to the ABM results with a nonlinear least squares method, see the figure caption for
their values). We observe that the two continuum models are indistinguishable and
hence are in good agreement (the largest pointwise difference between the ST–PDE
and P–PDE tip cell solutions at each time point, for example, is less than 4% of the
maximum tip cell density). However, the discrepancies between the continuummodels
and the P–ABM distributions are larger, because we can visually distinguish between
the continuum and discrete results. Such results confirm that the continuum models
will be increasingly poor descriptions of discrete ABM results when the branching
rate increases, even though the two continuum models may still be in good agreement
with each other.

Surprisingly, further inspection of Fig. 5 shows that the continuum models do not
completely fail at capturing some aspects of the discrete solutions. For example, the
shape of the continuum solutions resembles those of the column averaged discrete
results, despite the fact that the sizes of their amplitudes are different. Additionally,
the continuummodels qualitatively capture the experimentally observed brush-border
effect, since the tip and stalk cell densities increase as they move closer to the right-
hand boundary at x = 1. Most importantly, we observe that the leading edge of tip
and stalk cell solutions travel with almost identical speeds (they are within 3.5% of
each other). We conclude that the continuum models are able to capture some aspects
of the underlying discrete solutions, such as the speed of invasion and their qualitative
behaviour, even though the calculated densities do not entirely match with the discrete
results.

This raises the question of howone should quantify the degree of agreement between
discrete and continuum results. For example, “good agreement” could be characterised
by sufficiently small absolute pointwise differences between the discrete and contin-
uum solutions, or by small differences between their wave speeds. Clarifying what
it means for discrete and continuum models to be in good agreement may provide
insight into new metrics that could indicate both the extent of angiogenic progression
and when it would be appropriate to apply simple continuum models to study and
analyse in silico (and eventually in vivo) angiogenesis data.

We anticipate that some of our results from this article also hold in a discrete setting
due to the relationship between the P–PDE and its underlying ABM. In particular,
we anticipate that for parameter regimes in which tip cell branching is rare and cell
movement is dominated by chemotaxis, solutions to the two continuum models will
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Fig. 5 Numerical solutions of the a tip cell density, N (x, t), and b stalk cell density E(x, t), given by the
ST–PDE, P–PDE, and P–ABM at times t = 0.2, 0.4, . . . , 2. One thousand realisations of the P–ABM,
with branching parameter Pp = 5× 10−2, were column averaged in the y-direction to generate the results
(all other ABM parameter values are the same as those listed in Appendix E). Column averaged P–ABM
solutions at t = 0.2 were used to initialise the two PDE models, which were simulated on the interval
x ∈ [0, 1], t ∈ [0.2, 2]. The inset in both panels shows a zoomed-in view of the solution at time t = 0.4.
Key: column averaged P–ABMdistributions (solid black lines), ST–PDE solution (dashed red lines), P–PDE
solution (dashed-dot blue lines). PDE parameter values: D = 10−3, χ = 0.4, an = 1, μ = 160. The PDE
parameters λ and ae were computed to minimise the squared difference between the PDE solutions and
the column averaged ABM data for the time interval shown (see Appendix E for details). For the ST–PDE,
we have λ = 0.99 (95% CI: [0.985, 0.992]), ae = 0.0363 (95% CI: [0.0362, 0.0364]). For the P–PDE, we
have λ = 1.115 (95% CI: [1.111, 1.119]), ae = 0.0424 (95% CI: [0.0423, 0.0425]). For colours, we refer
to the online article

be in good agreement with ensemble averages of the P–ABM. If this is true, then
this suggests that several summary statistics, such as the number of branches and
the average tip cell displacement, could be used to anticipate when discrete solutions
would be captured well by continuum models. It would be interesting in future work
to evaluate howwell such statistics predict the level of similarity between P–ABM and
ST–PDE solutions, as this will inform us of when simple phenomenological systems
will be good descriptions of more complex discrete angiogenesis data, potentially
including those obtained from in vitro and in vivo approaches.
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A Derivation of leading order P–PDE dynamics

Here we derive the leading order dynamics of the P–PDE, using the same procedure
and assumptions listed in Sect. 2.

We recast the independent and dependent variables of the P–PDE in terms of the
transformations given by Eq. (8), so that N (x, t), E(x, t), and C(x, t) map to the
functions u(X , τ ), w(X , τ ), and c(X , τ ), respectively. This leads to the equations

∂u

∂τ
=

( ∂2u

∂X2 − 1

ε

∂u

∂X

)(
1 − α(u + w)

)
+ u(c − u − w), (21)

∂w

∂τ
= β

[
u + αu2 + α2u

( ∂2u

∂X2 − 1

ε

∂u

∂X

)]
, (22)

which are subject to the initial and boundary conditions given by Eqs. (11)–(12) in
Sect. 2. Under assumption (A3) of Sect. 2, we let 0 < ε � 1, 0 < α = ε2Ψ �
1, where Ψ is a constant of O(1). We may thus further reduce the P–PDE using
perturbation methods. We will assume for the remainder of this appendix section that
β ∼ O(1) (we show in Appendix B that the leading order dynamics are the same for
the ST–PDE and P–PDE, even for different values of β).

Using the same procedure as outlined in Sect. 2, we find that the dynamics of the
leading order stalk cell solution, w0(X , τ ), are given by

∂w0

∂τ
= βu0. (23)

Thedynamics of theP–PDE leadingorder tip cell solution are foundby transforming
the independent and dependent variables in Eq. (21) as

y = X − τ + X0

ε
U = u, W = w, C̃ = c,

where X0 is an arbitrary constant, so that u(X , τ ), w(X , τ ), and c(X , τ ) map to
functions U (y, τ ), W (y, τ ), and C̃(y, τ ). This leads to the equation

∂U

∂τ
= ∂2U

∂ y2
− εΨ

(
ε
∂2U

∂ y2
− ∂U

∂ y

)(
U + W

)
+U (C̃ −U − W ), (24)
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We substitute the perturbation series

U (y, τ ) ∼ U0(y, τ ) + εU1(y, τ ),

and identify the leading order dynamics by equating terms of O(ε0). This leads to the
leading order P–PDE tip cell equation

∂U0

∂τ
= ∂2U0

∂ y2
+U0(C̃ −U0 − W0), (25)

where the dynamics describing the leading order stalk cell solution,W0(y, τ ), are given
by Eq. (23) (after a suitable transformation of variables). Crucially, the resulting inner
system is equivalent to that of the ST–PDE in Sect. 2, since we show in Appendix C
that the leading order tip cell solutions to the ST–PDE are non-negative. We have
confirmed that numerical solutions to the above inner system are in good agreement
with results from the full P–PDE (see Figure 6 of the Supplementary Material).

B Leading order dynamics for different values ofˇ

In Sect. 2 and Appendix A, we assumed β ∼ O(1) when proving that the ST–PDE
and P–PDE are identical at leading order. We may, however, relax this condition: this
section presents the procedure for reducing the ST–PDE to leading order for the cases
in which β  1 and β � 1 (the analysis for the P–PDE follows naturally, and is
omitted for clarity).

When β  1, we may assume that β = β̃ε−m , where m > 1 and β̃ is a constant of
O(1). To derive the leading order dynamics, we rescale the dependent variable u so
that u = εmū and u(X , τ ) �→ ū(X , τ ). Substitution into Eqs. (9)–(10) yields

∂ ū

∂τ
= ∂2ū

∂X2 − 1

ε

∂ ū

∂X
+ ū(c − εmū − w), (26)

∂w

∂τ
= β̃

∣∣ε ∂ ū

∂X
− ū

∣∣. (27)

From this point, the procedure for deriving the outer and inner systems is the same as
in Sect. 2. We find that the dynamics governing the leading order stalk cell density,
w0(X , τ ), are given by

∂w0

∂τ
= β̃|ū0|. (28)

Similarly, the leading order tip cell dynamics, Ū0(y, τ ), may be identified using the
same transformations presented in Sect. 2. They are given by

∂Ū0

∂τ
= ∂2Ū0

∂ y2
+ Ū0(C̃ − W0), (29)
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where the dynamics ofW0(y, τ ) are given (after a suitable transformation of variables)
by Eq. (28). The boundary conditions are given at leading order by

lim
y→±∞ Ū0(y, τ ) = 0. (30)

A similar proof to the one in Appendix C shows that the leading order tip cell solution
is non-negative, provided its initial condition is non-negative. Therefore we may drop
the absolute value sign in Eq. (28). Crucially, the resulting leading order system is
identical to the one derived for the P–PDE.

For the case in which β � 1, we rewrite the parameter in terms of a power of
ε, such that β = β̂εm , where m > 0 and β̂ is a constant of O(1). We rescale the
dependent variable w in the ST–PDE, such that w = εmw̄ and w(X , τ ) �→ w̄(X , τ ).
Substitution into Eqs. (9)–(10) leads to the system

∂u

∂τ
= ∂2u

∂X2 − 1

ε

∂u

∂X
+ u(c − u − εmw̄), (31)

∂w̄

∂τ
= β̂

∣∣∣ε ∂u

∂X
− u

∣∣∣. (32)

We deduce that the dynamics of the leading order stalk cell solution, w̄0(X , τ ), are
given by

∂w̄0

∂τ
= β̂|u0|, (33)

while the dynamics of the leading order tip cell solution are given by

∂U0

∂τ
= ∂2U0

∂ y2
+U0(C̃ −U0), (34)

where y = X − τ+X0
ε

, subject to the homogeneous Dirichlet boundary conditions

lim
y→±∞U0(y, τ ) = 0. (35)

If the initial condition for the leading order tip cell solutions is non-negative, then a
similar proof to the one outlined in Appendix C shows that their solutions are non-
negative at all other times. Thus wemay neglect the absolute value signs in the leading
order stalk cell evolution equation. The resulting inner and outer systems are identical
to those given by the P–PDE.

Table 3 summarises all of the possible outer and inner systems for the ST–PDE and
P–PDE when 0 < ε � 1 and 0 < α � 1.
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C Leading order ST–PDE solutions are non-negative

We show in this appendix that the solution to the leading order ST–PDE tip cell
dynamics given by Eq. (16) are non-negative, provided the initial condition is also
non-negative. We will assume that solutions are at least twice differentiable.

For sake of contradiction, assume that there exists a point y∗ ∈ R such that at time
τ1 > 0,U0(y∗, τ1) < 0. Since the PDE solution is twice differentiable, it is continuous,
so there must have existed some time 0 ≤ τ ∗ < τ1 such that U0(y∗, τ ∗) = 0 and
∂U0
∂τ

(y∗, τ ∗) < 0. We also conclude thatU0(y, τ ∗) ≥ 0 for all other values of y, since
y∗ is the first point at which the solution becomes negative.

Using Taylor’s theorem, the second derivative in Eq. (16) may be written as

∂2U0

∂ y2
(y∗, τ ∗) = lim

Δy→0

U0(y∗ + Δy, τ ∗) − 2U0(y∗, τ ∗) +U0(y∗ − Δy, τ ∗)
Δy2

,

which is well-defined because U0(y, τ ) is twice differentiable. Since U0(y∗, τ ∗) = 0
andU0(y±Δy, τ ∗) ≥ 0, the second derivativemust be non-negative. Since the nonlin-
ear reaction term of Eq. (16) is equal to 0 whenU0 = 0, this means that ∂U0/∂τ ≥ 0 at
(y∗, τ ∗), which is a contradiction. We conclude that any twice differentiable solution
to Eq. (16) with smooth, non-negative initial data is also non-negative for τ ≥ 0.

D Derivation of self-similar tip cell solutions

In this appendix, we show that the leading order tip cell solution is self-similar in the
limit as τ → 0. We focus on the case for which β ∼ O(1); a similar procedure can be
used to derive self-similar solutions for a wider range of values for β, using the inner
leading order dynamics derived in Appendix B.

In addition to the assumptions made in Sect. 2, we will simplify our analysis by
assuming that the following are true:

(B1) The leading order tip cell solution dynamics are given by Eq. (16) with boundary
conditions (17).

(B2) The TAF concentration C̃(y, τ ) is bounded between 0 and 1, as is the case in
Sect. 2.

(B3) The initial leading order tip and stalk cell densities are non-negative andbounded.
(B4) The wave speed of leading order tip cell solutions, σ(τ), may depend on time

but is bounded such that σ(τ)τ and σ ′(τ )τ → 0 as τ → 0. This assumption is
inspired by our numerical results, which suggest that solutions to the ST–PDE
and P–PDE travel short distances in small time periods but have wave speeds
that vary over time (see Fig. 6).

We seek self-similar solutions by substituting into Eq. (16) the expression

U0(y, τ ) = τ AŨ0
(
τ B(y − σ(τ)τ )

) = τ AŨ0(z),

where A and B are constants to be determined, σ(τ) is the tip cell wave speed at
time τ , and z = τ B(y − σ(τ)τ ) is the self-similar variable. We recast the equation
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in terms of the independent variables z and τ . To avoid explicitly writing the TAF
concentration as a function of z, we write C̃(y, τ ) as c̃(z, τ ). Similarly, we use W̃0
to denote the leading order stalk cell density in terms of z and τ . These substitutions
lead to the equation

AŨ0 +
(
Bz − τ 1+B

(
σ(τ) + τ

dσ

dτ

))
dŨ0

dz
= τ 1+2B d

2Ũ0

dz2
+

(
τ c̃ − τ W̃0 − τ 1+AŨ0

)
Ũ0. (36)

The values of A and B are chosen to eliminate as many powers of τ in Eq. (36) as
possible, while simultaneously ensuring that no term blows up to infinity as τ → 0.
This uniquely sets A = −1 and B = −1/2. However, the resulting equation does not
describe self-similar solutions in general. We conclude that self-similar solutions do
not exist for sufficiently large values of τ . However, in the limit as τ → 0 one can
recover an ODE for Ũ as a function of z. This is because the TAF concentration, wave
speed, and stalk cell densities are all bounded: since such quantities are multiplied by
positive powers of τ in Eq. (36), they vanish when τ → 0. Such simplifications lead
to the ODE (18).

E Numerical methods

Initial conditions for the ST–PDE and P–PDE were constructed from ensemble aver-
ages of the P–ABM, which were generated using the following algorithm from Pillay
et al. (2017). ABM parameter values are listed in Table 4.

ChooseΔt , the time step, and tfinal, the time atwhich to terminate theABMsolution.
Set t = 0.
Place tip cells at (x, y) = (0, 2h), (0, 4h), …, (0, 1).
While t < tfinal and tip cells (TCs) have not reached the right edge of the lattice at
x = L :
1. Choose NTC tip cells at random with replacement, where NTC is the current

number of tip cells.
Loop 1: For 1 to NTC

(a) Choose a random number r1 ∈ [0, 1].
(b) If r1 ≤ Pm , the tip cell moves:

(i) Choose a random number r2 ∈ [0, 1].
(ii) A stalk cell is placed at the lattice site and the tip cell moves

left/right/up/down h units according to the probabilities Px± = 0.25 ×
[1 ± k(c(xi + h, y j ) − c(xi − h, y j ))], Py± = 0.25 × 1 ± [k(c(xi , y j +
h) − c(xi , y j − h))], where c(xi , y j ) is the TAF concentration at location
(xi , y j ).

(iii) If the tip cell moves into a site occupied by one (or more) tip cells, then
tip-to-tip anastomosis occurs and the tip cells are removed.

(iv) Otherwise, if tip cell moves into a site occupied by a stalk cell that does
not belong to the same sprout, then tip-to-sprout anastomosis occurs and
the tip cell is removed.

123



Comparative analysis of continuum angiogenesis models Page 27 of 34 21

Table 4 P–ABM parameter
values used to generate initial
conditions for the ST–PDE and
P–PDE

tfinal Pm h k Pp Δt

2 1 200−1 100 10−3 160−1

v) If anastomosis does not occur, then tip cell moves into the target site.

End Loop 1
2. Choose NTC tip cells at random with replacement, where NTC is the number of

tip cells after completing Loop 1.
Loop 2: For 1 to NTC

(a) Choose a random number r3 ∈ [0, 1]. Define Pb := Pp × c(xi , y j ), where
c(xi , y j ) is the TAF concentration at the tip cell’s location.

(b) If r3 ≤ Pb, then branching occurs.

End Loop 2
(3) Set time t = t + Δt .

End While Loop

One thousand realisations of the P–ABMwere column-averaged in the y-direction
at t = 0.2 to set up initial conditions for the PDE models. We initialised the PDEs at
time t = 0.2, rather than t = 0, as previous investigations have shown that the P–PDE
can become ill-posed if it is initialised at earlier times (Pillay et al. 2017, 2018).

The 1D PDEmodels were solved using the method of lines (Schiesser 1991). Using
grid points with spatial step size Δx = 1/200, spatial derivatives were discretised
using central finite difference formulae. The systems were solved with MATLAB’s
ode15s solver, which implements adaptive time-stepping for stiff ODE problems
(Shampine and Reichelt 1997).

In Sects. 2 and 3, we transformed solutions of the ST–PDE and P–PDE from func-
tions of the form N (x, t) and E(x, t) to u(X , τ ) and w(X , τ ), respectively, so as to
facilitate comparison with our analysis. This is done using the formulae listed in Eq.
(8).

The solution to Eq. (18), presented in Fig. 4a, was computed numerically using
the MATLAB library Chebfun, which applies spectral methods and Newton’s method
to solve nonlinear boundary value problems (Driscoll et al. 2014). To approximate
the infinite domain, the solution was computed on the interval z ∈ [−100, 100],
which is two orders of magnitude larger than the region over which the solution
gradient varies the most. The numerical solution was computed using the initial guess
Ũ0(z) = exp(−z2).

The quantities X0 and φ(τ), which are used to transform the self-similar solution
into the independent variable X in Fig. 4b, are calculated in the following manner: the
wave speed φ(τ) is taken to be the derivative of X(τ ), a function that describes the
tip cell wave front location at time τ . We define the wave front location as the mean
location of the tip cell solutions:

123



21 Page 28 of 34 W. D. Martinson et al.

Fig. 6 Tip cell density wave front, X(τ ), versus τ for numerical ST–PDE and P–PDE solutions. These
results were generated using the same initial conditions and parameter regime that produced Fig. 3. We
have also plotted the line that minimises the squared error with the data for time values within the range
[0.2λ, 5λ], where λ = 0.16; its formula is X(τ ) = 33.45τ + 0.0546. The top left inset shows a zoomed-in
view of the results for small values of τ , while the bottom right inset shows a zoomed-in view of the results
for larger values of τ . Key: ST–PDE wave front (dashed red line), P–PDE wave front (solid blue line), line
of best fit to data in the interval τ ∈ [0.2λ, 5λ] (dashed-dot black line). For colours, we refer to the online
article

X(τ ) :=
∫ ∞
−∞ Xu(X , τ )dX∫ ∞
−∞ u(X , τ )dX

. (37)

In the case where X(τ ) is approximately linear, φ(τ) is estimated as the slope of the
line that minimises the squared error with the data of X(τ ) versus τ , and the value of
X0 is the y-intercept of this line of best fit.

Figure 6 shows a plot of X(τ ) against τ for the same parameter regime and initial
conditions listed in Fig. 3. We observe that the ST–PDE and P–PDE models have
roughly identical wave speeds for the time points considered here, and that the ST–
PDE and P–PDE tip cell solutions gradually accelerate over time. For early times,
however, the two solutions appear to travel with constant speed: we confirmed this by
plotting a straight line that minimises the squared error with the numerical solutions
(the line was fit to data in the range τ ∈ [0.2λ, 5λ], where λ = 0.16). We see in Fig. 6
that the line of best fit is a good approximation to the numerical results for sufficiently
small values of τ (for τ < 0.8, the R2-value is greater than 0.99). We conclude that
for τ ≈ 0, the wave speed φ(τ) is approximately constant; its value is given in Table 2
of Sect. 3.

123



Comparative analysis of continuum angiogenesis models Page 29 of 34 21

F Derivation of snail-trail model corrective factor

In this appendix, we provide a brief overview of our derivation of κ(x), the corrective
factor in the snail-trail model given by Eqs. (5)–(6). For more details on the derivation,
we refer to the original article by Martinson et al. (2020).

We let κ̃ be a non-dimensional factor in the snail-trail model that corrects for
neglected vessel production in directions other than that of the migrating front. Since
a new vessel is itself made up of stalk cells, κ̃ is related to κ through the relationship
κ = κ̃/hEC , where hEC represents the length of a typical stalk cell. Either factor
must be included in the snail-trail modelling framework because the tip cell flux, a net
quantity, tends to underestimate the total vessel/stalk cell density rate of change. Thus,
if Jnet measures the average net tip cell flux in the x-direction within a time step Δt
and spatial interval h, then κ̃|Jnet | is equal to the (true) density of new vessels that are
created on average within this interval (note that we have absorbed any dependence
of h and Δt into κ̃). In order to derive a function for κ̃ (and, by extension, κ), we
examine how the above statement translates into a discrete setting.

We consider the P–ABM framework as a discrete representation of tip and stalk
cell movement following a snail-trail assumption. In the P–ABM, tip cell movement
is a 2D biased random walk towards increasing concentrations of TAF. The ABM
is assumed to have N lattice sites that are equally spaced with step size h, where h
represents the length of a typical cell. We assume, for sake of simplicity, that a tip cell
length is equivalent to that of a stalk cell (so hEC = h). Just as for the continuous snail-
trail model, we assume that the TAF concentrationC(x) is prescribed and independent
of time t and the spatial variable y.

Within a time step Δt , tip cells are chosen to move with a constant probability Pm .
Once chosen to move, the direction in which a tip cell travels is selected according
to the following probabilities: if we denote the probability of moving left as Px− and
right as Px+ , then these values are defined at xi ∈ (0, 1) as

Px± = 1 ± gx (xi )

4
, (38)

where for 0 < i < (N − 1),

gx (xi ) := k
(
C(xi + h) − C(xi − h)

)
. (39)

For example, if gx = −1/2, then Px− = 3/8 and Px+ = 1/8 (i.e., the tip cell is
more likely to move in the left direction). Similar formulae are used to determine the
movement of tip cells in the y-direction. The parameter value k in Eq. (39) ensures
that no numerator in Eq. (38) can become negative (so that |gx (x)| ≤ 1); the value
of k does not vary with respect to location. In the P–ABM, a discrete version of the
snail-trail assumption is incorporated by having stalk cells proliferate in the space left
empty by a moving tip cell. In other words, any new vessel production within a time
step Δt is equal to the number of times tip cells move, since stalk cells will proliferate
to occupy the resulting empty space.
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This leads us to immediately identify a discrete analogue of |Jnet |, the magnitude
of the tip cell net flux in the x-direction: it is simply the expected net number of jumps
that tip cells make from a lattice site in the x-direction (we use expected values here
because of the stochastic nature of the discrete model). We may then interpret the
value of κ as the total amount of new vessel density produced for every unit of net tip
cell movement in the x-direction.

We now use the rules of the P–ABM to compute the expected number of jumps that
tip cells make in the x-direction. We define XR and XL , to be random variables that
measure the total number of rightward and leftward jumps that originate from lattice
point xi , respectively. Since cells may only move in these two directions, we model
these random variables using multinomial distributions. We also define the random
variable Xnet = XR − XL , which measures the net number of rightward jumps made
from lattice site (xi , y j ). By the argument above, the net tip cell flux in the x-direction
is defined by Jnet := E[Xnet ]. Its magnitude is given as |Jnet |.

Since we have reasoned that κ̃|Jnet | is the total vessel density produced (or, equiva-
lently, total jumps that occur in the x-direction) from a given lattice site within the time
step Δt and spatial interval h, it follows that when the value of |Jnet | is normalised to
1, κ̃ becomes equal to the total number of jumps in the x-direction from lattice site
(xi , y j ). We exploit this information to calculate the expected values of our random
variables: for example, the probability of executing m rightward jumps becomes

P(XR = m) =
(

κ̃

m

)
(Px+)m(1 − Px+ )̃κ−m, (40)

where
(
κ̃
m

)
is the binomial coefficient. A similar equation holds for XL . The expected

values of XR and XL are thus given by

E[XR] = κ̃Px+ , E[XL ] = κ̃Px− , (41)

when |Jnet | is normalised to 1, so that

E[Xnet ] = E[XR] − E[XL ] = κ̃(Px+ − Px−).

Since Eqs. (40)–(41) are applicable when |Jnet | = 1, we use Eq. (38) to deduce that

|Jnet | = |E[Xnet ]| = κ̃

2
|gx | = 1,

with gx defined by Eq. (39). Hence

κ̃ = 2

|gx | . (42)

From this equation, it is clear that κ is non-negative.

123



Comparative analysis of continuum angiogenesis models Page 31 of 34 21

We may apply Taylor’s theorem to simplify Eq. (42): assuming that the average
cell length is sufficiently small so that 0 < h � 1, we may write gx as

gx (x) = k(C(x + h) − C(x − h)) = k
(
2h

∂C

∂x
+ O(h3)

)
≈ 2kh

∂C

∂x
(x).

Substitution of this expression into Eq. (42) yields

κ̃(x) ≈ 1

kh
∣∣∣ ∂C

∂x

∣∣∣ , (43)

hence κ̃(x) is inversely proportional to the magnitude of the local TAF gradient.
It is possible to further transform Eq. (43) so that κ̃(x) is in terms of the continuum

parameters D and χ . This simplification follows from the relationship between biased
random walk models and advection-diffusion equations (Simpson et al. 2009; Pillay
et al. 2017). Namely, if Pm denotes the probability that a tip cell moves within a time
step Δt , then the relationship between the discrete and continuum parameters is

D = lim
h→0,Δt→0

Pmh2

4Δt
, χ = lim

h→0,Δt→0

Pmkh2

Δt
, (44)

under the assumption that the above limits exist, are non-zero, and are finite. Substi-
tuting Eq. (44) into Eq. (43) yields

κ̃(x) = 4D

hχ

∣∣∣ ∂C
∂x

∣∣∣ = μh

χ

∣∣∣ ∂C
∂x

∣∣∣ , (45)

where we have defined μ := Pm/Δt . From here, it is straightforward to derive Eq. (7)
by using the relationship κ(x) = κ̃(x)/hEC = κ̃(x)/h.
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