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Introduction

In the mid-1960s, Guyton and Coleman developed com-
puter models of renal function curve, so-called Guyton’s 
pressure–natriuresis curve.1 The curve can be depicted by 
plotting mean arterial pressure (MAP; mmHg) and urinary 
sodium (Na) excretion rate (mmol/day) at steady state Na 
balance, which was defined at the time when Na intake and 
urinary Na excretion were in balance. They found that so 
long as renal function curve remained immutable and Na 
intake remained constant, changing any other variable 
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(such as cardiac output or total peripheral resistance) did 
not change the steady-state blood pressure (BP) value, and 
they called the BP level as equilibrium level. In other 
words, renal function curve must be altered in the genesis 
of hypertension. Our study group proposed that the slope 
of pressure–natriuresis curve was decreased in patients 
with salt-sensitive hypertension.2–5

Salt-sensitive hypertension may be attributable to 
impaired renal capacity for Na excretion, which originates 
in a diminished glomerular ultrafiltration coefficient (KF) 
and/or enhanced fractional tubular Na reabsorption (FRNa; 
tubular reabsorption to filtered load ratio).2–5 Na retention 
may occur during the day in patients with impaired renal 
Na excretion, which prevents the “physiologic nocturnal 
BP dip (a 10–20% decline compared with daytime BP, dip-
per type of circadian BP rhythm)”6 and may exert night-
time natriuresis.2,7 Patients who do not exhibit a BP dip at 
night are classified as non-dippers.7 For example, with 
reduced KF as renal function deteriorates, nighttime BP is 
elevated to enhance urinary Na excretion in subjects with 
glomerular diseases;8 and patients with renal dysfunction 
require a longer time until BP dips at night.9 Examples of 
enhanced FRNa have been described in patients with IgA 
nephropathy, including our report of inappropriately acti-
vated intrarenal angiotensin II (Ang II) stimulated FRNa 
and impaired renal Na excretion, resulting in a non-dipper 
type of circadian BP rhythm.10 

Our group has shown that dietary Na restriction,11 diu-
retics that inhibit FRNa,12,13 and angiotensin receptor 
blocker (ARB) therapy can restore the non-dipper type of 
circadian BP rhythm in patients with chronic kidney dis-
ease (CKD).14–17 In exerting this effect, ARBs achieve a 
lower steady state Na balance by inhibition of FRNa to 
enhance daytime Na excretion, especially in patients with 
baseline nighttime BP falls that are more diminished.15

In clinical practice, we have experienced patients who 
exhibit a synergic antihypertensive effect with combina-
tion treatment with an ARB and hydrochlorothiazide 
(HCTZ). These patients serve as a reminder that in a state 
of chronic Na deprivation, inhibition of the renin-angio-
tensin system (RAS) can excessively enhance natriuresis, 
resulting in a Na-wasting state, despite falls in BP and glo-
merular filtration rate (GFR).18–20

RAS inhibitors (i.e. angiotensin-converting enzyme 
inhibitors and ARBs) are first-line antihypertensive agents 
for patients with CKD.21 Diuretics and calcium channel 
blockers are used as second-line antihypertensives.22 
Therefore, we examined if add-on HCTZ administration 
achieves a lower Na balance than that already present in 
patients with CKD under ARB treatment. We also investi-
gated the pathophysiological conditions under which add-
on HCTZ to ARB therapy exerts further natriuresis. We 
hypothesized that this effect would be greater in patients 
with reduced intrarenal RAS activity during preceding 
ARB treatment because the reduced intrarenal RAS can be 
interpreted as a sign that preceding ARB therapy could 

already greatly assuaged intrarenal RAS activity to 
enhance natriuresis. This effect might be similar to combi-
nation treatment with different classes of diuretics. Na 
deprivation caused by HCTZ might also enhance the 
natriuretic effect of ARB.

Material and methods

Subjects

A single-arm, open label study was performed in 25 con-
secutive patients with CKD (12 men and 13 women; 
64±14 years; body mass index (BMI): 24.0±3.5 kg/m2). 
To be eligible, patients had to fulfill the following crite-
ria: (a) age⩾20 years; (b) diagnosis of CKD based on 
Kidney Disease Outcomes Quality Initiative (K/DOQI) 
criteria23 (GFR<60 ml/min/1.73 m2, or GFR⩾60 ml/
min/1.73 m2 with accompanying proteinuria, defined as 
>300mg per gram creatinine; (c) treatment with an ARB 
(valsartan, 80 mg/day) for at least eight weeks prior to 
enrollment; and (d) office BP>130/80 mmHg (or 125/75 
mmHg if proteinuria ⩾1 g/day on at least one occasion). 
Patients were excluded if they had (a) previous treatment 
with ARBs other than valsartan or diuretics two months 
before enrollment; (b) contraindication to valsartan or 
HCTZ (history of allergic reactions to these drugs, bilat-
eral renal artery stenosis); (c) presence or possibility of 
pregnancy; (d)  haemoglobin A1C (HbA1c) ⩾9.0%; (e) 
GOT>100 or GPT>85; (f) endocrine hypertension; (g) 
accelerated or malignant hypertension (progressive renal 
dysfunction with diastolic BP (DBP)>120–130 mmHg; 
(h) serious conditions with congestive heart failure, coro-
nary disease, arrhythmia or systemic diseases; (i) 
nephrotic syndrome (serum albumin<2.5 g/dl); (j) dialy-
sis therapy; and (k) any reason for ineligibility suggested 
by the attending doctor. All subjects were enrolled after 
providing informed consent to participate in the study. 
The study was approved by the Institutional Review 
Board (IRB) of Nagoya City University Hospital (IRB 
approval number: 45-10-0031, UMIN registration num-
ber: 000005601) and was conducted in accordance with 
the Declaration of Helsinki.

Study protocol

Measurements were made at baseline, which was defined 
as the time at which subjects had taken valsartan (80 mg/
day) for at least eight weeks, and eight weeks after initia-
tion of add-on HCTZ (12.5 mg/day). Twenty-four hour BP 
monitoring and urine collection separately for daytime 
(06:00–21:00) and nighttime (21:00– 06:00) were con-
ducted on the same day during normal daily activities to 
compare the circadian rhythms of BP and urinary excre-
tion of Na (UNaV), albumin (UAlbV) and angiotensinogen 
(UAGTV). Collected urine was combined to calculate 
24-hour creatinine clearance (Ccr, ml/min), which was 
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used as an index for GFR. Filtered Na load was calculated 
as the product of the GFR and plasma Na concentration 
(SNa), and tubular Na reabsorption (tNa) was calculated as 
the difference between filtered Na load and absolute uri-
nary Na excretion.14,24 FRNa was then calculated as the tNa 
to filtered Na load ratio. Blood samples were collected 
once at 06:00, the marginal point between day and night. 
For evaluation of plasma renin activity (PRA), plasma 
aldosterone concentration (PAC), angiotensin I (Ang I), 
and Ang II, the samples were centrifuged at 3000 rpm for 
10 min at 4°C, and then frozen immediately and stored at 
−35°C until assay. PRA, PAC, Ang I, and Ang II were 
determined by radioimmunoassay at an external analysis 
center (SRL, Inc., Hachioji, Japan). Plasma Na (ion-selec-
tive electrode method) and creatinine (enzymatic method); 
and urinary concentrations of Na (ion-selective electrode 
method), creatinine (enzymatic method) and albumin (tur-
bidimetric immunoassay) were measured at the institu-
tional central laboratory. Urinary angiotensinogen (AGT) 
was measured using a Human Total AGT ELISA Kit 
(Immuno-Biological Laboratories Co. Ltd, Takasaki, 
Japan).25 The intra- and inter-assay coefficients of the AGT 
measurements were 4.4% and 4.3%, respectively.25,26

During 24-hour BP monitoring, BP was monitored non-
invasively every 30 min with a validated automatic device 
(model ES-H531; Terumo, Tokyo, Japan). BP and heart rate 
(HR) values were not considered valid for analysis if data 
were missing continuously for two hours or if the patients 
awoke during the night and had difficulty falling asleep 
again. MAP was calculated as DBP plus one-third of the 
pulse BP. Daytime BP was calculated as the average of the 
30 readings between 06:00 and 21:00, and nighttime BP was 
determined as the average of the remaining 18 readings. 
Patients whose nocturnal fall in MAP was ⩾10% from day 
to night were classified as dippers and those with nocturnal 
MAP fall <10% were as non-dippers. Nocturnal hyperten-
sion was defined as nighttime BP ⩾120/70 mmHg. The 
patients received nutritional instructions to eat a Na-restricted 
diet containing <6 g/day of salt for at least four weeks before 
enrollment; and were asked to get up at 06:00 and to start 
bed-rest at 21:00 during the study measurements. The ade-
quacy of 24-hour urine collection was judged by the amount 
of urinary creatinine excretion: males aged <50 years, 18.5–
25.0; females aged <50 years, 16.5–22.4; males aged ⩾50 
years, 15.7–20.2; and females aged ⩾50 years, 11.8–16.1 
mg/kg body weight per day, respectively. Incomplete or 
excessive urine collection in daytime or nighttime samples 
was judged based on a night/day urinary creatinine excre-
tion ratio of <0.5 or >2.0, respectively.

After baseline examinations, a single daily dose of 
HCTZ (12.5 mg/day) in the morning was added to the val-
sartan therapy. The goal for office BP was <130/80 mmHg 
(<125/75 mmHg if daily proteinuria ⩾1.0 g) for patients 
with BP above these values. During the eight-week study 
period, a change in the valsartan dosage or additional 

administration of other antihypertensives was not allowed; 
and if these were needed, the study discontinued for the 
patient. When office or home systolic BP (SBP) fell below 
100 or 95 mmHg, respectively, or a patient felt postural 
dizziness, the dose of antihypertensive agent was decreased 
and the patient was excluded from the study.

Statistical analysis

Results are expressed as mean±standard deviation (SD) or 
as median (interquartile range (IQR)) according to the data 
distribution, which was tested using a Kolmogorov-
Smirnov test. Variables that were not normally distributed 
were analyzed after log transformation. Differences in 
parameters between baseline and ARB plus HCTZ treat-
ment were examined by Student t-test for paired samples 
or by Wilcoxon signed-rank test, as appropriate. 
Correlations among quantitative variables were evaluated 
by the least-squares method. Forward stepwise multiple 
regression analysis was conducted to compare the contri-
bution of changes in daytime and nighttime UNaV to the 
change in FRNa. A value of p<0.05 was considered to be 
significant. Statistical analyses were performed using 
SPSS Statistics 22 (IBM Corp., New York, USA).

Results

Baseline measurements during ARB therapy

Of the 25 eligible patients, one had excess BP reduction 
during add-on HCTZ therapy and another was judged as 
excessive urine collection, and they were excluded from 
the study. Therefore, changes in clinical variables were 
evaluated in 23 patients (11 males and 12 females; 64±14 
years; BMI, 24.0±3.6 kg/m2). At baseline under ARB ther-
apy, the median (IQR) for albuminuria was 624 (205–
1780) mg/g Cre (geometric mean±SD, 419±6 mg/g Cre),  
and the mean GFR was 66±47 ml/min (Table 1). BP and 
HR at baseline are shown in Table 2. Office, 24 h, daytime, 
and nighttime BP were 147/83, 132/79, 134/81, 127/73 
mmHg; and night/day ratios of SBP, DBP, MAP, and HR 
were 0.95±0.06, 0.91±0.06, 0.93±0.06 and 0.88±0.10, 
respectively. Of 23 patients, eight exhibited dipper type of 
circadian BP rhythm, and 15 non-dipper rhythm. Among 
eight patients with dipper BP rhythm, four patients exhibit 
nocturnal hypertension, and four did not; among 15 
patients with non-dipper BP rhythm, 12 patients exhibit 
nocturnal hypertension, and three did not.

GFR was inversely correlated with daytime SBP 
(r=−0.53, r2=0.28, p=0.009), nighttime SBP (r=−0.55, 
r2=0.30, p=0.007), and 24 h SBP (r=−0.54, r2=0.29, 
p=0.008); but not significantly correlated with 24-hour, 
daytime, and nighttime DBP and MAP; night/day ratios 
of SBP, DBP, and MAP; or nocturnal dips of SBP, DBP, 
and MAP.
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Urinary Na excretion (UNaV, mmol/g Cre) was inversely 
correlated with PRA (r=−0.48, r2=0.23, p=0.02), Ang I 
(r=−0.47, r2=0.22, p=0.03), Ang II (r=−0.54, r2=0.29, 
p=0.01), but not with PAC. UNaV correlated positively 
with night/day ratios of SBP (r=0.49, r2=0.24, p=0.02) and 
MAP (r=0.52, r2=0.27, p=0.01), but not with the night/day 
DBP ratio (r=0.40, r2=0.16, p=0.06). UNaV correlated 
inversely with nocturnal dips of SBP (r=−0.48, r2=0.23, 
p=0.02) and MAP (r=−0.51, r2=0.26, p=0.01), but not with 
nocturnal DBP dip (r=−0.40, r2=0.16, p=0.05). These find-
ings are consistent with greater Na intake causing elevated 
BP, a switch of circadian rhythm to the non-dipper type, 
and decreased plasma renin activity (due to body fluid 
retention).

There were positive (but not significant) relationships 
of the night/day ratio of UNaV (mmol/h) with those of SBP, 
DBP, and MAP; and the night/day ratio of UAlbV with 
those of SBP, DBP, and MAP. Urinary excretion of AGT 
(UAGTV) was 152±10 μg per g Cre. UAGTV correlated 
inversely with GFR (r=−0.74, p<0.0001); but not with 
UNaV (p=0.06), 24-hour SBP (p=0.1), daytime SBP 
(p=0.1), daytime DBP (p=0.3), daytime MAP (p=0.9), 
nighttime SBP (p=0.2), nighttime DBP (p=0.5), nighttime 
MAP (p=0.9); night/day ratios of SBP (p=0.8), DBP 
(p=0.7), and MAP (p=0.9); or nocturnal dips (%) of SBP 
(p=0.8), DBP (p=0.7), and MAP (p=0.9).

Effects of add-on HCTZ to ARB therapy

Clinical variables before and during add-on treatment with 
HCTZ are shown in Tables 1 and 2, respectively. Body 
weight, serum potassium concentration, HbA1c, PAC, and 
Ang II did not change significantly; PRA, and serum con-
centrations of creatinine, uric acid, and Ang I increased; 

and GFR and serum Na decreased after addition of HCTZ. 
Daytime, nighttime, 24 h, and office SBP, DBP, and MAP 
were all lowered; daytime, nighttime, and 24-hour albumi-
nuria was reduced; urinary Na excretion did not change; 
and 24-hour and daytime UAGTV decreased, but nighttime 
UAGTV did not change. Circadian BP rhythm and nighttime 
BP profiles were changed as follows. Among four patients 
with dipper BP rhythm without nocturnal hypertension at 
baseline, three patients remained with dipper BP rhythm 
without nocturnal hypertension and one patient changed to 
non-dipper without nighttime hypertension. Among four 
patients with dipper BP rhythm with nocturnal hyperten-
sion, three changed to dipper without nocturnal hyperten-
sion and one patient changed to non-dipper with nocturnal 
hypertension (but nighttime BP was lowered 131/68 to 
127/70 mmHg). Among 12 patients with non-dipper BP 
rhythm and nocturnal hypertension, five patients changed 
to dipper without nocturnal hypertension, one dipper with 
nocturnal hypertension, and six remained non-dipper with 
nocturnal hypertension.

The glomerulotubular balances of Na before and during 
addition of HCTZ to ARB therapy are summarized in Table 
3. Filtered Na (i.e. tubular Na load, p=0.03), and tNa (p=0.03) 
were both significantly reduced by add-on HCTZ, but 
24-hour UNaV remained constant (p=0.6), indicating that a 
lower steady Na balance had been achieved. As mentioned 
above, HCTZ significantly decreased daily excretion of uri-
nary AGT (p=0.02). Changes in tubular Na load (r=0.51, 
r2=0.26, p=0.01) and tNa (r=0.50, r2=0.25, p=0.01) corre-
lated positively with baseline 24-hour UAGTV (Figure 1). 
The change in filtered Na load correlated positively with 
changes in 24-hour SBP (r=0.40, r2=0.16, p=0.05), DBP 
(r=0.47, r2=0.22, p=0.02) and MAP (r=0.46, r2=0.21, 
p=0.03) and with changes in nighttime SBP (r=0.41, 
r2=0.17, p=0.04), DBP (r=0.46, r2=0.21, p=0.02), and MAP 
(r=0.45, r2=0.21, p=0.03); but did not correlate with changes 
in daytime SBP (p=0.1), DBP (p=0.06), and MAP (p=0.05).

The primary role of HCTZ is reduction in FRNa at the 
distal convoluted tubules, the connecting segment at the 
end of the distal tubule, and the early cortical collecting 
tubule via neutral Na-Cl cotransport.27,28 Change in FRNa 
correlated inversely with changes in 24-hour (r=−0.64, 
r2=0.41, p=0.0009) and daytime (r=−0.67, r2=0.45, 
p=0.0005) UNaV, but not with nighttime UNaV (p=0.3). In 
stepwise multiple regression analysis (R2=0.42, p=0.0005), 
the main determinant of the change in FRNa was the change 
in daytime UNaV (β=−0.67, F=16.8, p=0.0005), rather than 
the change in nighttime UNaV.

Discussion

Our results show that addition of HCTZ to preceding ARB 
therapy can achieve a lower steady state Na balance. An 
increase in daytime UNaV contributed to the lower Na bal-
ance, and this balance resulted in BP lowering, especially at 

Table 1. Clinical variables before and during add-on 
hydrochlorothiazide (HCTZ) treatment.

ARB ARB+HCTZ p Value

Body weight (kg) 61.9±15.2 61.5±15.0 0.2
GFR (ml/min) 66±47 59±38 0.04
SNa (mEq/l) 141±2 139±3 0.002
SK (mEq/l) 4.4±0.6 4.3±0.5 0.1
SCr (mg/dl) 1.7±1.3 1.8±1.4 0.02
SUA (mg/dl) 6.5±1.3 7.1±1.3 0.006
HbA1c (%) 5.9±0.6 6.1±0.8 0.05
PRA (ng/ml/h) 2.5±3.2 4.3±3.3 0.01
PAC (pg/ml) 121±61 155±99 0.09
Ang I (pg/ml) 215±3 382±4 0.009
Ang II (pg/ml) 16±2 21±3 0.08

Ang I: angiotensin I; Ang II: angiotensin II; ARB: angiotensin receptor 
blocker; GFR: glomerular filtration rate; HbA1c, haemoglobin A1C; 
PAC: plasma aldosterone concentration; PRA: plasma renin activity; 
SNa, SK, SCre, SUA: serum concentrations of sodium, potassium, creati-
nine, uric acid, respectively; SD: standard deviation.
Values are means±SD (n=23).
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night. This is consistent with the following postulate. Thus, 
when patients with diminished renal function go about daily 
activities of life, their renal perfusion pressure is reduced, 
resulting in insidious Na retention in the daytime.6 At night, 
when these patients lie supine, the effective circulating 

volume increases, resulting in pressure natriuresis. In fact, 
daytime UNaV is greater than nighttime UNaV in healthy 
individuals, whereas daytime UNaV decreases and nighttime 
UNaV increases as renal Na excretion capacity is dimin-
ished.8,29–32 This postulate is supported by the persistence of 

Table 2. Blood pressures, heart rates, and urinary excretion of albumin, sodium, and angiotensinogen before and during add-on 
hydrochlorothiazide (HCTZ) treatment.

Variable ARB ARB+HCTZ p Value

SBP Office (mmHg) 147±9 124±13 <0.0001
24-Hour (mmHg) 132±14 118±15 <0.0001
Day (mmHg) 134±13 120±15 0.0003
Night (mmHg) 127±17 113±19 0.0003

 Night/day ratio 0.95±0.06 0.94±0.10 0.7
DBP Office (mmHg) 83±12 76±14 0.04

24-Hour (mmHg) 79±11 72±10 0.0003
Day (mmHg) 81±11 75±10 0.0008
Night (mmHg) 73±12 67±11 0.002

 Night/day ratio 0.91±0.06 0.90±0.08 0.7
MAP Office (mmHg) 104±9 92±13 0.0002

24-Hour (mmHg) 96±10 87±11 0.0001
Day (mmHg) 98±10 89±11 0.0003
Night (mmHg) 91±12 82±13 0.0009

 Night/day ratio 0.93±0.06 0.92±0.08 0.6
HR Office (rpm) 71±15 74±12 0.2

24-Hour (rpm) 68±8 68±8 0.9
Day (rpm) 71±9 72±9 0.4
Night (rpm) 61±6 61±8 0.8

 Night/day ratio 0.88±0.10 0.85±0.08 0.3
UAlbV 24-Hour (mg/g Cre) 419±6 237±7 0.0007

Day (mg/h) 16.07±6.14 9.40±6.43 0.003
Night (mg/h) 16.52±4.99 8.79±6.44 0.001

 Night/day ratio 1.55±1.82 1.12±0.79 0.7
UNaV 24-Hour (mmol/g Cre) 152±63 164±63 0.3

Day (mmol/h) 6.45±3.77 6.60±2.79 0.9
Night (mmol/h) 6.66±4.09 6.55±3.55 0.9

 Night/day ratio 1.23±0.90 1.11±0.62 0.9
UAGTV 24-Hour (μg/g Cre) 152±10 82±17 0.02

Day (μg/h) 7.06±0.01 2.81±0.02 0.001
Night (μg/h) 3.21±0.01 2.73±0.01 0.4

 Night/day ratio 0.80±0.88 2.97±6.96 0.05

ARB: angiotensin receptor blocker; /gCre: per gram creatinine; DBP: diastolic blood pressure; HR: heart rate; MAP: mean arterial pressure; SBP: 
systolic blood pressure; SD: standard deviation; UAlbV, UNaV, and UAGTV: urinary excretions of albumin, sodium, and angiotensinogen, respectively.
Values are means±SD (n=23).

Table 3. Glomerulotubular balance of sodium (Na) before and during add-on hydrochlorothiazide (HCTZ) treatment.

Variable ARB ARB+HCTZ p Value

Tubular Na load (mmol/day)a 13350±9400 11840±7600 0.03
tNa (mmol/day) 13190±9400 11680±7630 0.03
UNaV (mmol/day) 156±81 158±58 0.6

ARB: angiotensin receptor blocker; tNa: tubular Na reabsorption; UNaV: urinary Na excretion rate.
Values are means±SD (n=23).
a Amount of Na filtered from the glomerulus and loaded to renal tubules was calculated as SNa×GFR, where SNa and GFR are serum Na concentra-
tion and glomerular filtration rate, respectively.
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high BP until excess Na is excreted as renal function dete-
riorates,6,9 and by the shortening of the time until nocturnal 
BP falls below 90% of the daytime average by treatment 
with diuretics or ARB, both of which reduce FRNa.6,12–15 
This is the reason why the increase in daytime UNaV brought 
the circadian rhythm back to normal (a non-dipper to dipper 
trend) in the current study.

In experimental models, inappropriate activation  
of intrarenal Ang II impairs renal Na excretion through  
various mechanisms. Ang II stimulates FRNa in various  
segments along the pathway from the proximal to the 

collecting ducts33–35 and enhances tubuloglomerular feed-
back sensitivity to sustain FRNa.36 ARBs inhibit these anti-
natriuretic effects via the Ang II type 1 receptor (AT1R) in 
animal models.37,38 In humans, ARBs suppress FRNa and 
increase renal Na excretion,14,15 similarly to diuretics. Of 
note, ARBs can excessively enhance renal Na excretion 
under conditions of Na deprivation.18,19 Pretreatment with 
ARBs also impairs adaptation of renal Na conservation in 
response to abrupt withdrawal of dietary Na.20 These two 
findings are consistent with our findings that add-on treat-
ment with diuretics causes greater natriuresis in patients in 

Figure 1. The effect of intrarenal renin-angiotensin system (RAS) activity during angiotensin receptor blocker (ARB) treatment on 
the changes in glomerulotubular sodium (Na) balance by additional treatment with hydrochlorothiazide. In patients, whose intra-
renal RAS activity was suppressed during ARB therapy, greater decrease of changes in tubular Na load and tubular Na reabsorption 
was shown. Intra-renal RAS activity was indicated by daily urinary angiotensinogen excretion. AGT: angiotensinogen; tNa: tubular 
Na reabsorption (mmol/day); UAGTV: urinary angiotensinogen excretion (log(μg/g Cre)).
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whom preceding ARB therapy already greatly assuaged 
intrarenal RAS activity. Given the antinatriuretic effects of 
ARBs, addition of HCTZ to ARB therapy may have a syn-
ergistic effect similar to that of enhanced diuresis follow-
ing administration of a thiazide diuretic after chronic 
therapy with a loop diuretic agent. In clinical practice, we 
have seen a synergic antihypertensive effect in combina-
tion treatment with ARBs and HCTZ, resulting in appro-
priate BP lowering and sometimes hypotensive adverse 
events, even in patients without a beneficial natriuretic 
effect with the ARB alone or HCTZ alone. Thus, sup-
pressed UAGTV under ARB treatment may be a predictor 
for patients in whom an antihypertensive effect will occur 
with add-on diuretics.

Of 338 patients with CKD but not yet on dialysis (stages 
3–5), more than half had volume overload accompanied by 
higher SBP and increased arterial stiffness, both of which 
can contribute to future cardiovascular diseases.39 Na 
restriction and treatment with diuretics are both expected 
to restore volume overload, but are also known to activate 
systemic renin-angiotensin-aldosterone activity.40–42 
However, dietary Na restriction does not augment intrare-
nal RAS activity, as indicated by UAGTV measurements in 
an experimental model43,44 and a clinical study.45 For 
instance, urinary AGT excretion was significantly higher 
with an ordinary salt diet containing 10 g of NaCl daily 
compared with a low-salt diet containing 5 g of NaCl daily 
in patients with IgA nephropathy.45 Therefore, in this 
study, we investigated whether treatment with HCTZ can 
activate or assuage intrarenal RAS activity, as represented 
by UAGTV.

We found that UAlbV was reduced in the daytime and at 
night; and that UAGTV decreased in the daytime, but did 
not change at night. The different effects on UAGTV and 
UAlbV may support our suggestion that the genesis of uri-
nary AGT is not the same as that of urinary albumin, which 
is filtered through glomerular capillary walls.

Dietary Na restriction enhances the effects of ARBs 
on renal and cardiovascular outcomes, compared with a 
high-Na diet, in patients with CKD.46,47 We found that 
treatment with HCTZ bore a resemblance to dietary Na 
restriction in restoring a non-dipper circadian BP 
rhythm,12,13 which was known as the risk for cardiovas-
cular events.48 In the present study, treatment with HCTZ 
assuages intrarenal RAS activity, similar to dietary Na 
restriction. Moreover, it has been found that a RAS 
inhibitor, perindopril, cannot reduce the risk for stroke 
without combination treatment with diuretics,49 and 
increased UAGTV is associated with a risk of CKD.50 
Therefore, we speculate that add-on diuretics can inten-
sify the effect of RAS inhibitors on risk reduction for 
cardiovascular events and CKD progression, similarly to 
dietary Na restriction.

In conclusion, as baseline intrarenal RAS activity is 
reduced by ARB therapy, add-on HCTZ administration 

achieves a lower Na balance and resultant restoration of 
nocturnal hypertension without an increase in intrarenal 
RAS activity. Further studies are needed to determine 
whether reduction of UAGTV induced by Na restriction or 
add-on treatment with diuretics in patients under treatment 
with RAS inhibitors could be a marker of predisposition to 
prevention of progression to nephropathy or cardiovascu-
lar events, and whether addition of diuretics to ARBs is 
useful for patients with decreased UAGTV under preceding 
treatment with RAS inhibitors.
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