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Abstract

Background: Intervertebral disc degeneration (IDD) is a significant cause of low back

pain and poses a significant public health concern. Genetic factors play a crucial role

in IDD, highlighting the need for a better understanding of the underlying

mechanisms.

Aim: The aim of this study was to identify potential IDD‐related biomarkers using a

comprehensive bioinformatics approach and validate them in vitro.

Materials and Methods: In this study, we employed several analytical approaches to

identify the key genes involved in IDD. We utilized weighted gene coexpression net-

work analysis (WGCNA), MCODE, LASSO algorithms, and ROC curves to identify the

key genes. Additionally, immune infiltrating analysis and a single‐cell sequencing

dataset were utilized to further explore the characteristics of the key genes. Finally,

we conducted in vitro experiments on human disc tissues to validate the significance

of these key genes in IDD.

Results: we obtained gene expression profiles from the GEO database (GSE23130

and GSE15227) and identified 1015 DEGs associated with IDD. Using WGCNA, we

identified the blue module as significantly related to IDD. Among the DEGs, we iden-

tified 47 hub genes that overlapped with the genes in the blue module, based on cri-

teria of |logFC| ≥ 2.0 and p.adj <0.05. Further analysis using both MCODE and

LASSO algorithms enabled us to identify five key genes, of which CKAP4 and SSR1

were validated by GSE70362, demonstrating significant diagnostic value for IDD.

Additionally, immune infiltrating analysis revealed that monocytes were significantly

correlated with the two key genes. We also analyzed a single‐cell sequencing dataset,

GSE199866, which showed that both CKAP4 and SSR1 were highly expressed in

fibrocartilage chondrocytes. Finally, we validated our findings in vitro by performing

real time polymerase chain reaction (RT‐PCR) and immunohistochemistry (IHC) on 30

human disc samples. Our results showed that CKAP4 and SSR1 were upregulated in

degenerated disc samples. Taken together, our findings suggest that CKAP4 and

SSR1 have the potential to serve as disease biomarkers for IDD.
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1 | INTRODUCTION

Low back pain has become a significant healthcare concern due to its

impact on daily life and medical insurance costs.1–3 Intervertebral disc

degeneration (IDD) is the most common cause of low back pain,4 and

current management options for IDD, including conservative treat-

ment and surgery, cannot cure disc degeneration. Genetic factors

have been identified as playing a role in IDD, and recent research has

focused on identifying potential biomarkers for the condition.5–8

Weighted gene coexpression network analysis(WGCNA) is a

powerful tool for identifying genes driving major signaling pathways.9

Previous studies by Li et al.,6 Wang et al.,7 and Ma et al.10 identified

potential biomarkers for IDD using WGCNA method, but their find-

ings may have limitations. Li et al. identified SIRT7, NTRK2, and

CHI3L1 from two datasets with different sample origins, which may

affect the accuracy and reliability of their results. Ma et al. reported

ASAP1-IT1 and SERINC2 as critical genes related to IDD from a data-

set of blood samples, which may not accurately reflect gene expres-

sion in disc tissues. Wang et al. identified SMIM1 and SEZ6L2 from a

dataset with annulus cells exposed to TNF-α, which only targeted

inflammation-related genes. To address these limitations and explore

degeneration-related genes, we included datasets from disc tissues

graded using the same classification system. This approach allowed us

to identify key genes related to IDD with greater accuracy and reliabil-

ity. In addition to WGCNA, the emergence of single-cell RNA

sequencing (scRNA-seq) has further enhanced our understanding of

cell heterogeneity and the mechanisms of IDD development. By iden-

tifying unique chondrocyte subsets during the process of IDD and sig-

nature transcription factors of annulus fibrosis (AF) cells and nucleus

pulposus (NP) cells11,12 scRNA-seq has provided valuable insights into

gene function and distribution in cell subtypes.

Moreover, the immune response has been reported to play a critical

role in IDD development,13–15 largely depending on the mediation of

inflammation. While the intervertebral disc is an immune-privileged organ

with NP isolated from the immune system by the blood-tissue barrier,

damage to this barrier can lead to exposure of NP to the immune sys-

tem.13,16 This exposure can trigger the release of cytokines and chemo-

kines that recruit immune cell migration to mediate inflammation, driving

catabolism and degrading extracellular matrix.17 Thus, understanding the

regulation of immune response is necessary for IDD treatment.

In this present study, we aimed to identify IDD-related key genes

via multiple bioinformatics methods, including WGCNA, and further

explore the mechanisms of the key genes regulating immune response

and identifying which kind of cell subtype they mainly expressed in

through scRNA-seq. Furthermore, we validated the key genes in vitro

with human disc tissues. Our work provides a novel and trustworthy

perspective for potential biomarkers for IDD, which could ultimately

lead to improved diagnostic and therapeutic strategies for this com-

mon condition.

2 | MATERIALS AND METHODS

2.1 | Data collection

From the National Center of Biotechnology Information (NCBI) Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) database,

the datasets of GSE23130 and GSE15227 including a total of 38 disc

tissue samples were downloaded, and based on GPL1352 platform.

Samples from GSE2313018 and GSE1522719 were obtained via the

National Cancer Institute Cooperative Tissue Network (CHTN) as

well as surgical disc procedures performed on patients with herni-

ated discs and degenerative disc disease. The degenerative degree of

all samples in both datasets was graded according to the Thompson

grading criteria.20 The method used to extract the total RNA of

GSE23130 involved homogenizing disc tissues in TRIzol reagent. On

the other hand, the RNA of GSE15227 was obtained from cultured

cells that were isolated from disc tissues. In this study, we included

gene expression data from IDD samples graded as Thompson grades

IV and V and control samples graded as I and II for data mining.

Twenty-two samples (11 control samples and 11 IDD samples) were

selected for differential expression genes (DEG) analysis. Meanwhile,

the gene expressions for the 22 samples were collected for WGCNA

analysis. Besides, GSE70362 based on the GPL17810 platform

including 24 nucleus pulposus cell samples and 24 annulus fibrosus

cell samples, and scRNA-seq dataset GSE199866 including 4 samples

were used as validation datasets.

2.2 | Clinical samples

Disc tissues for in vitro experiments were collected from patients

diagnosed with spinal fractures or lumbar degenerative diseases who

needed discectomy undergoing spinal surgeries. The degeneration of

discs was graded according to the Pfirrmann classification.21 Samples

from patients with spinal fractures and dislocation were regarded as

normal control graded as Pfirrmann I or II. All specimens were frozen

in liquid nitrogen instantly after they were removed from the body

and stored at �80�C till they were used for further experiments.

2.3 | Differential gene expression and principal
component analysis

The R software (version 3.6.3) was used with the Limma package ver-

sion 3.42.2.22 It was considered differentially expressed when genes

with fold change (Log2FC) >1 (upregulated) or <�1 (downregulated)

had adj. p values of 0.05 or greater. Using hierarchical clustering and R

software, heatmaps and volcano plots were constructed to visualize

differentially expressed gene expression profiles. A principal
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component analysis (PCA) was performed on the samples based on

their gene expression data.

2.4 | Coexpression network construction

WGCNA R package (version 1.70-3) was used to construct the coexpres-

sion network for the expression data.9 The steps were as follows: first,

we used the hclust function to analyze the sample cluster for removing

outliers; Second, a pickSoftThreshold function was used to create a

scale-free network23,24; Third, create a topological overlap matrix (TOM)

transformed from adjacency matrix which was converted from similarity

matrix by calculating the weighting coefficient, β; Fourth, we set the min-

imal module size of 30 genes for the dynamic tree cutting algorithm and

then every each gene was assigned into individual coexpression modules

of which correlation above 0.25 was merged.25

2.5 | Identification of significant modules

The modules showing the closest correlation coefficient with IDD

were determined as IDD-related modules by calculating the Pearson

correlation coefficient among the module eigengenes (MEs) of all

modules and IDD. Additionally, the gene significance (GS) was calcu-

lated between the gene expression levels and IDD. All genes' GS

values were calculated based on their mean absolute values.9 A higher

mean absolute value indicates a stronger relationship between a mod-

ule and IDD.

2.6 | Identification of hub genes

The hub genes play a crucial role in the functioning of the module.

Module memberships (MMs) are used to determine correlations

between genes and modules as part of hub gene screening.9 Gene

expression profiles and MEs for each module are correlated to deter-

mine the MM. Connectivity within modules is strongly associated with

the MM measure.9 Intramodular hub genes with high MM values tend

to be highly connected. The higher the MM value of the gene, the

more significant the correlation between the gene and a module. Hub

genes were identified by detecting genes associated with high within-

module connectivity (jMMj >0.8) and strong Pearson's correlation

(jGSj >0.2) with specific clinical traits.26 Therefore, in this study, we

used (jMMj >0.8 and jGSj >0.7) as a stricter cut-off. To further narrow

down the range of hub genes, we extracted the common targets of

hub genes in the module and the DEGs were extracted using Venny

2.1 (https://bioinfogp.cnb.csic.es/tools/venny/).

2.7 | Gene ontology, KEGG pathway enrichment,
and MCODE analysis

A clusterProfiler R package (version: 3.14.3) was also used for enrich-

ment analysis with Log2FC value of each gene.27 This R package used

the default parameters for clusterProfiler. Thresholds of p.adj < 0.1

and q-value < 0.2 were chosen, respectively. Org. Hs.eg.db package

was used to convert Uniprot IDs, and the z-scores were calculated by

GOplot package (version 1.0.2).28

2.8 | Identification of key genes with
diagnostic value

Two methods were used to identify key genes. On the one hand, a

protein–protein interactions (PPIs) network was generated by Metas-

cape (metascape.org), and the MCODE algorithm was then applied to

identify densely connected proteins as key genes. The visualization of

the PPI network was edited by Cytoscape (version 3.9.0). On the

other hand, the hub genes were analyzed using the lease absolute

shrinkage and selection operator (LASSO) logistic regression29 with

Glmnet package in R. All 38 samples from datasets of GSE23130 and

GSE15227 were input, with the control group consisting of samples

graded as Thompson I, II, and III, and the IDD group consisting of sam-

ples graded as IV and V. The parameter settings were

family = “binomial,”30 cross-validation = 8 fold with “type. measure

= auc,” lambda = 10, and a training set size of 0.7. Additionally, the

diagnostic value of the key genes in distinguishing IDD from control

samples was assessed by calculating the area under the receiver oper-

ating characteristic (ROC) curves using the pROC package in R.31 Fur-

thermore, the key genes were validated in GSE70362.

2.9 | Correlation analysis with infiltrating
immune cells

An analysis of single sample gene sets enrichment (ssGSEA) was per-

formed to investigate immune infiltration between control and IDD

samples. A total of 22 samples from GSE23130 and GSE15227 data-

sets were included in analysis. A significance level of p < 0.05 was

set for the sample filter. The “split-vioplot” package was applied to

visualize the correlation of immune cells between IDD and control

samples. The “pheatmap” package was used to plot the heatmap of

immune infiltration in the samples. Moreover, the correlation

between the immune infiltration cells and IDD-related key genes

was evaluated using the “psych” and “ggcorrplot” packages. Addi-

tionally, the “ggplot2” package was used for the analysis and visuali-

zation of the results, with a significance level of p < 0.05.

2.10 | Analysis of key genes in cell clusters based
on scRNA-seq

GSE199866 contains four samples of non-degenerating and degener-

ating NP and annulus fibrosis (AF) cells (NPN, NPD, AFN, AFD), with

14,001 cell. The Seurat (v4.1.2) R package was used for processing

the data and downstream analysis. Quality control was performed to

exclude the cells with UMI counts smaller than the lower quartile or

larger than the upper quartile, and mitochondrial gene percentage

GUO ET AL. 3 of 15

https://bioinfogp.cnb.csic.es/tools/venny/
http://metascape.org


<5%. Then, PCA was performed to reduce the data dimensionally. The

first 10 principal components from the scale data were used for clus-

tering and tSNE representations. With a resolution of 0.5, clusters

were identified in Seurat using the FindClusters function. The expres-

sion of key genes in different kinds of cell clusters was visualized

using the ggplot2 package. The annotation of cell subtypes used spe-

cific cell markers obtained from the CellMarker website (http://biocc.

hrbmu.edu.cn/CellMarker/).

2.11 | RNA isolation and RT-PCR experiment

Total RNA was extracted by TRIZOL method (Trizol, Invitrogen,

#15596026). Synthesis of cDNA was used the RevertAid first-strand

cDNA synthesis kit (catalog number #K1621). GAPDH was utilized as an

internal control. The Human CKAP4 primer sequences were as follows:

(forward) 50-CAGCCGGATCAGCGAAGT-30; (Reverse) 50-TGTGAA-

GATGGCGATGTTGT-30. The Human SSR1 primer sequences: (forward)

50-CTGCTTCTCTTACTCGTGTTCC-30; (Reverse) 50-TCTTCTTCTAC-

CTCGGCTTCAT-30. The Human GAPDH primer sequences: (forward)

50-GTCCACTGGCGTCTTCACC-30; (Reverse) 50-CATGAGTCCTTCCAC-

GATACCAA-30. RT-PCR was performed using the PowerUp™ SYBR™

Green Master Mix kit (catalog number #A25741) and ran on the Applied

Biosystems 7500 system. The running conditions followed the manufac-

turer's instructions. The relative expression level of genes was normal-

ized to GAPDH and calculated by using the 2�ΔCT method.

2.12 | Histologic analysis

The specimens were collected from spinal surgeries, and immedi-

ately fixed in 10% formalin for 48 hours. Subsequently, they were

dehydrated and embedded in paraffin. The steps for immunohisto-

chemistry (IHC) were as follows: the sections were (1) deparaffi-

nized and rehydrated and then microwaved in 0.01 M sodium

citrate or PH = 9 tris-EDTA for 15 minutes, (2) incubated with 3%

hydrogen peroxide for 10 min to block endogenous peroxidase

activity, (3) followed with 5% bovine serum albumin for

30 minutes to block nonspecific binding sites, (4) followed with pri-

mary antibody (CKAP4, SSR1, 1:200, Proteintech) overnight at 4�C,

(5) and finally incubated with an HRP-conjugated secondary anti-

body (GE) and counterstained with hematoxylin. Three sections

from each specimen were minimal for performing tests. Images from

IHCs were measured for integrated optical density (IOD) using

Image J (version 1.52). The average optical density (AOD) was cal-

cultaed using the formula: AOD = IOD/Area.

2.13 | Statistics

R or Graph Pad Prism 7 was used for statistical analysis with

data presented in mean ± standard deviation (SD). Plots were

generated using the corresponding R package or Graph Pad

Prism 7. One-way ANOVA followed by Dunnett's test was used

for comparisons among multiple groups, while a t-test was used

for comparisons between two groups. A p value of <0.05 was

considered statistically significance for identifying differences.

3 | RESULTS

3.1 | Identification of DEGs

One thousand and fifteen DEGs in total were identified in GSE23130

and GSE15227. Among them, 98 genes were downregulated, and 917

were upregulated based on the criterion of p.adj value <0.05 and

jlog2FCj >1. A volcano plot is shown in Figure 1A, where the upregu-

lated genes are in red, and the downregulated genes are in blue. The

heatmap of the DEGs (Figure 1B) displays the expression patterns of

genes that are significantly different between normal and IDD groups.

Additionally, PCA demonstrated that the 11 normal disc tissue sam-

ples were clustered separately from the other 10 IDD samples

(Figure 1C). Twenty-two disc samples were clustered into a tree map

with corresponding group classification shown in Figure 1D.

3.2 | Identification of IDD-related module-trait
hub genes

A coexpression network was constructed using a weighting coeffi-

cient of β = 10, which was selected based on log(k) and log[P(k)]

(Figure S1A,B). The network exhibited a scale-free property with a

correlation coefficient of >0.86 (Figure 1C,D). Hierarchical clustering

was performed to assign genes into different clusters by setting the

minimum number of genes as 30 and deepSplit as 2, resulting in

156 modules (Figure 2A). These modules were further merged into 66

modules based on average linkage hierarchical clustering with a corre-

lation coefficient >0.75 (Figure 2A). The correlation between modules

and degeneration degree was displayed in Figure S2. The blue module

showed the highest significant correlation with IDD (R = 0.69,

p = 3e � 04) and the largest mean absolute gene significance value

(cor = 0.72, p = 1.5e � 200, Figure S3), making it the highly related

module (Figure 2B). Next, under jMMj >0.8 and jGSj >0.7, 56 genes

were collected from the blue module. Besides, 508 genes were

obtained when jLog2FCj ≥2.0 and p.adj < 0.05 were employed in

DEGs. As a result, 47 hub genes were further screened out from the

two groups.

3.3 | Hub gene functional enrichment analysis

The analysis was based on the z-score and Log2FC of each hub gene

and performed with clusterProfiler R package (version: 3.14.3), org.Hs.

eg.db package (version: 3.10.0), and GO plot package (version: 1.0.2).
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F IGURE 1 Differential mapping analysis of DEGs. (A) The volcano plot of 1015 differentially expressed mRNAs between IDD and normal
samples (jLog2FCj >1, p.adj. <0.05, 917 upregulated genes in red and 98 downregulated genes in blue dots). (B) The heatmap of the top 20 out of
1015 DEGs between IDD and Normal tissues (jLog2FCj >1, p.adj. <0.05). Red indicates high expression and blue indicates low expression. (C) PCA
plot of 1015 DEGs. (D) Twenty-two samples clustered into a tree with corresponding grade classification in the GSE23130 and GSE15227
datasets (no identified outliers).
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A total of 34 cellular components, 5 biological processes, 63 molecular

functions, and 1 KEGG pathway were enriched and presented in

Table S1. The top 16 enriched genes (SSR4, SSR1, SKP1, TCFL2,

FOXP1, GNB1, CKAP4, CD63, CD164, SEC13, PPP2CB, DYNC1LI2,

GTF2A2, DAXX, TAF7, SET) were displayed in the Figure 3A. The

most enriched functions included RNA polymerase II-specific DNA-

binding transcription factor binding, DNA-binding transcription factor

binding, nuclear receptor binding, and histone binding. The only path-

way involved was protein processing in the endoplasmic reticulum.

The results were visualized in Figure 3B.

F IGURE 2 Network heatmap of disc samples. (A) Clustering dendrograms of all DEGs. The clustering dendrograms of all DEGs were created using
dissimilarity based on topological overlap. Additionally, the dendrograms were annotated with assigned module colors. In total, 66 coexpression
modules were formed and represented using different colors. (B) Module-trait relationship heatmap. The association between modules and traits. A
trait is associated with each column, and an ME is associated with each row. The correlation coefficient value is in rectangles, and the corresponding p-
value is in brackets. The blue module (enclosed with a red box) shows the highest significant correlation with IDD.
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The PPI network analysis identified four proteins, CKAP4, SSR1,

PGRMC1, and REEP5, as densely connected using the MCODE

algorithm (Figure 3C). Additionally, SSR1 and BNC2 were identified as

key genes using the LASSO algorithm (Figure 4A,B).

F IGURE 3 Functional enrichment analysis and key genes. (A) GO Chord plot shows the representative genes, GO terms, and one pathway
corresponding to hub genes. (B) The bubble map shows the biological process, cellular component, molecular function, and KEGG pathway of
47 hub genes. (C) MCODE algorithm was applied to a PPI network, identifying four key genes.
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F IGURE 4 Identification of key genes with great diagnostic value for IDD. (A) Lambda value of the 47 hub genes in the LASSO model. (B) The
most proper Lambda value in the LASSO model. (C) The expression levels of the five key genes in GSE23130 and GSE15227 datasets.
(D) Validation of the five key gene expressions in GSE70362 dataset. (E) ROC curves for the five key genes in GSE23130 and GSE15227
datasets. (F) ROC curves for the five key genes in GSE70362 dataset for validation.
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3.4 | Identification and diagnostic value of
key genes

To validate the predictive power of these five key genes in IDD sam-

ples, we used an independent dataset, GSE70362. In comparison to

the significant differential expressions observed between control and

IDD samples in the GSE23130 and GSE15227 datasets (Figure 4C),

and AUC values above 0.7 (Figure 4E), only CKAP4 and SSR1 exhib-

ited differential expressions (Figure 4D) and had AUC values above

0.7 in the GSE70362 dataset (Figure 4F).

F IGURE 5 Correlation with infiltrating immune cells. (A) Split-violin plot shows the differential correlation of immune cells between the control and
IDD samples. (B) Heatmap for the differential correlation of immune cells between the control and IDD samples. (C) The dot plot shows the correlation
among 22 kinds of infiltrating immune cells. (D) The lollipop plot shows the correlation between the CKAP4, SSR1, and immune cells, respectively.
*p < 0.05 and **p < 0.01.
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3.5 | Correlation with immune infiltration

To explore the correlation with infiltrating immune cells, ssGSEA scoring

was performed to compare the composition and proportion of infiltrating

immune cells between control and IDD samples in the GSE23130 and

GSE15227 datasets. As shown in Figure 5A, T cells helper and T cells

regulatory were significantly more correlated with control samples

(p < 0.01 and p < 0.05, respectively), while monocytes showed a greater

correlation with IDD samples (p < 0.05). The correlation value of each

sample against every kind of immune cell was shown in Figure 5B.

F IGURE 6 Identification of the cell subtypes
that two key genes are mainly expressed
in. (A) Unsupervised tSNE clustering shows the
change in cell distribution of the nine clusters for

AFD, AFH, NPD, and NPH. (B) Cell annotations for
the nine clusters. (C) Expression distributions of the
two key genes in different cell clusters attributed to
different samples. (D) The average expression of the
two key genes in different cell subtypes. (E) The
proportions of the nine cell subtypes attributed to
different samples.
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Moreover, by analyzing the correlation of each kind of infiltrating

immune cells, we found a significant positive correlation between T

cells helper and T cell regulatory and a significant negative correlation

between monocytes and T cell regulatory (Figure 5C). Further analysis

revealed a significant positive correlation between CKAP4 and SSR1

expressions with monocytes (Figure 5D,E).

3.6 | The characteristics of the key genes in cell
clusters

To determine the cell type expressing these key genes, we introduced

a single-cell RNA-seq dataset, GSE199866. All cells were clustered

into nine clusters (Figure 6A), and each subtype was annotated

(Figure 6B) as follows: prehypertrophic chondrocyte, fibroblasts, mes-

enchymal progenitor cell, oligodendrocyte progenitor cells, fibrocarti-

lage chondrocyte, monocyte, regulatory chondrocyte, homeostatic

chondrocyte, and cartilage progenitor cell.

As shown in Figure 6C,D, CKAP4 was significantly and differentially

expressed highest in fibrocartilage chondrocytes and second in cartilage

progenitor cells. Moreover, the proportion of fibrocartilage chondrocyte

was highest (0.12) in the AFD sample (Figure 6E) compared to the other

three samples; and the monocyte proportion was highest in NPD (0.10)

and second in AFD (0.06) sample. SSR1 was not included in the top

2000 hypervariable genes which indicated the expression was not so

different among cells as the other 2000 genes, however, it still showed

the highest expression in fibrocartilage chondrocytes.

3.7 | Key gene verification

3.7.1 | Clinical samples

From November 2022 to October 2023, a total of 30 human disc tis-

sues were obtained, with an equal number of male and female donors

(15 each). The donors had an average age of 56 ± 16.5 years, ranging

from 31 to 83 years old. The patient information was listed on Table S2.

3.7.2 | Validation of mRNA and protein expressions

Compared to disc tissues graded as Pfirrmann II, those graded as Grade

III and IV showed a significant increase in the mRNA expression of

CKAP4 (p = 0.0496 and p = 0.0085, respectively), while Grade V

showed a trend increase without statistical significance (p = 0.1597).

Additionally, the protein expression of CKAP4 increased significantly in

Grade III (p = 0.0328), IV (p = 0.0270), and V (p = 0.0397) as deter-

mined by immunohistochemistry. Furthermore, the mRNA expression of

SSR1 was significantly increased in Grade IV (p = 0.0061) and Grade V

(p = 0.0019), but not in Grade III (p = 0.4778). The protein expression

F IGURE 7 The mRNA and protein
expression of CKAP4 and SSR1. (A) The
mRNA expression of CKAP4 and SSR1
was analyzed using RT-PCR. The relative
mRNA expression was normalized against
GAPDH and presented as fold change. A
significance level of p < 0.05 was used to
determine statistical significance. For
CKAP4, there were three samples in the
Pfirrmann II group, eight in the Pfirrmann
III group, seven in the Pfirrmann IV group,
and nine in the Pfirrmann V group. For
SSR1, there were three samples in the
Pfirrmann II group, and six samples per
group from Pfirrmann III to V. (B) IHC
staining of NP tissues. Representative
CKAP4 and SSR1 IHC staining of disc
tissues graded from Pfirmann II to
V. (magnification: 40�, scale bar =50 μm).
For CKAP4, n = 3 in group Pfrrimann II,
n = 5 in group Pfrrimann III, n = 4 in both
group Pfrrimann IV and V; For SSR1,
n = 3 per group.

GUO ET AL. 11 of 15



of SSR1 was significantly increased in Grade IV (p = 0.0265) and V

(p = 0.0227), but not in Grade III (p = 0.4209). The results have been

presented in Figure 7A,B.

DISCUSSION

IDD is a pathological process that occurs with aging, and genetic fac-

tors contribute to 70% of its occurrence.32,33 To better understand

the underlying mechanisms, we applied bioinformatics methods to

identify biomarkers associated with IDD. We analyzed 1015 DEGs

from 22 samples using WGCNA to calculate correlations between

gene expression profiles and IDD. We excluded disc samples graded

as Thompson III due to their uncertainty in morphological change,20

resulting in a total of five modules associated with IDD. The blue

module was found to be the most strongly correlated with IDD, and

we identified 47 hub genes for further analysis. Notably, only the

pathway of “protein processing in endoplasmic reticulum” was

enriched in the 47 genes.

The endoplasmic reticulum (ER) is quite sensitive to extracellular

stimuli in disc cells because matrix proteins are abundantly synthe-

sized and secreted. Liao et al.34 have reported that human NP samples

with varying degrees of degeneration showed a positive correlation

between the upregulation of ER stress-related apoptosis genes and

Pfirrmann grades of IDD, implicating that ER stress contributes to

IDD. Last year, Luo et al.35 prominently reported that O-linked β-N-

acetylglucosaminylation transferase regulated IDD by targeting

FAM134B-mediated ER-phagy, which was published in Nature. There-

fore, the protein processing pathway in ER is worthy of further inves-

tigation for potential therapeutic targets.

In addition, endoplasmic reticulum stress has been disclosed in

regulating immune responses,36,37 and the relationship between IDD

and the immune response is very close.13–15 Therefore, we further

investigated the correlation of the 22 samples in the GSE23130 and

GSE15227 datasets with immune cell infiltration by the ssGSEA

method. As a result, monocytes were found largely infiltrated in IDD

samples. Consistently, in the following scRNA-seq dataset analysis,

we found monocyte proportion was largest in degenerated NP sam-

ple, and second in degenerated AF sample. Similarly, a recent study

also found monocytes were aberrantly activated in the late stage of

IDD via scRNA-seq.38 As is known, inflammation plays a key role in

the process of IDD. Monocytes, one of the immune cells, as a proin-

flammatory factor, largely recruited to the site with infection or sterile

injury is critical in mediating inflammation resolution and wound

repair.39 Superfluous cytokines and chemokines upregulating in the

IDD process produced by native disc cells have been disclosed to

mediate catabolic events.16,40 IL-1 was reported to mediate the cata-

bolic events during IDD,40 while other cytokines, such as MCP-1,

TNF-alfa, and IL-8, diffuse to the surrounding environment triggering

inflammation and accelerating immune cells infiltration like T cells

(CD4+, CD8+), B cells, macrophages, secondary to AF or chondral

endplate rupture.13,16 These immune cells mediate inflammation and

further increase the expression of inflammatory factors,40 which

forms a viscous circle driving catabolism and causing extracellular

matrix breakdown.17 Therefore, monocyte might be an immune thera-

peutic target for IDD.

Moreover, we further identified the 5 key genes out of 47 hub

genes by MCODE and LASSO algorithm. The diagnostic value of

these five key genes was tested by another dataset, showing that

only SSR1 and CKAP4 had great value to distinguish IDD samples

from control samples, which might serve as diagnostic biomarkers.

Interestingly, we found these two genes were also highly correlated

with monocytes, indicating that they might promote IDD via regulat-

ing monocytes.

Signal sequence receptor (SSR) is a translocation-related protein

that plays a critical role in translocating secreted proteins. The SSR

complex was induced by XBP1/IRE1α pathway and involved in

endoplasmic reticulum-associated degradation (ERAD), preferen-

tially bounding to misfolded proteins and discriminating ERAD sub-

strates from correctly folded ones to accelerate the degradation of

misfolded proteins.41 SSR1, one of the four subunits of the SSR

complex,42 has been revealed to participate in several kinds of

tumors43 and is a potential biomarker of Parkinson's Disease.44 Sim-

ilarly involved in ER stress pathway, CKAP4 (cytoskeleton-

associated protein 4), as well as known as p63, was first discovered

as a resident protein of the stable ER-Golgi intermediate

compartment,45 works as a receptor for some ligands, including

anti-proliferating factor46 and tissue plasminogen activator.47

CKAP4 could regulate the morphology and functions of ER, includ-

ing the separation of ER sheets adjacent to the nucleus,48 and

anchoring Dicer to the ER to regulate the microRNA pathway and

mRNA translation.49 Besides of main findings of CKAP4 functioning

in tumor cells,50,51 scRNA-seq has been identified as a new marker

for activated fibroblasts in diseased hearts of murine and human

origin,52 and silencing of it reduced the VSMCs and aortic calcifica-

tion by modulating YAP phosphorylation and MMP2 expression in

Chronic kidney disease.53 Recently, CKAP4 has also been revealed

to play a role in unfolded protein response (UPR), via regulating the

activity of the ER chaperone BIP (binding immunoglobulin protein),

which is a key player in the UPR,54 or interacting with some proteins

involved in the UPR, like PERK.55,56

In addition, to identify the cell type of the two genes mainly

expressed in, a scRNA-seq dataset was used. As a result, CKAP4

was found mainly expressed in fibrocartilage chondrocyte and carti-

lage progenitor cells, and SSR1 was mainly in fibrocartilage chon-

drocyte. The fibrocartilage chondrocyte phenotype has been

reported mainly attributed to osteoarthritis (OA) development57,58

by damaging the integrity of the cartilage ECM59 and enhancing

fibrosis.60,61 And the cartilage progenitor cells (CPCs) were charac-

terized based on the expression of stem-cell-related surface

markers, the capability of self-renew, and differentiation to multiple

lineages. The migration of CPCs has been disclosed for response to

injury, like ECM degradation62 in healthy cartilage,63 and regulated

by multiple tissue-injury-related signals.63,64 In degenerated
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cartilage sites, CPCs were found to accumulate in areas of tissue

repair due to the broken cartilage tidemark and evident neovascu-

larization beneath the cartilage tissue.65 Therefore, we speculated

that CKAP4 and SSR1 might also regulate the differentiation of

fibrocartilage chondrocytes and migration of CPCs to affect IDD.

The limitations of this study include the following: first, research

in vitro and in vitro is still needed to understand further how these

hub genes influence IDD; Second, to strengthen our findings and bet-

ter clarify the potential mechanisms responsible for these hub genes

influencing IDD, more clinical samples will be needed.

4 | CONCLUSIONS

In the present study, the WGCNA method was employed and identified

one gene coexpression module with the highest gene significance associ-

ated with IDD. Then 47 hub genes were overlapped and collected from

both the blue module and DEGs. Subsequently, five key genes were

identified by MCODE and LASSO algorithms, however, only CKAP4 and

SSR1 were validated with great diagnostic value by a test dataset.

In addition, the immune infiltrating analysis showed the monocytes were

significantly upregulated in IDD samples and correlated with CKAP4 and

SSR1. Moreover, both genes were identified as primarily expressed in

fibrocartilage chondrocytes based on a scRNA-seq dataset. Accordingly,

the possible mechanisms of the two key genes are believed to poten-

tially impact IDD through the regulation of monocyte migration and

fibrocartilage chondrocyte differentiation, which warrants further inves-

tigation. Additionally, in vitro verification demonstrated increased

expression of CKAP4 and SSR1 in degenerated human disc tissues.

Therefore, CKAP4 and SSR1 have been identified as promising thera-

peutic targets for the treatment of IDD.
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