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Abstract Some theories of human cultural evolution posit that humans have social-specific 
learning mechanisms that are adaptive specialisations moulded by natural selection to cope with the 
pressures of group living. However, the existence of neurochemical pathways that are specialised for 
learning from social information and individual experience is widely debated. Cognitive neuroscien-
tific studies present mixed evidence for social-specific learning mechanisms: some studies find disso-
ciable neural correlates for social and individual learning, whereas others find the same brain areas 
and, dopamine-mediated, computations involved in both. Here, we demonstrate that, like individual 
learning, social learning is modulated by the dopamine D2 receptor antagonist haloperidol when 
social information is the primary learning source, but not when it comprises a secondary, additional 
element. Two groups (total N = 43) completed a decision-making task which required primary 
learning, from own experience, and secondary learning from an additional source. For one group, 
the primary source was social, and secondary was individual; for the other group this was reversed. 
Haloperidol affected primary learning irrespective of social/individual nature, with no effect on 
learning from the secondary source. Thus, we illustrate that dopaminergic mechanisms underpinning 
learning can be dissociated along a primary-secondary but not a social-individual axis. These results 
resolve conflict in the literature and support an expanding field showing that, rather than being 
specialised for particular inputs, neurochemical pathways in the human brain can process both social 
and non-social cues and arbitrate between the two depending upon which cue is primarily relevant 
for the task at hand.

Editor's evaluation
This work has important implications on how we view and understand social and individual learning 
with respect to dopamine processing in the human brain. This study, supported by a well-controlled 
experimental design, clear hypothesis testing, and rigorous model-based analyses, revealed that the 
dopamine system is involved in learning from a primary source as opposed to a secondary source, 
irrespective of social or non-social individual learning. This work encourages new investigations into 
testing when and how different neuromodulator systems may converge or diverge in guiding social 
versus non-social learning.

Introduction
The complexity and sophistication of human learning are increasingly appreciated. Enduring theoret-
ical models illustrate that learners utilise ‘prediction errors’ to refine their predictions of future states 
(e.g., Rescorla–Wagner [RW] and temporal difference models; O’Doherty et al., 2003; Rescorla and 
Wagner, 1972; Schultz et al., 1997; Sutton and Barto, 2018). An explosion of studies, however, 
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illustrates that this simple mechanism lies at the heart of more complex and sophisticated systems 
that enable humans (and other species) to learn from, keep track of the utility of, and integrate infor-
mation from, multiple learning sources (Behrens et al., 2009; Biele et al., 2009; Li et al., 2011), 
meaning that one can learn from many sources of information simultaneously (Daw et al., 2006). Such 
complexity enables individuals to, for example, rank colleagues according to the utility of their advice 
and learn primarily from the top-ranked individual (Kendal et al., 2018; Laland, 2004; Morgan et al., 
2012; Rendell et al., 2011) whilst also tracking the evolving utility of advice from others (Behrens 
et al., 2008; Biele et al., 2011). Recent studies have further revealed that learning need not rely 
solely on directly experienced associations since one can also learn via inference (Bromberg-Martin 
et al., 2010; Dolan and Dayan, 2013; Jones et al., 2012; Langdon et al., 2018; Moran et al., 2021; 
Sadacca et al., 2016; Sharpe and Schoenbaum, 2018). This growing appreciation of the complexity 
and sophistication of human learning may help to explain contradictory findings in various fields. Here, 
we focus on the field of social learning.

The existence in the human brain of neural and/or neurochemical pathways that are specialised for 
learning from social information and individual experience respectively is the topic of much debate 
(Heyes, 2012; Heyes and Pearce, 2015). Indeed, the claim that humans have social-specific learning 
mechanisms that are adaptive specialisations moulded by natural selection to cope with the pressures 
of group living lies at the heart of some theories of cultural evolution (Kendal et al., 2018; Morgan 
et al., 2012; Templeton et al., 1999). Since cultural evolution is argued to be specific to humans 
(Richerson and Boyd, 2005), establishing whether humans do indeed possess social-specific learning 
mechanisms has attracted many scholars with its promise of elucidating the key ingredient that ‘makes 
us human’.

Cognitive neuroscience offers tools that are ideally suited to investigating whether the mechanisms 
underpinning social learning (learning from others) do indeed differ from those that govern learning 
from one’s individual experience (individual learning). Cognitive neuroscientific studies, however, 
present mixed evidence for social-specific learning mechanisms. Some studies find dissociable neural 
correlates for social and individual learning (Apps et  al., 2016; Behrens et  al., 2008; Hill et  al., 
2016; Zhang and Gläscher, 2020). For example, a study by Behrens et al., 2008 reported that whilst 
individual learning was associated with activity in dopamine-rich regions such as the striatum that 
are classically associated with reinforcement learning, social learning was associated with activity in 
a dissociable network that instead included the anterior cingulate cortex gyrus (ACCg) and tempo-
roparietal junction. Further supporting this dissociation, studies have revealed correlations between 
personality traits, such as social dominance (Cook et al., 2014) and dimensions of psychopathy (Brazil 
et  al., 2013) and social, but not individual, learning, as well as atypical social, but not individual, 
prediction error-related signals in the ACCg in autistic individuals (Balsters et al., 2017). Together, 
these studies support the existence of social-specific learning mechanisms. In contrast, other studies 
have reported that the same computations, based on the calculation of prediction error, are involved 
in both social and individual learning (Diaconescu et al., 2014), and that social learning is associ-
ated with activity in dopamine-rich brain regions typically linked to individual learning (Biele et al., 
2009; Braams et al., 2014; Campbell-Meiklejohn et al., 2010; Delgado et al., 2005; Diaconescu 
et al., 2017; Klucharev et al., 2009). Diaconescu et al., 2017, for example, observed that social 
learning-related prediction errors covaried with naturally occurring genetic variation that affected 
the function of the dopamine system. Further supporting this overlap between social and individual 
learning, behavioural studies have observed that social and individual learning are subject to the same 
contextual influences. For example, Tarantola et al., 2017 observed that prior preferences bias social 
learning, just as they do individual learning. Such findings promote the view that ‘domain-general’ 
learning mechanisms underpin social learning: we learn from other people in the same way that we 
learn from any other stimulus in our environment (Heyes, 2012; Heyes and Pearce, 2015). That is, 
there are no social-specific learning mechanisms.

One potential resolution to this conflict in the literature hinges on (1) an appreciation of the 
complexity and sophistication of human learning systems and (2) a difference in study design between 
tasks that have, and have not, found evidence of social-specific mechanisms. In studies that have 
linked social learning with the dopamine-rich circuitry typically associated with individual learning (and 
which are therefore consistent with the domain-general view), participants have been encouraged 
to learn primarily from social information. Indeed, in many cases the social source has been the sole 
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information source (Campbell-Meiklejohn et al., 2010; Diaconescu et al., 2017; Klucharev et al., 
2009). For example, in the paradigm employed by Diaconescu and colleagues (2014, 2017), partic-
ipants were required to choose between a blue and green stimulus and were provided with social 
advice which was sometimes valid and sometimes misleading; on each trial, participants received 
information about the time-varying probability of reward associated with the blue and green stimuli, 
thus participants did not have to rely on their own individual experience of blue/green reward asso-
ciations and could fully dedicate themselves to social learning. That is, participants did not learn 
from multiple sources (i.e., social information and individual experience); participants only engaged in 
social learning. In contrast, in studies where social learning has been associated with neural correlates 
outside of the dopamine-rich regions classically linked to individual learning (and which are therefore 
consistent with the domain-specific view), social information has typically comprised a secondary, 
additional source (Behrens et al., 2008; Cook et al., 2014). Typically, the non-social (individual) infor-
mation is presented first to participants, represented in a highly salient form, and is directly related 
to the feedback information. The social information, in contrast, is presented second, is typically less 
salient in form, and is not directly related to the feedback information. For example, in the Behrens et 
al. study (2008) (and in our own work employing this paradigm; Cook et al., 2014; Cook et al., 2019), 
participants were required to choose between two, highly salient, blue and green boxes to accumu-
late points. The boxes were the first stimuli that participants saw on each trial. Outcome information 
came in the form of a blue or green indicator, thus primarily informing participants about whether 
they had made the correct choice on the current trial (i.e., if the outcome indicator was blue, then 
the blue box was correct). In addition, each trial also featured a thin red frame, which represented 
social information, surrounding one of the two boxes. The red frame was the second stimulus that 
participants saw on each trial and indirectly informed participants about the veracity of the frame: 
if the outcome was blue and the frame surrounded the blue box, then the frame was correct. In 
such paradigms, participants must learn from multiple sources of information with one source taking 
primary status over the other. Consequently, in studies that have successfully dissociated social and 
individual learning the two forms of learning differ both in terms of social nature (social or non-social) 
and rank (primary versus secondary status). Thus, it is unclear which of these two factors accounts for 
the dissociation.

This study tests whether social and individual learning share common neurochemical mechanisms 
when they are matched in terms of (primary versus secondary) status. Given its acclaimed role in 
learning (Glimcher and Bayer, 2005; Schultz, 2007), we focus specifically on the role of the neuro-
modulator dopamine. Drawing upon recent studies illustrating the complexity and sophistication of 
human learning (Daw et al., 2005; Gläscher et al., 2011; Moran et al., 2021), we hypothesise that 
pharmacological modulation of the human dopamine system will dissociate learning from two sources 
of information along a primary versus secondary, but not along a social versus individual axis. In 
other words, we hypothesise that social learning relies upon the dopamine-rich mechanisms that also 
underpin individual learning when social information is the primary source, but not when it comprises 
a secondary, additional element. Such a finding would offer a potential resolution to the aforemen-
tioned debate concerning the existence of social-specific learning mechanisms.

Preliminary support for our hypothesis comes from three lines of work. First, studies have convinc-
ingly argued for flexibility within learning systems. For example, in a study by Daw et  al., 2006, 
participants tracked the utility of four uncorrelated bandits, with particular brain regions – such as 
the ventromedial prefrontal cortex – consistently representing the value of the top-ranked bandit, 
even though the identity of this bandit changed over time. Second, studies are increasingly illus-
trating the flexibility of social brain networks (Ereira et al., 2020; Garvert et al., 2015). The medial 
prefrontal cortex (mPFC), for example, is not – as was once thought – specialised for representing the 
self; if the concept of ‘other’ is primarily relevant for the task at hand, then the mPFC will prioritise 
representation of other over self (Cook, 2014; Nicolle et al., 2012). Finally, in a recent study (Cook 
et al., 2019), we provided preliminary evidence of a catecholaminergic (i.e., dopaminergic and norad-
renergic) dissociation between learning from primary and secondary, but not social and individual, 
sources of information. In this work (Cook et  al., 2019), we employed a between-groups design, 
wherein both groups completed a version of the social learning task adapted from Behrens et al., 
2008 described above. For one group, the secondary source was social in nature (social group). For 
the non-social group, the secondary source comprised a system of rigged roulette wheels and was 
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thus non-social in nature. We observed that, in comparison to placebo (PLA), the catecholaminergic 
transporter blocker methylphenidate only affected learning from the primary source, which, in this 
paradigm, always comprised participant’s own individual experience. Methylphenidate did not affect 
learning from the secondary source, irrespective of its social or non-social nature. That is, we found 
positive evidence supporting a dissociation between primary and secondary learning but no evidence 
to support a distinction between learning from social and non-social sources. Nevertheless, since we 
did not observe an effect of methylphenidate on learning from the (social or non-social) secondary 
source of information, this study was unable to provide positive evidence of shared mechanisms for 
learning from social and non-social sources. If it is truly the case that domain-general (neurochemical) 
mechanisms underpin social learning, it should follow that pharmacological manipulations that affect 
individual learning when individual information is the primary source also affect social learning when 
social information is the primary source.

The current (pre-registered) experiment tested this hypothesis by orthogonalising social versus 
individual and primary versus secondary learning. We perturbed learning using the dopamine D2 
receptor antagonist haloperidol (HAL), in a double-blind, counter-balanced, PLA-controlled design. 
To test whether pharmacological manipulation of dopamine dissociates learning along a primary-
secondary and/or a social-individual axis, we developed a novel between-groups manipulation 
wherein one group of participants learned primarily from social information and could supplement this 
learning with their own individual experience, and a second group learned primarily from individual 
experience and could supplement this learning with socially learned information. To foreshadow our 
results, we demonstrate that HAL specifically affects learning from the primary (not secondary) source 
of information. Bayesian statistics confirmed that the effects of haloperidol were comparable between 
the groups, thus, HAL affected individual learning when individual information was the primary source 
and, to the same extent, social learning when social information was the primary source. Our data 
support an expanding field showing that, rather than being fixedly specialised for particular inputs, 
neurochemical pathways in the human brain can process both social and non-social cues and arbitrate 
between the two depending upon which cue is primarily relevant for the task at hand (Cook, 2014; 
Garvert et al., 2015; Nicolle et al., 2012).

Results
Participants (n = 43; aged 19–38, mean [standard error] ‍̄x(σx̄)‍ = 25.950 [0.970]; 24 males, 19 females; 
see Materials and methods) completed an adapted version of the behavioural task originally devel-
oped by Behrens et al., 2008. Participants were randomly allocated to one of two groups. Partici-
pants in the individual-primary group (n = 21) completed the classic version of this task (Figure 1A; 
Behrens et al., 2008) in which they were required to make a choice between a blue and green box in 
order to win points. A red frame (the social information), which represented the most popular choice 
made by a group of four participants who had completed the task previously, surrounded either the 
blue or green box on each trial, and participants could use this to help guide their choice. The actual 
probability of reward associated with the blue and green boxes and the probability that the red 
frame surrounded the correct box varied according to uncorrelated pseudo-randomised schedules 
(Appendix 2—figure 1). For the individual-primary group, the individual information (blue and green 
stimuli) was primary, and the social information (red stimulus) was secondary on the basis that the 
blue/green stimuli appeared first on the screen, were highly salient (large boxes versus a thin frame) 
and were directly related to the feedback information. That is, after making their selection, partici-
pants saw a small blue or green box which primarily informed them whether a blue or green choice 
had been rewarded on the current trial. From this information, the participant could, secondarily, infer 
whether the social information (red frame) was correct or incorrect.

Our social-primary group (n = 22; groups matched on age, gender, body mass index [BMI], and 
verbal working memory [VWM] span; Table 1) completed an adapted version of this task (Figure 1B) 
wherein the social information (red stimulus) was primary and the individual information (blue/green 
stimuli) was secondary. Participants first saw two placeholders; one empty and one containing a red 
box which indicated the social information. Subsequently, a thin green and a thin blue frame appeared 
around each placeholder. Participants were told that the red box represented the group’s choice. 
They were then required to choose whether to go with the social group (red box) or not. After making 
their choice, a tick or cross appeared which primarily informed participants whether going with the 
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social information was the correct option. From this they could, secondarily, infer whether the blue 
or green frame was correct. Consequently, for the social-primary group the social information was 
primary on the basis that it appeared first on the screen, highly salient (a large red box versus thin 
green/blue frames), and directly related to the feedback information.

Participants in both the individual-primary and social-primary groups performed 120 trials of the 
task on each of two separate study days. To perturb learning, on one day participants took 2.5 mg 
of HAL, previously shown to affect learning (Pessiglione et al., 2006) via multiple routes including 
perturbation of phasic dopamine signalling (Schultz, 2007; Schultz et al., 1997) facilitated by action 
at mesolimbic D2 receptors (Camps et al., 1989; Grace, 2002; Lidow et al., 1991). On the other 
day, they took a PLA under double-blind conditions, with the order of the days counterbalanced. 

Figure 1. Behavioural task. (A) Individual-primary group. Participants selected between a blue and a green box to gain points. On each trial, the blue 
and green boxes were presented first. After 1-4 seconds (s), one of the boxes was highlighted with a red frame, representing the social information. 
After 0.5–2s, a question mark appeared, indicating that participants were able to make their response. Response was indicated by a silver frame 
surrounding their choice. After a 1-3s interval, participants received feedback in the form of a green or blue box in the middle of the screen. (B) Social-
primary group. Participants selected between going with, or against a red box, which represented the social information. On each trial, the red box was 
displayed. After 1-4s, blue and green frames appeared. After 0.5–2s, a question mark appeared, indicating that participants were able to make their 
response. Response was indicated by a silver frame surrounding their choice. After a 1-3s interval, participants received feedback in the form of a tick 
or a cross. This feedback informed participants if going with the group was correct or incorrect, from this feedback participants could infer whether the 
blue or green frame was correct. (C) Example of pseudo-randomised probabilistic schedule. The probability of reward varied according to probabilistic 
schedules, including stable and volatile blocks for both the probability of the blue box/frame being correct (top) and the probability of the red (social) 
box/frame being correct (bottom).

https://doi.org/10.7554/eLife.74893
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43 participants took part in at least one study day, 33 participants completed both study days. Two 
participants performed at below-chance-level accuracy and were excluded from further analysis. We 
present an analysis of data from the 31 participants who completed both study days with above-
chance accuracy (Table 1) in this article, which we complement with a full analysis of all 41 datasets in 
Appendix 4i.

We used the following strategy to analyse our data. First, we sought to validate our manipulation 
by testing (under PLA) whether participants in both the individual-primary and social-primary groups 
learned in a more optimal fashion from the primary, versus secondary, source of information. Next, we 
tested our primary hypothesis that both social and individual learning would be modulated by HAL 
when they are the primary source of learning, but not when they comprise the secondary source. To 
do so, we estimated learning rates for primary and secondary sources of information, for each group 
(social-primary, individual-primary), under HAL and PLA, by fitting an adapted RW learning model 
to choice data. To ascertain that our model accurately described choices, we used simulations and 
parameter recovery. We used random-effects Bayesian model selection (BMS) to compare our model 
with alternative models. These analyses provided confidence that our model accurately described 
participants’ behaviour. After testing our primary hypothesis, we explored the relationship between 
parameters from our computational model and performance. To accomplish this, we first used an 
optimal learner model, with the same architecture and priors as our adapted RW model, to assess the 
extent to which HAL made participants’ learning rates more (or less) optimal. Finally, we regressed 
estimated model parameters against accuracy to gain insight into the extent to which variation in 
these parameters (and the effect of the drug thereupon) contributed to correct responses on the task.

Social information is the primary source of learning for participants in 
the social-primary group
Our novel manipulation orthogonalised primary versus secondary and social versus individual 
learning. To validate our manipulation, we tested whether participants in both the individual-primary 
and social-primary group learned in a more optimal fashion from the primary versus secondary source 
of information in our PLA condition. For this validation analysis, we used a Bayesian learner model 
to create two optimal models: (1) an optimal primary learner and (2) an optimal secondary learner 
(Materials and methods). Subsequently, we regressed both models against participants’ choice data, 
resulting in two βoptimal values capturing the extent to which a participant made choices according to 
the optimal primary, and optimal secondary learner models, respectively. βoptimal values were submitted 
to a repeated-measures analysis of variance (RM-ANOVA) with factors information source (primary, 
secondary) and group (social-primary, individual-primary), revealing main effects of information source 
(F(1,29) = 6.594, p=0.016) and group (F(1,29) = 10.423, p=0.003). βoptimal values (averaged across 
individual-primary and social-primary groups) were significantly higher for the primary information 
(‍̄x(σx̄)‍ = 0.872 (0.101)) compared with secondary information source (‍̄x(σx̄)‍ = 0.438 (0.101); t(29) = 
2.568, pholm = 0.016). βoptimal values (averaged across primary and secondary conditions) were signifi-
cantly higher for the social-primary group (‍̄x(σx̄)‍ = 0.833 (0.078)) compared with the individual-primary 
group (‍̄x(σx̄)‍ = 0.477 (0.078); t(29) = 3.228, pholm = 0.003) (Figure 2). Crucially, we did not observe 
a significant interaction between information and group (F(1,29) = 0.067, p=0.797), meaning that 
participants’ choices were more influenced by the primary information source, regardless of whether 

Table 1. Participant information.

Individual-primary group
(n = 15)
Mean (SD)

Social-primary group
(n = 16)
Mean (SD) t (1,29) X2 (1, N = 31) p-Value

Gender (n males: n females) 7:8 8:8 0.034 0.853

Age 25.600 (5.448) 25.625 (4.745) 0.014 0.989

VWM 80.333 (6.016) 76.354 (7.823) 1.580 0.125

BMI 24.016 (2.807) 22.625 (2.606) 1.431 0.114

Age, gender, BMI, and VWM did not significantly differ between the groups.

SD: standard deviation; VWM: verbal working memory span; BMI: body mass index.

https://doi.org/10.7554/eLife.74893
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it was social or individual in nature. Furthermore, βoptimal values for primary information alone did not 
significantly differ between groups (t(29) = –1.982, pholm = 0.257). Note that βoptimal weights for both 
information sources were significantly greater than zero (primary: t(30) = 7.534, p<0.001; secondary: 
t(30) = 4.789, p<0.001), thus our optimal models of information use explained a significant amount of 
variance in the use of both primary and secondary learning sources. These data show that, irrespective 
of social (or individual) nature, participants learned in a more optimal fashion from the primary (rela-
tive to secondary) learning source, which was first in the temporal order of events, highly salient and 
directly related to the reward feedback.

Haloperidol reduces the rate of learning from primary sources
We hypothesised that both social and individual learning would be modulated by administration of the 
dopamine D2 receptor antagonist HAL when they were the primary source of learning, but not when 
they comprised the secondary source. To test this hypothesis, we fitted an adapted RW learning model 
(Rescorla and Wagner, 1972) to participants’ choice data, enabling us to estimate various parameters 
that index learning from primary and secondary sources of information, for HAL and PLA conditions, 
for participants in the social-primary and individual-primary groups. Our adapted RW model provided 

Figure 2. Beta weights (β_optimal) for primary and secondary information. βoptimal values were significantly higher for the primary, compared to 
secondary, information source and for the social-primary, compared with the individual-primary, group. Data points indicate estimated ‍β_optimal‍ 
weights for individual participants (n = 31, placebo data only), bold point indicates the mean, and bold line indicates standard error of the mean (1 
SEM).

https://doi.org/10.7554/eLife.74893
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estimates, for each participant, of ‍α, β, and ζ.‍ The learning rate (α) controls the weighting of predic-
tion errors on each trial. A high ‍α‍ favours recent over (outdated) historical outcomes, while a low ‍α‍ 
suggests a more equal weighting of recent and more distant trials. Since our pseudo-random schedules 
included stable phases (where the reward probability associated with a particular option was constant 
for >30 trials), and volatile phases (where reward probabilities changed every 10–20 trials), α was esti-
mated separately for volatile and stable phases (for both primary and secondary learning) to accord 
with previous research (Behrens et al., 2007; Cook et al., 2019; Manning et al., 2017). β captures the 
extent to which learned probabilities determine choice, with a larger β meaning that choices are more 
deterministic with regard to the learned probabilities. ζ represents the relative weighting of primary 
and secondary sources of information, with higher values indicating a bias towards the over-weighting 
of secondary relative to primary (see Materials and methods and Appendix 3 for further details of the 
model, model fitting, and model comparison).

We hypothesised an interaction between drug and (primary versus secondary) information source 
such that HAL would affect learning from the primary information source only, regardless of its social/
individual nature. To test this hypothesis, we employed a linear mixed effects model with fixed factors 
information source (primary, secondary), drug (HAL, PLA), environmental volatility (volatile, stable), 
and group (social-primary, individual-primary) and dependent variable α (square-root transformed to 

Figure 3. Learning rate (α) estimates for learning from primary and secondary information across all trials (averaged across volatile and stable phases). 
There was a significant interaction between information and drug, with α estimates significantly lower under haloperidol (HAL; orange), relative to 
placebo (PLA; purple), for primary information only. Data points indicate square-root transformed α estimates for individual participants (n = 31). Boxes: 
standard error of the mean; shaded region: standard deviation. * indicates statistical significance (p<0.05).

https://doi.org/10.7554/eLife.74893
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meet assumptions of normality). We controlled for inter-individual differences by including random 
intercepts for subject. Including pseudo-randomisation schedule as a factor in all analyses did not 
change the pattern of results. The mixed model revealed a drug by information interaction (F(1, 203) 
= 6.852, p=0.009, beta estimate (

‍
σ−

x ‍
) = 0.026 (0.010), t = 2.62, confidence interval [CI] = [0.010–0.050]) 

(Figure 3). There were no significant main effects of drug (F(1, 203) = 0.074, p=0.786), group (F(1, 

29) = 3.148, p=0.087), or volatility (F(1, 203) = 1.470, p=0.227) on ‍α‍ values, nor any other significant 
interactions involving drug (all p-values>0.05, see Appendix 4v–vi for analysis, including schedule, 
session, and working memory). Planned contrasts showed that, whilst under PLA, αprimary (‍̄x(σx̄)‍ = 0.451 
(0.025), collapsed across volatility and group) was significantly greater than αsecondary (‍̄x(σx̄)‍ = 0.370 
(0.025); z(30) = 2.861, p=0.004); this was not the case under HAL (αprimary ‍̄x(σx̄)‍ = 0.393 (0.025), αsecondary 

‍̄x(σx̄)‍ = 0.417 (0.025); z(30) = –0.843, p=0.400). Furthermore, αprimary was decreased under HAL relative 
to PLA (z(30) = –2.050, p=0.040). Although αsecondary was, in contrast, numerically increased under HAL 
(‍̄x(σx̄)‍ = 0.417 (0.025)) relative to PLA (‍̄x(σx̄)‍ = 0.370 (0.025)), this difference was not significant (z(30) = 
1.654, p=0.098). This drug × information interaction therefore illustrated that whilst HAL significantly 
reduced αprimary it had no significant effect on αsecondary. Furthermore, under PLA there was a signifi-
cant difference between αprimary and αsecondary, which was nullified by HAL administration. Consequently, 
under PLA participants’ rate of learning was typically higher for learning from the primary relative to 
the secondary source; however, under the D2 receptor antagonist HAL the rate of learning from the 
primary source was reduced and thus there was no significant difference in the rate of learning from 
primary and secondary sources.

Linear mixed models, with fixed factors group and drug, and random intercepts for subject, 
were also used to explore drug effects on ζ values (representing the relative weighting of primary/
secondary information) and ‍β‍ values. For ζ, there were no significant main effects of drug (F(1, 29) = 
1.941, p=0.174, beta estimate ( 

‍
σ−

x ‍
)= −0.07 (0.050), t = −1.390, CI = [–0.170 to 0.003]) or group (F(1, 

51) = 0.184, p=0.669, beta estimate(
‍
σ−

x ‍
 )=0.020 (0.040), t = 0.430, CI = [–0.070 to 0.100]), nor drug 

by group interaction (F(1, 29) = 0.039, p=0.845, beta estimate(
‍
σ−

x ‍
 )=−0.001 (0.050), t = −0.200, CI 

= [-0.110 to 0.090]). Similarly, our analysis of ‍β‍ values revealed no main/interaction effect(s) of drug, 
group, or drug by group (all p>0.05).

Haloperidol reduces the rate of learning from a primary source 
irrespective of its social or individual nature
Our primary hypothesis was that HAL would modulate the rate of learning from the primary source 
irrespective of its social or individual nature. This would be evidenced as an interaction between 
drug and (primary versus secondary) information source (see above) in the absence of an interaction 
between drug, information source, and group (social-primary versus individual-primary). Crucially, we 
observed no significant interaction between drug, information source, and group (F(1, 203) = 0.098, 
p=0.754). To further assess whether drug effects on primary information differed as a function of 
group, results were also analysed within a Bayesian framework using JASP software (JASP Team 2020). 
A Bayes exclusion factor (BF excl), representing the relative likelihood that a model without a drug × 
information × group interaction effect could best explain the observed data, was calculated (Dienes, 
2014). Values of 3–10 are taken as moderate evidence in favour of the null hypotheses that there is 
no drug × information × group interaction (Lee and Wagenmakers, 2013) with values greater than 
10 indicating strong evidence. The BFexcl value was equal to 7.516, providing moderate evidence in 
favour of the null hypothesis that there is no drug × information × group interaction. Consequently, 
results confirmed our hypothesis: HAL perturbed learning from the primary but not the secondary 
source, irrespective of social or individual nature.

Haloperidol brings ‍α‍primary estimates within the optimal range
To assess whether the effects of HAL on αprimary are harmful or beneficial with respect to performance, 
we first explored drug effects on accuracy (see Appendix 4ii for a detailed analysis including randomi-
sation schedule). There was no significant difference in accuracy between HAL (‍̄x(σx̄)‍ = 0.600 (0.013)) 
and PLA (‍̄x(σx̄)‍ = 0.611 (0.010); F(1,29) = 0.904, p=0.349, ηp

2 = 0.030) conditions.
The lack of a significant main effect of drug on accuracy was somewhat surprising given the signif-

icant (interaction) effect on learning rates, that is, a decrease in αprimary under HAL relative to PLA. To 
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investigate whether HAL resulted in learning rates that were less, or alternatively, more, optimal, we 
compared our estimated ‍α‍ values with optimal ‍α‍ estimates. Since trial-wise outcomes were iden-
tical to those utilised by Cook et al., 2019, optimal values are also identical and are described here 
for completeness. An optimal learner model, with the same architecture and priors as the model 
employed in the current task, was fit to 100 synthetic datasets, resulting in average optimal learning 
rates: αoptimal_primary_stable = 0.16, αoptimal_primary_volatile = 0.21, αoptimal_secondary_stable = 0.17, αoptimal_secondary_volatile = 
0.19. Scores representing the difference between (untransformed) ‍α‍ estimates and optimal ‍α‍ scores 
were calculated (‍αdiff ‍ = ‍α− α‍optimal). A linear mixed model analysis on ‍αdiff ‍ values with factors group, 
drug, volatility and information source, and random intercepts for subject was conducted. A significant 
interaction between drug and information source was observed (F(1, 203) = 4.895, p=0.028, beta esti-
mate (

‍
σ−

x ‍
) = 0.019 (0.010), t = 2.212, CI = [0.000–0.040]) (Figure 4). Planned contrasts showed that, for 

primary information, ‍αdiff_primary‍ was higher under PLA (‍̄x(σx̄)‍ = 0.052 (0.023)) compared with HAL (‍̄x(σx̄)‍ 
= 0.009 (0.028)); z(30) = 1.806, p=0.071). In contrast, ‍αdiff_secondary‍ was lower under PLA (‍̄x(σx̄)‍ = −0.011 
(0.023)) compared with HAL (‍̄x(σx̄)‍ = 0.021 (0.021)); z(30) = 1.323, p=0.186. Learning rates for learning 
from the primary source were higher than optimal under PLA, with ‍αdiff_primary‍ significantly differing 
from 0 (one-sample t-test; t(30) = 2.259, p=0.031. HAL reduced learning rates that corresponded to 
learning from the primary source, thus bringing them within the optimal range, with ‍αdiff_primary‍ not 

Figure 4. Learning rate estimates minus optimal learning rates. There was a significant interaction between information and drug, with αprimary scores 
significantly higher than optimal estimates under placebo (PLA) but not under haloperidol (HAL). Data points indicate ‍α− α‍optimal values for individual 
participants (n = 31) across all trials (averaged across volatile and stable phases), Boxes: standard error of the mean; shaded region: standard deviation.
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significantly differing from 0 under HAL (one-sample t-test; t(30) = 0.319, p=0.752). Consequently, 
under HAL relative to PLA, learning rates for learning from primary sources were more optimal.

To explore whether α values were in some way related to accuracy scores, we used two separate 
backward regression models, for PLA and HAL conditions separately, with αprimary and αsecondary as predic-
tors and accuracy as the dependent variable (see Appendix 4iii for details of a regression model with 
all model parameters). PLA accuracy was predicted by αsecondary though this model only approached 
significance (R = 0.121, F(1,29) = 3.981, p=0.055). Under HAL, however, accuracy was predicted by 
a model with αsecondary and αprimary (R = 0.450, F(2,28) = 3.560, p=0.042), with αprimary a significant posi-
tive predictor of accuracy (β = 0.404, p=0.028). Removing αsecondary as a predictor did not significantly 
improve the fit of this model (R2 change = 0.014, F change (1,29) = 0.495, p=1.000). When combined 
with our optimality analysis, these results suggest that under PLA αprimary was outside of the optimal 
range of α values and thus accuracy was primarily driven by αsecondary. However, HAL reduced αprimary, 
bringing it within the optimal range. Thus, under HAL accuracy was driven by both αprimary and αsecondary.

In sum, relative to PLA, the dopamine D2 receptor antagonist HAL significantly decreased learning 
rates relating to learning from primary, but not secondary sources of information, likely via mediation 
of phasic dopaminergic signalling (see Appendix 4iv). Interestingly, learning rates for learning from the 
primary source were higher than optimal under PLA and HAL brought them within the optimal range. 
Consequently, both primary and secondary learning contributed to accuracy under HAL but not under 
PLA. Importantly, the effects of HAL did not vary as a function of group allocation, which dictated 
whether the primary source was of social or individual nature. A Bayesian analysis confirmed that 
we had moderate evidence to support the conclusion that there was no interaction between drug, 
learning source and group. These data, thus, illustrate a dissociation along the primary-secondary but 
not social-individual axis.

Discussion
This study tested the hypothesis that social and individual learning share common neurochemical 
mechanisms when they are matched in terms of (primary versus secondary) status. Specifically, we 
predicted that HAL would perturb learning from the primary but not the secondary source, irrespec-
tive of social or individual nature. Supporting our hypothesis, we observed an interaction between 
drug and information source (social versus individual) such that under HAL (compared to PLA) 
participants exhibited reduced learning rates with respect to learning from the primary, but not the 
secondary, source of information. Crucially, we did not observe an interaction between drug, infor-
mation source, and group (social-primary versus individual-primary). Bayesian statistics revealed that, 
given the observed data, a model that excludes this interaction is 7.5 times more likely than models 
which include the interaction.

An important question concerns whether the lack of a dopaminergic dissociation between social 
and individual learning could be explained by participants not fully appreciating the social nature of 
the red shape (the social information source). In opposition to this, we argue that since our partici-
pants could not commence the task until reaching 100% accuracy in a pre-task quiz, which questioned 
participants about the social nature of the red shape, we can be confident that all participants knew 
that the red shape indicated information from previous participants. Participants also completed a 
post-task questionnaire (Appendix 5), which required them to reflect upon the extent to which their 
decisions were influenced by the social (red shape) and individual (blue/green shapes) information. 
If participants had not fully believed that the red shape represented social information, one might 
expect that they would indicate that they were not influenced by this source. In contrast, participants 
in both the individual-primary and social-primary groups believed that they were influenced by the 
red shape (as well as the blue/green stimuli). Furthermore, in our previous work, using the same 
social manipulation, we demonstrated that the personality trait social dominance significantly predicts 
social, but not individual, learning (Cook et al., 2014). Thus, illustrating that participants treat the 
social information differently from the non-social information in this type of paradigm. Finally, based 
on previous studies, we argue that even with a more overtly social manipulation it is highly likely that 
social learning would still be perturbed by dopaminergic modulation when social information is the 
primary source. Indeed, in a study by Diaconescu et al., 2017 social information was represented by a 
video of a person indicating one of the two options. Even with this overtly social stimulus, Diaconescu 
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et al. still observed that social learning covaried with genetic polymorphisms that affect the func-
tioning of the dopamine system.

The first part of our analysis illustrated that our manipulation produced the expected effect: when 
social information was first in the temporal order of events, highly salient and directly related to 
reward feedback participants learned in a more optimal fashion from this source of information. Such 
a result may be a surprise to some since one might think that, relative to learning from one’s own 
experience, learning from others will always take a ‘backseat’. Here, we clearly demonstrate that, 
when cast as the primary task, participants can make good use of social information. This paradigm 
may comprise a step towards developing a system to support accelerated social learning. Future 
studies could, for instance, investigate whether similar manipulations can be used to improve learning 
about (as opposed to from) other individuals. Since temporal order, saliency, and reward feedback 
were manipulated simultaneously, we cannot determine which manipulation is the most influential. 
Future work may therefore also seek to manipulate these factors independently to establish the most 
effective method for promoting social learning.

Our results comprise an important contribution to the debate concerning the existence of social-
specific learning mechanisms. We find that, like individual learning, social learning is modulated by a 
dopaminergic manipulation when it is the primary source of information. This result marries well with 
previous studies that have linked social learning with dopamine-rich mechanisms when the social 
source has been the primary (or in many cases the sole) information source (Campbell-Meiklejohn 
et al., 2010; Diaconescu et al., 2017; Klucharev et al., 2009). Our results are also consistent with 
studies that have associated social learning with different neural correlates, outside of the dopamine-
rich regions classically linked to individual learning, when it is a secondary source of information 
(Behrens et al., 2008; Hill et al., 2016; Zhang and Gläscher, 2020). Our data suggest that social 
and individual learning share common dopaminergic mechanisms when they are the primary learning 
source and that previous dissociations between these two learning types may be more appropriately 
thought of as dissociations between learning from a primary and secondary source. Extant studies 
(e.g., Cook et al., 2019) were not able to illustrate the importance of the primary versus secondary 
distinction because they did not fully orthogonalise primary versus secondary and social versus indi-
vidual learning.

Though our results suggest shared neurochemical mechanisms for social and individual learning 
when they are matched in status, it is, nevertheless, essential to highlight that it does not follow that 
there are no dimensions along which social learning may be dissociated from individual learning. 
It is possible that although social and individual learning are affected by dopaminergic modulation 
– when they are the primary source – there are differences in the location of neural activity that 
could be revealed by neuroimaging. For instance, although social and individual learning are both 
associated with activity within the striatum (Burke et al., 2010; Cooper et al., 2012), social-specific 
activation patterns have been observed in other brain regions, including the temporoparietal junction 
(Behrens et al., 2008; Lindström et al., 2018) and the gyrus of the anterior cingulate cortex (Behrens 
et al., 2008; Hill et al., 2016; Zhang and Gläscher, 2020). Consequently, it is possible that HAL has 
comparable effects on social and individual learning but that these effects (seen at an ‘algorithmic 
level of analysis’, Lockwood et al., 2020) are associated with activity in different brain regions (i.e., 
dissociations at an ‘implementation level of analysis’, Lockwood et al., 2020). For example, HAL may 
comparably affect the BOLD signal associated with social and individual prediction errors, but the 
effect may be localised to dissociable neural pathways. Such a location-based dissociation requires 
further empirical investigation as well as further consideration of the possible functional significance 
of such location-based differences, if they are indeed present when primary versus secondary status is 
accounted for. Nevertheless, whilst such location-based differences are possible, we argue that they 
are not probable since, given different distributions of dopamine neurons, receptors, and reuptake 
mechanisms throughout the brain (Grace, 2002; Korn et al., 2021; Matsumoto et al., 2003; Sulzer 
et al., 2016), differences in location are relatively likely to result in differences in the magnitude of 
the effect of HAL (Wächtler et al., 2020; Yael et al., 2013). Additionally, since we did not observe 
significant effects of HAL on learning from social or individual sources when they were secondary 
in status, it remains a logical possibility that social and individual learning can be neurochemically 
dissociated when they are the secondary source of information – though it is admittedly difficult 
to conceive of a parsimonious explanation for the existence of two neurochemical mechanisms for 
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social and individual learning from secondary sources. Finally, it is possible that social and individual 
learning share common dopaminergic mechanisms when they are the primary source, but differen-
tially recruit other neurochemical systems. For instance, some have argued that social learning may 
heavily rely upon serotonergic mechanisms (Crişan et al., 2009; Frey and McCabe, 2020; Roberts 
et al., 2020). The abovementioned avenues should be further explored; however, in the interim, it 
must be concluded that since existing studies have not controlled for primary versus secondary status, 
we do not currently have convincing evidence that social and individual learning can be dissociated 
in the human brain.

Notably, our results reveal a clear dissociation between learning from primary and secondary 
sources. For learning from primary sources HAL made learning rates more optimal, HAL did not have 
this effect on learning rates for secondary learning. Interestingly, a combined optimality analysis and 
regression model suggested that, under PLA, learning rates for learning from the primary source 
were ‘too high’ and fell outside of the optimal range (for this specific task). Consequently, under PLA, 
variance in accuracy was primarily explained by learning rates for learning from the secondary source. 
However, HAL reduced learning rates for learning from the primary source, bringing them within the 
optimal range. Thus, under HAL, accuracy was driven by learning rates for learning from both the 
primary and secondary sources. An open question concerns whether HAL truly optimises or simply 
reduces learning rate. Since the current paradigm was not designed to test this hypothesis, a reduc-
tion in learning rate herein also corresponds to an optimisation of learning rate. To dissociate the two, 
one would need a paradigm that generates sufficient numbers of participants with learning rates (in 
the PLA condition) that are suboptimally low such that one can observe whether, in these critical test 
cases, HAL increases (i.e., optimises) learning rate.

An intriguing question concerns the synaptic mechanisms by which HAL affects learning rates. 
Non-human animal studies have shown that phasic signalling of dopaminergic neurons in the meso-
limbic pathway encodes reward prediction error signals (Schultz, 2007; Schultz et al., 1997). Since 
HAL has high affinity for D2 receptors (Grace, 2002), which are densely distributed in the mesolimbic 
pathway (Camps et al., 1989; Lidow et al., 1991), dopamine antagonists including HAL can affect 
phasic dopamine signals (Frank and O’Reilly, 2006) – either via binding at postsynaptic D2 recep-
tors (which blocks the effects of phasic dopamine bursts) or via presynaptic autoreceptors (which has 
downstream effects on the release and reuptake of dopamine and thus modulates bursting itself) 
(Benoit-Marand et al., 2001; Ford, 2014; Schmitz et al., 2003). That is, HAL may affect learning rate 
via blockade of the postsynaptic D2 receptors, which may mute the effects of phasic dopamine signal-
ling (either directly or via reduction in the background tonic rate of activity which, in turn, reduces the 
amplitude of phasic responses; Belujon and Grace, 2015; Grace, 2016), thus reducing the weight 
of prediction error signals on value updating (i.e., reducing the learning rate). Indeed, a number of 
studies have shown that HAL can attenuate prediction error-related signals (Diederen et al., 2017; 
Haarsma et al., 2018; Menon et al., 2007; Pessiglione et al., 2006). For example, in the context 
of individual learning, Pessiglione et al., 2006 demonstrated that HAL attenuated prediction error 
signals in the striatum, indexed via changes in blood oxygen levels (BOLD). In addition to effects on 
postsynaptic D2 receptors, HAL may modulate prediction errors via effects on presynaptic autorecep-
tors. Autoreceptor binding is suggested to increase phasic bursting (Dugast et al., 1997; Frank and 
O’Reilly, 2006; Garris et al., 2003; Pehek, 1999), thus enhancing the phasic signal that is indicative 
of positive prediction errors. A combination of pre- and postsynaptic effects could feasibly result in 
more optimal learning rates wherein dopamine signalling is muted via postsynaptic blockade, thus 
muting (tonic background) ‘noise’ (and signal) but where the phasic ‘signal’ is enhanced via presyn-
aptic effects, potentially resulting in an overall increased signal-to-noise ratio which may translate into 
more optimal learning rates.

Perhaps the most novel contribution of our work is that we here illustrate that, whilst dopaminergic 
modulation affects learning from the primary source, it does not significantly affect learning from the 
secondary source. Previous studies have illustrated that humans can learn – ostensibly simultaneously 
– from multiple sources of information and tend to organise this information in a hierarchical fashion 
such that the source which is currently of highest value has the greatest influence on a learner’s 
behaviour (Daw et al., 2006). Here, we extend this work by showing that the primary source, at the top 
of the hierarchy, is more heavily influenced by modulation of the dopamine system, thus suggesting a 
graded involvement of the dopamine system according to a source’s status in the ‘learning hierarchy’. 
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Extant studies (Daw et al., 2006) suggest that such learning hierarchies are flexible and can be rapidly 
remodelled according to a source’s current value. The success of our orthogonalisation of social versus 
individual and primary versus secondary learning depended on a within-subjects design, wherein the 
status (primary or secondary) of the learning source varied only between participants. Although our 
study was therefore not optimised for studying the rapid remodelling of learning hierarchies, our 
results pave the way for future studies to investigate whether the impact of dopaminergic modulation 
of learning from a particular source quickly changes according to the source’s current status in the 
learning hierarchy.

In sum, in previous paradigms that dissociate social and individual learning, the social informa-
tion comprised a secondary or additional information source, differing from individual information 
both in terms of its social nature (social/individual) and status (secondary/primary). We here provide 
evidence that dissociable effects of dopaminergic manipulation on different learning types are better 
explained by primary versus secondary status, than by social versus individual nature. Specifically, we 
showed that, relative to PLA, HAL reduced learning rates relating to learning from the primary, but 
not secondary, source of information irrespective of social versus individual nature. Results illustrate 
that social and individual learning share a common dependence on dopaminergic mechanisms when 
they are the primary learning source.

Materials and methods
Subjects
Subjects (n = 43, aged 19–42 years, mean [SD] = 26 (6.3); 19 female) were recruited from the Univer-
sity of Birmingham and surrounding areas in Birmingham city, via posters, email lists, and social media. 
Four participants dropped out of the study after completing the first day. A further five participants 
could not complete the second test day due to university-wide closures and a restriction of data 
collection. In total, 43 participants completed one session, with 33 participants completing both test 
days. However, Bayes exclusion factors were reported for interactions of interest to avoid the possi-
bility of type 2 error. The study was in line with the local ethical guidelines approved by the local ethics 
committee (ERN_18_1588) and in accordance with the Helsinki Declaration of 1975.

General procedure
The study protocol was pre-registered (see Open Science Framework [OSF], https://osf.io/drmjb, for 
study design and a priori sample size calculations). All participants attended a preliminary health 
screening session with a qualified clinician, followed by two test sessions with an interval of 1 to a 
maximum of 4 weeks between testing session. The health screening session, lasting approximately 1 
hr, started with informed consent, followed by a medical screening. Participants were excluded from 
further participation if they met any of the exclusion criteria. Participants then completed a battery 
of validated questionnaire measures (see Appendix 1 for inclusion/exclusion criteria, questionnaire 
measures, medical symptoms, and mood ratings). Both test days (1–4 weeks post health screening) 
followed the same procedure, starting with informed consent, followed by a medical screening. 
Participants were then administered capsules (by a member of staff not involved in data collection) 
containing either 2.5 mg HAL or PLA in a double-blind, PLA-controlled, crossover design. Participants 
were told to abstain from alcohol and recreational drugs in the 24 hr prior to testing and from eating 
in the 2 hr prior to capsule intake.

1.5 hr after capsule intake, participants commenced a battery of behavioural tasks, including a 
probabilistic learning paradigm (Go-No-Go learning; Frank and O’Reilly, 2006) and a measure of 
VWM (Sternberg, 1969). The social learning task was started approximately 3 hr post-capsule admin-
istration, within the peak of HAL blood plasma concentration. HAL dosage and administration times 
were in line with similar studies which demonstrated both behavioural and psychological effects of 
HAL (Bestmann et al., 2014; Frank and O’Reilly, 2006). Both test days lasted approximately 5.5 hr 
in total. Blood pressure, mood, and medical symptoms were monitored throughout each day: before 
capsule intake, three times during the task battery and after finishing the task battery. On completion 
of the second session, participants reported on which day they thought they had taken the active 
drug or PLA. Participants received monetary compensation on completion of both testing sessions, 
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at a rate of £10 per hour, with the opportunity to add an additional £5 based on their performance 
during the learning task.

Behavioural task
Participants completed a modified version of a social learning task (Cook et al., 2014), first devel-
oped by Behrens et al., 2008. The task was programmed using MATLAB R2017b (The MathWorks, 
Natick, MA). Participants were randomly allocated to one of two groups. For both groups, participants 
completed 120 trials on both test days. The task lasted approximately 35 min, including instructions. 
Before the main task, participants completed a step-by-step on-screen practice task (10 trials) in which 
they learnt to choose between the two options to obtain a reward and learned that the ‘advice’ 
represented by the frame(s) could help in making the correct choice in some phases. In our previous 
work with the individual-primary condition alone, we demonstrated that social dominance signifi-
cantly predicts social, but not individual, learning (Cook et al., 2014). Thus, showing that participants 
maintain a conceptual distinction between the social and individual learning sources. In this study, 
we investigated whether participants maintained this conceptual distinction by requiring participants 
to complete a short quiz (three questions), testing their knowledge, after the practice task. Partici-
pants were required to repeat the practice round until they achieved 100% correct score in the quiz, 
meaning that all participants understood the structure of the task, and that the red shape represented 
social information. Furthermore, after the experiment, participants completed a feedback question-
naire (Appendix 5). Answers confirmed that participants understood the difference between, and 
paid attention to both, individual and social sources of information. Participants were informed as 
to whether they had earned a £5 bonus after the second session. Due to ethical considerations, all 
participants received the bonus.

Individual-primary group
On each trial, participants were required to choose between a blue or green box to gain points. 
Participants could also use an additional, secondary, source of information – a red frame surrounding 
either the blue or green box – to help make their decision. Participants were informed (see Appendix 
5 for instruction scripts) that the frame represented the most popular choice made by a group of 
participants who had previously completed the task. They were also informed that the task followed 
‘phases’ wherein sometimes the blue, but at other times the green choice, was more likely to result in 
reward and sometimes the social information predominantly indicated the correct box, but at other 
times it predominantly surrounded the incorrect box (Figure 1A). After making their choice, partici-
pants received outcome information in the form of a blue or green indicator. The indicator primarily 
informed participants about whether the blue or green box had been rewarded on the current trial. 
Whether the social information surrounded the correct or incorrect box could, secondarily, be inferred 
from the indicator. For example, if the red frame indicated that the social group had chosen the blue 
shape, and the blue shape was shown to be correct, participants could infer that the social information 
had therefore been correct on that trial. Both the probability of reward associated with the blue/green 
stimuli and the utility of the social information varied according to separate probabilistic schedules, 
with participants randomly assigned to one of four groups (Appendix 2). For both individual and social 
information, the probabilistic schedules featured stable phases, where the probability of reward was 
constant, and volatile phases, in which the probability switched every 10–20 trials. This feature of the 
task design was included to capture potential effects of dopaminergic modulation on adaptation to 
environmental volatility (Cook et al., 2019). Participants were informed that correct choices would 
be rewarded, and thus to aim to accumulate points to obtain a reward at the end of the experiment. 
Although probabilistic schedules for day 2 were the same as day 1, there was variation in the trial-
by-trial outcomes and advice. In addition, to prevent participants from transferring learned stimulus-
reward associations from day 1 to day 2, different coloured stimuli were employed on the second 
session: participants viewed blue/green squares with advice represented as a red frame on day 1 and 
yellow/purple squares with advice represented as a blue frame on day 2.

Social-primary group
For the social-primary group, the social information source was the primary source of learning. On 
each trial, participants were presented with two grey placeholders. One placeholder was filled with 
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a red box, indicating the group’s choice. Blue/green frames then appeared around the placeholders. 
As in the individual-primary group, participants were informed that the task followed ‘phases’ wherein 
sometimes going with, but at other times going against, the group’s choice was more likely to result 
in reward and sometimes the blue frame predominantly indicated the correct box, whereas at other 
times the green frame predominantly indicated the correct box. After making their choice, partic-
ipants received outcome information in the form of a tick/cross indicator. The indicator primarily 
informed participants about whether the social group had been rewarded (and thus going with them 
would have resulted in points scoring but going against them would not) on the current trial. Whether 
the blue (green) frame surrounded the correct or incorrect option could, secondarily, be inferred from 
the indicator. As in the individual-primary task, both the probability of reward associated with the 
blue/green stimuli and the utility of the social information varied according to probabilistic schedules 
(Appendix 2). All other aspects of the task structure were the same as previously described in the 
individual-primary task group.

Data analysis
All analyses were conducted using MATLAB R2017b (The MathWorks) and Bayesian analyses using 
JASP (JASP Team, 2020, JASP, [version 0.14, computer software]). Linear mixed models were fitted 
to data using RStudio (RStudio Team, 2020, RStudio: Integrated Development for R, RStudio, PBC, 
Boston, MA). In the instance of data not meeting assumptions of normality (as assessed by Kolmog-
orov–Smirnov testing), data were square-root-transformed. Learning rate ‍α‍ values were square-root 
transformed (see Table 2 for untransformed learning rates). We used the standard p<0.05 criteria 
for determining if significant effects were observed, with a Holm correction applied for unplanned 
multiple comparisons, to control for type I family-wise errors. In addition, effect sizes and beta weights 
for linear mixed model analysis are reported.

Data preprocessing
Datasets were excluded based on the following: accuracy < 50% under PLA, chose the same side (left/
right) or colour on >80% trials, and incomplete datasets (less than 120 trials completed). Two subjects 
were excluded, resulting in a final sample of n = 31, with behavioural data for both testing days, and 
n = 41, with data for 1 day only (see Appendix 4i for analysis).

Optimal learner model
The influence of each information source (primary and secondary) on choices was quantified by 
regressing two ‘optimal learners’ against subjects’ choices. The first comprised an optimal ‘individual 
learner model’, which was generated by using a Bayesian learner algorithm (Behrens et al., 2007), 
to simulate an optimal learner who learns solely from individual information (the blue and green 
stimuli). The second comprised a ‘social learner model’ which simulated an optimal learner who learns 
solely from the social information (red stimuli). The Bayesian learner algorithm (Behrens et al., 2007) 
describes an optimal approach to tracking reward probabilities in a changing environment. It assumes 
an underlying probability of an outcome being correct and tracks this probability across time, as 
well as maintaining an estimate of the rate of change of probabilities, that is, volatility. All proba-
bilities are updated in a Markovian fashion, meaning that there is no requirement to store the full 
history of decision outcomes or statistics of the environment (Behrens et al., 2007). Thus, on each 
trial, the individual learner model represented the reward probability associated with a blue choice, 

Table 2. Untransformed estimated learning rates.

αprimary_volatile αprimary_stable αsecondary_volatile αsecondary_stable

PLA
‍̄x(σx̄)‍ 0.184 (0.018) 0.290 (0.041) 0.187 (0.028) 0.151 (0.025)

Range 0.024–0.477 0.027–0.721 0.011–0.591 0.004–0.612

HAL
‍̄x(σx̄)‍ 0.169 (0.029) 0.218 (0.033) 0.200 (0.023) 0.202 (0.026)

Range 0.010–0.578 0.013–0.699 0.014–0.481 0.011–0.584

‍̄x(σx̄)‍: mean (standard error of the mean); PLA: placebo; HAL: haloperidol.

https://doi.org/10.7554/eLife.74893
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derived through learning, in an optimal fashion, exclusively from information about reward outcomes 
and ignoring the social information. The social learner model represented the probability, based on 
the (reward-weighted) social information, that the social information was correct. From the social 
learner model, on each trial, the reward probability of a blue choice was calculated, which would have 
been derived if a participant had been learning optimally, exclusively from the social information (i.e., 
ignoring individual reward outcomes). Subsequently both models were regressed separately against 
each individual participant’s choice data using binomial logistic regression, with model predictions 
from the primary and secondary models as continuous predictor variables and participant response as 
the dependent variable (0/1). For each participant, this produced two parameter estimates, or stan-
dardised beta weights, each representing the degree to which individual experience and social infor-
mation explained choices. For example, a participant whose choices were more strongly influenced 
by the social information than the individual information would have a high social βoptimal value, and a 
low individual βoptimal value.

Computational modelling framework
Participant responses were modelled using an adapted RW learning model (Rescorla and Wagner, 
1972). The model relies on the assumption that updates to choice behaviour are based on prediction 
errors, that is, the difference between an expected and the actual outcome. Participants were assumed 
to update their beliefs about outcomes based on sensory feedback (perceptual model) and to use 
this feedback to make decisions about the next action (response model). Model fitting was performed 
using scripts adapted from the TAPAS toolbox (Diaconescu et al., 2014; scripts available at OSF link; 
https://tinyurl.com/b3c7d2zb). A systematic comparison of eight separate models (see Appendix 3 for 
full details regarding model fitting and model comparison) showed that the exceedance probability 
of this particular model was ~1. This demonstrates (relative) evidence in favour of the conclusion that, 
the current model, with separate learning rates for primary and secondary information, and volatile 
and stable phases, provided the best fit to participant choice data and that the data likely originated 
from the same model for both HAL and PLA treatment conditions (Appendix 3—figure 1). Further 
model validation, including simulation of data and parameter recovery, provided further support for 
the choice of computational model (Appendix 3).

Perceptual model
The RW predictors used in our learning models consisted of a modified version of a simple learning 
model, with one free parameter, the learning rate ‍α‍, varying between 0 and 1.

	﻿‍ V(i+1) = Vi + α
(
ri − Vi

)
‍�

According to this model, the predicted value (‍Vi‍) is updated on each trial based on the prediction error 
(PE), or the difference between the actual and the expected reward ‍

(
ri − Vi

)
‍, weighted by the learning 

rate ‍α‍. ‍α‍ thus captures the extent to which the PE updates the estimated value on the next trial. In 
line with previous work (Cook et al., 2019), we used an extended version of this learning model, with 
separate ‍α‍ values for volatile and stable environmental phases. In a stable environment, learning rate 
will optimally be low, and reward outcomes over many trials will be taken into account. In a volatile 
environment, however, an increased learning rate is optimal as more recent trials are used to update 
choice behaviour (Behrens et al., 2007). Furthermore, we simultaneously ran two RW predictors in 
order to estimate parameters relating to learning from primary and secondary information sources. 
Consequently, our model generated the predicted value of going with the primary source (going with 
the blue frame for the individual-primary group, going with the group for the social-primary group; 
V_primary(i+1)) and the predicted value of the secondary information (going with the group recommenda-
tion for the individual-primary group, going with the blue frame for the social-primary group; V_second-

ary(i+1)) and provided four α estimates: αprimary_stable, αprimary_volatile, αsecondary_stable, and αsecondary_volatile.

Response model
Our response model assumed that participants integrated learning from both primary and secondary 
sources. The action selector predicts the probability that the primary information (blue choice/ group 
choice) will be rewarded on a given trial and was based on the softmax function (TAPAS toolbox), 
adapted by Diaconescu et  al., 2014. This response model was adapted from that used by Cook 

https://doi.org/10.7554/eLife.74893
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et al., 2019 and is reproduced here with permission. The value of primary and secondary information 
was combined using the following:

	﻿‍ V_primary
(

i+1
) = ζ(V_secondary_advice_weighted(i+1)) + (1 − ζ)(V_primary(i+1))‍�

where ζ is a parameter that varies between individuals and that controls the weighting of secondary 
relative to primary sources of information. V_secondary_advice_weighted(i+1) comprises the advice provided by 
the secondary information (the red and blue frames, for individual-primary and social-primary groups, 
respectively) weighted by the probability of advice accuracy (V_secondary(i+1)) in the context of making a 
choice to go with the primary information (the blue and red box for the individual-primary and social-
primary groups, respectively). That is,

	﻿‍
V_secondary_advice_weighted(i+1) =

∣∣∣advice − V_secondary
(

i+1
)
∣∣∣
‍�

where advice from the red frame equals 0 for blue and 1 for green, and advice from the blue frame 
equals 0 for going with the red box and 1 for going against the red box. For example, for a participant 
in the social-primary group, if the blue frame advised them to go with the red box (the group choice) 
and the probability of advice accuracy was estimated at 80% (V_secondary(i+1) = 0.80), the probability that 
the choice to go with the group will be rewarded, inferred from secondary learning, would be 0.8 
(V_secondary_advice_weighted(i+1) = |0–0.8| = 0.8). The probability that this integrated belief would determine 
participant choice was described by a unit square sigmoid function, describing how learned belief 
values are translated into choices.

	﻿‍
P
(

y(i+1
) = 1 ||V_primary

(
i+1

)
)

=
V_primary

(
i+1

)β

V_primary
(

i+1
)β +

(
1−V_primary

(
i+1

)
)β

‍�

Here, responses are coded as y(i+1) = 1 when selecting the primary option (going with the blue and 
red box for the individual-primary and social-primary groups, respectively), and y(i+1) = 0 when selecting 
the alternative (going with the green box and going against the red box for the individual-primary 
and social-primary groups, respectively). The participant-specific free parameter β, the inverse of the 
decision temperature, describes the extent to which the estimated value of choices determines actual 
participant choice: as β decreases, decision noise increases and decisions become more stochastic; as 
β increases, decisions become more deterministic towards the higher value option.

Significance tests for estimated model parameters
Parameters were fitted separately for each participant’s choice data. Learning rate (‍α‍) was estimated 
for each participant, primary and secondary learning, and volatile and stable phases, on both test 
days, resulting in eight estimated learning rates per participant. β values were also estimated for 
each participant on both treatment days, resulting in two β values per participant. Effects-coded 
mixed model linear analyses were carried out to allow for inclusion of subject as a random factor, thus 
ensuring that between-participant variation in ‍α‍ could be controlled for. Fixed factors were drug (HAL, 
PLA), information type (primary, secondary), volatility (volatile, stable), and group (individual-primary, 
social-primary), with the inclusion of random intercepts for participant: ~group × information × drug 
× volatility +1| subject.

RM-ANOVA for linear mixed effects models was carried out using the Satterthwaite approxima-
tion for degrees of freedom, and the model was fit using maximum likelihood estimation, with a 
model including random intercepts, but not random slopes, providing the best fit to the data. All 
analyses were repeated with and without the inclusion of age, BMI, and baseline working memory as 
covariates, with the pattern of results unchanged. Where appropriate, data were transformed to meet 
assumptions of normality for parametric testing.

Bayesian statistical testing
Bayesian statistical testing was implemented as a supplement to null hypothesis significance tests 
to investigate if null results represent a true lack of a difference between the groups (Dienes, 2014) 
using JASP software based on the R package ‘BayesFactor’ (Rouder et al., 2012). The JASP frame-
work for RM-ANOVA was used (van den Bergh et al., 2020), whereby exclusion Bayes factors were 
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obtained for predictors of interest. The exclusion Bayes factor (BFexcl) for a given predictor or inter-
action quantifies the change in odds from the prior probability that the predictor is included in the 
regression model to the probability of exclusion in the model after seeing the data (BFexcl). Bayes 
factors were computed by comparing all models with a predictor against all models without that 
predictor, that is, comparing models that contain the effect of interest to equivalent models stripped 
of the effect. For example, an exclusion Bayes factor for an effect of 3 for a given predictor i can 
be interpreted as stating that models which exclude the predictor i are three times more likely to 
describe the observed data than models which include the predictor. In short, the exclusion Bayes 
factor is interpreted as the evidence given the observed data for excluding a certain predictor in 
the model and can be used as evidence to support null results. For all Bayesian analyses, the Bayes 
factor quantifies the relative evidence for one theory or model over another. We followed the clas-
sification scheme used in JASP (Lee and Wagenmakers, 2013) to classify the strength of evidence 
given by the Bayes factors, with BFexcl between 1 and 3 considered as weak evidence, between 3 
and 10 as moderate evidence, and greater than 10 as strong evidence for the alternative hypothesis, 
respectively.
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Appendix 1
Inclusion criteria

Participant is willing and able to give informed consent for participation in the study.
Aged between 18 and 45.
BMI in the range of 18.5–29.5.
Resting blood pressure in the range of 90/60 (low) to 140/90 (high).
Electrocardiogram QT (heart rate corrected) interval <0.42.

Exclusion criteria
Participation in another drug study in the 3 weeks previous.
Personal or first-degree family history of cardiovascular disease, specifically hypotension, 
arrhythmias or valvular disease, stroke.
Neurological abnormalities or traumas, kidney disease, or liver disease.
Inherited blood conditions.
Psychiatric or psychological conditions (including depression and anxiety disorders).
Known learning disability.
Anybody found to have an elongated Q-T interval following single lead ECG examination.
Low heart rate.
Low or high blood pressure.
Any regular medication – excluding the oral contraceptive pill.
Recent recreational drugs use or alcohol and drug dependency.
Known allergy to any medication.
Current pregnancy or breastfeeding.
Previous participant in a drug study.
Lack of sleep in last 24 hr.
Lack of food or drink in last 12 hr.
Primary sensory impairment (e.g., uncorrected visual or hearing impairment).
Lactose intolerant.
Insufficient English to be able to consent to take part in the study.

Baseline cognitive measures and mood ratings
Approximately 1 week prior to drug/PLA administration, participants completed a battery of self-
report questionnaire measures: Autism Spectrum quotient (AQ) (Baron-Cohen et al., 2001), Toronto 
Alexithymia Scale (TAS 20) (Bagby et al., 1994), Behavioural Inhibition/Activation Scale (BIS-BAS) 
(Carver and White, 1994), the Depression Anxiety and Stress Scale (DASS 21) (Lovibond and 
Lovibond, 1995), Interpersonal Reactivity Index (IRI) (Davis, 1983), Beck’s Depression Inventory 
(BDI) (Beck et  al., 1996), and Body Perception Questionnaire (BPQ) (Porges, 1993). Self-report 
questionnaire scores are summarised in Table  1. The individual-primary group did not differ 
significantly on any measure from the social-primary group. The group that received HAL on day 1 
did not differ significantly on any of the baseline measures from the group that received PLA on day 
1 (p<0.05). Mood and fatigue were monitored three times per day during each test day (1) before 
capsule intake, (2) 2 hr post-capsule intake upon start task battery, and (3) upon completion of the 
task battery. The mood ratings consisted of the Positive and Negative Affect Scale (PANAS) (Watson 
et al., 1988). A self-report scale was used to monitor fatigue. 24% of participants reported that they 
did not know on which day they had taken an active drug. Out of the remaining participants, 84% of 
participants correctly reported that they thought they had received an active drug. No adverse side 
effects were reported. Blood pressure, heart rate, and blood oxygenation levels were monitored five 
times over the course of the testing days; before drug/PLA administration, and then at 1, 2, and 3 
and a half hour intervals thereafter. Measures were taken for a final time immediately before the end 
of the testing day.

https://doi.org/10.7554/eLife.74893
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Appendix 1—table 1. Self-report questionnaire scores (n = 31).

Self-report questionnaires Individual-primary group Social-primary group t (29)
p-
Value

AQ 9.412 (4.556) 6.500 (4.179) 1.910 0.065

TAS-20 39.529 (6.947) 40.313 (7.981) –0.301 0.765

BIS-BAS 50.647 (6.855) 51.125 (5.536) –0.219 0.828

DASS-Stress 3.176 (4.231) 3.875 (2.306) –0.583 0.723

DASS-Anxiety 1.353 (2.178) 1.938 (2.516) –0.715 0.564

DASS-Depression 1.706 (1.863) 2.313 (3.005) –0.702 0.480

IRI 66.235 (15.114) 66.375 (10.645) –0.031 0.976

BDI 3.176 (3.746) 3.438 (2.732) –0.227 0.822

BPQ 52.176 (29.473) 46.688 (18.650) 0.635 0.221

Mean (standard deviation) scores are reported. Significance level for the between-group differences are reported. 
Autism Spectrum quotient (AQ) (Baron-Cohen et al., 2001), Toronto Alexithymia Scale (TAS 20) (Bagby et al., 
1994), Behavioural Inhibition/Activation Scale (BIS-BAS) (Carver and White, 1994), the Depression Anxiety and 
Stress Scale (DASS 21) (Lovibond and Lovibond, 1995), Interpersonal Reactivity Index (IRI) (Davis, 1983), Beck’s 
Depression Inventory (BDI) (Beck et al., 1996), and Body Perception Questionnaire (BPQ) (Porges, 1993).

Drug effects on mood and tiredness
PANAS scores were submitted to separate RM-ANOVAs, with within-subjects (WS) factors time 
(baseline/start testing/end testing) and drug (HAL/PLA). For both positive and negative scores, 
a main effect of time was observed. Both positive (F(2,62) = 8.286, p<0.001, ηp

2 = 0.211) and 
negative scores decreased over time (F(2,62) = 6.020, p=0.004, ηp

2 = 0.163). A drug by time 
interaction was observed for positive scores (F(2,62) = 7.353, p=0.001, ηp

2 = 0.192), with simple 
effects analysis demonstrating that positive scores decreased over time under HAL (p<0.001), but 
not PLA (p=0.994). A main effect of drug was observed on negative scores (F(1,31) = 4.749, p=0.037, 
ηp

2 = 0.133), with higher negative affect scores under HAL (‍̄x(σx̄)‍ = 10.771 (0.557)) compared with 
PLA (‍̄x(σx̄)‍ = 9.491 (0.557)).

Self-reported fatigue ratings (Likert scale: 1–10, with higher scores referring to higher levels of 
fatigue) were submitted to a RM-ANOVA, with WS factors time (T1–T5) and drug (HAL/PLA). A main 
effect of time was observed, with fatigue rising across time (F(4,88) = 6.652, p<0.001, ηp

2 = 0.232). 
No main or interaction effect(s) involving drug were observed.

https://doi.org/10.7554/eLife.74893
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Appendix 2
Randomisation groups
For both the social-primary and individual-primary groups, the probability of reward associated with 
the blue/green stimuli (individual information) and the red stimuli (social information) was governed 
by different pseudo-randomisation schedules, adapted from Behrens et al., 2008. Schedules were 
counterbalanced between participants to ensure that learning could not be explained in terms 
of differences in learning between schedules with increased/decreased or early/late occurring, 
volatility. The individual-primary group (schedules 1,3) were subdivided into two groups, such that 
half started with predominantly correct social information, and half with predominantly incorrect 
social information, with the same true for the social-primary group (schedules 2,4). The primary 
information source was always less volatile overall compared to the secondary information source, 
irrespective of whether it was social or individual. To give an example, the randomisation schedule 
for group 1 was the same as that employed by Behrens et  al., 2008. During the first 60 trials, 
the individual reward history was stable, with a 75% probability of blue being correct. During the 
next 60 trials, the reward history was volatile, switching between 80% green correct and 80% blue 
correct every 20 trials. Meanwhile, during the first 30 trials, social information was stable, with 75% 
of choices being correct. During the next 40 trials, the social information was volatile, switching 
between 80% incorrect and 80% correct every 10 trials. During the final 50 trials, social information 
was once again stable, with 85% of choices being incorrect. Randomisation schedules for groups 2, 
3, and 4 were inverted and counterbalanced versions of schedule 1 (Appendix 2—figure 1).

https://doi.org/10.7554/eLife.74893
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Appendix 2—figure 1. Randomisation schedules. The probability of reward varied according to probabilistic 
schedules, including stable and volatile blocks for both the probability of blue being correct and the probability 
of the social information indicating the correct answer. Probability schedules were counterbalanced between 
participants. Solid blue lines show the probability of blue being the correct choice, and dashed red lines show the 
probability of the social information being correct. Schedules 1–4 are displayed here.

Supplementary methods
i. Visual working memory task
Participants completed a visual working memory (VWM) task, adapted from the Sternberg VWM 
Task (Sternberg, 1969), and programmed using MATLAB R2017b. Participants were first presented 
with instructions followed by practice trials. Upon completion of the practice trials, participants 
completed 60 experimental trials across five blocks. On each trial, a fixation cross was displayed in 
the centre of screen (fixation duration varied randomly between 500 and 1000 ms). Then participants 
were presented with a list of letters (varying between 5 and 9 consonants in length, with letters 
randomly selected from the alphabet on each trial) for 1000 ms, followed by a blue fixation cross 
for 3000 ms. Following this, a single test letter was displayed (for a maximum of 4000 ms), requiring 
participants to determine whether the letter was taken from the previously displayed list. For 50% 
of trials, the letter had been present on the previous list and on 50% of trials, it had not. Participants 
responded by pressing 1–3 on the keyboard (1 – yes, 2 – no, 3 – unsure). The total task duration was 

https://doi.org/10.7554/eLife.74893
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approximately 10 min. Responses (accuracy) and response time (time from test letter displayed until 
participant response) were recorded for each trial.

ii. Go-No-Go learning
An adapted version of a probabilistic Go/No-Go Task (Frank and O’Reilly, 2006) was employed, 
presented using MATLAB R2017b. In this task, a ‘Go’ response measures sensitivity to reward, 
whereas a ‘No-Go’ response measures sensitivity to punishment. Participants were presented with 
four different stimuli, each with a probabilistic value of reward (80, 60, 40, and 20%) and instructed to 
accumulate as many points as possible and to avoid losing points, achieved by selecting or withholding 
a response to the given stimuli. For example, if selected, stimuli A would result in gaining a point 
on 80% of trials and losing a point on 20% of trials. Participants were informed that points would be 
rewarded with monetary compensation; however, due to ethical considerations, all participants were 
awarded £5 at the end, regardless of task performance. Participants first completed four blocks of 
a practice stage, where single stimuli were presented (40 trials/block, with each stimulus presented 
10 times per block). Reward feedback was provided, allowing learning of the probabilistic value of 
each stimulus. This was followed by six testing blocks (40 trials/block) displaying either single stimuli 
(training stimuli) or novel pairs of stimuli on each trial, whereby participants were required to respond 
based on the combined probabilistic value of the pairs. Testing blocks contained positive pairs with a 
high associated probabilistic reward value, equal pairs (equally probable reward value), and negative 
pairs, with a high probabilistic value for punishment. Participants could respond via a ‘Go’ (space bar 
press) or ‘No-Go’ (withhold response) response. Feedback was not provided during testing blocks. 
In all trials, a fixation cross was presented for 250–750 ms, followed by stimuli presentation for 1000 
ms and a response period for 250 ms. Task performance was calculated as the difference in ‘Go’ 
response for stimuli (novel pairs and single stimuli) with a high probability of reward under HAL and 
PLA conditions, for each participant separately.

https://doi.org/10.7554/eLife.74893
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Appendix 3
Model fitting
Optimisation of free parameter values was performed as per Cook et  al., 2019 using a quasi-
Newton optimisation algorithm specified in TAPAS toolbox – quasinewton_optim_config.m. The 
function maximised the log-joint posterior density over all parameters given the data and the 
generative model. α values were estimated in logit space (see tapas_logit.m), that is, a logistic 
sigmoid transformation of native space (tapas_logit(x) = ln(x/(1-x)); x = 1/(1 + exp(-tapas_logit(x)))). 
An uninformative prior, allowing for individual differences in learning rate, was used for α: tapas_
logit (0.2, 1), with a variance of 1. Initial values were set at logit (0.5, 1), with a variance of 1. Initial 
values were allowed to vary, to allow for inter-individual differences in prior preferences for the 
extent to which individual would conform to the group choice. The prior for β was set to log (48), 
with a variance of 1, and the prior for ζ was set at 0 with a variance of 102 (logit space), that is, an 
equal weighting for information derived from primary and secondary learning (0.5). Prior choices 
were based on previous work (Cook et al., 2019). Maximum a posteriori (MAP) estimates for all 
model parameters were calculated using the HGF toolbox version 3 (https://osf.io/398w4/files/). All 
codes used were adapted from the open-source software package TAPAS (available at http://www.​
translationalneuromodeling.org/tapas).

Model comparison
We based our choice of perceptual model on previous work by Cook et  al., 2019, wherein a 
systematic comparison of three alternative models was conducted, to determine which best 
explained observed choice behaviour. Here, we repeated Cook et al.’s model comparison and added 
four further extensions of the classic model, thus we compared eight alternative models in total. A 
formal model comparison was carried out using BMS using the VBA toolbox (Stephan et al., 2009).

Data were initially analysed with eight models. All models were variations of the classic RW 
model. Group-level BMS was used to evaluate which model provided the (relative) best fit to the 
observed data. The VBA toolbox (Diaconescu et al., 2014), specifically random effects BMS (using 
the VBA_groupBMC_btwConds.m function), was utilised. Random effects group BMS computes an 
approximation of the model evidence relative to the other models, thats is, the probability of the 
data y given a model m, p(y|m), with log model evidence here approximated with F values. The 
posterior probability that a model has generated the observed data, relative to other models, is 
estimated, and the exceedance probability, or the likelihood that a given model is more likely than 
other included models in the set, is estimated. Analysis across both conditions allows us to test the 
hypothesis that the same model produced observed data under both HAL and PLA conditions.

Model 1 was a classic RW model:

	﻿‍ V(
i+1

) = Vi + αεi‍�

with ‍εi‍ = ‍ri − Vi‍, the difference between the actual and the expected reward or prediction error 
(PE).

Model 2 was an extension of model 1, with separate learning rates (‍α‍) for learning from primary 
value and secondary value learning sources:

	﻿‍ Vprimary
(

i+1
) = V_primary

(
i
) + αprimaryεi‍�

	﻿‍ Vsecondary
(

i+1
) = Vsecondary

(
i
) + αsecondaryεi‍�

Model 3 had a single learning rate ‍α‍ for primary/secondary learning, but separate learning rates 
for volatile and stable blocks:

	﻿‍ V(
i+1

) = Vi + α_volatileεi + α_stable εi‍�

Model 4 had four separate learning rates ‍α‍ for volatile and stable and primary and secondary 
learning:

	﻿‍ Vprimary
(

i+1
) = Vprimary

(
i
) + αprimary_volatileεi + αprimary_stable εi‍�
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	﻿‍ Vsecondary
(

i+1
) = Vsecondary

(
i
) + αsecondary_volatileεi + αsecondary_stable εi‍�

As an exploratory measure, we further extended models 1–4 to include separate learning rates 
corresponding to learning from rewarded trials and unrewarded trials separately, that is, learning 
from wins and losses.

 

Model 5:

	﻿‍ V(
i+1

) = Vi + α_reward εi + α_unreward εi‍�

Model 6:

	﻿‍ Vprimary
(

i+1
) = Vprimary

(
i
) + αprimary_reward εi + αprimary_unreward εi‍�

Model 7:

	﻿‍ V(
i+1

) = Vi + α_volatile_rewardεi + α_stable_reward εi + + α_volatile_unreward εi + α_stable_unreward εi‍�

 

Model 8:

	﻿‍

Vprimary
(

i+1
) = Vprimary

(
i
) + αprimary_volatile_rewardεi + αprimary_stable_reward εi +

+ αprimary_volatile_unreward εi + αprimary_stable_unreward εi ‍�

	﻿‍

Vsecondary
(

i+1
) = Vsecondary

(
i
)V(

i+1
) + αsecondary_volatile_rewardεi + αsecondary_stable_reward εi +

αsecondary_volatile_unreward εi + αsecondary_stable_unreward εi ‍�

We ran a between-groups model comparison to ensure that the same model could explain the 
observed data under both PLA and HAL. When comparing all models, model 4 performed best, with 
an exceedance probability approaching 1. The exceedance probability that the same model (model 
4) had produced data under both conditions was equal to 1. For condition 1 (PLA), the posterior 
probabilities that the observed data had produced the model was equal to 10.329 for model 3 
and 12.998 for model 4, with the probability that the data was produced by the winning model 
p(H1|y) = 0.762. For group 2 (HAL), model 4 had a posterior probability of 15.417 (p(H1|y) = 0.998). 
For the between-groups assessment, the posterior probability p(H1|y) = 0.999 and the protected 
exceedance probability (ϕ) was equal to 0.999.

https://doi.org/10.7554/eLife.74893
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Appendix 3—figure 1. Model comparison. Results from random effects Bayesian model selection. Exceedance 
probability and posterior model probability for models 1–8. p(y|m): posterior model probability; ϕ: exceedance 
probability; haloperidol (HAL): blue; placebo (PLA): red.

Model validation
To demonstrate that the chosen model (model 4) accurately described participant behaviour, we 
simulated response data for each participant using estimated model parameter values (tapas_
simModel.m). Accuracy did not significantly differ between actual and simulated accuracy for PLA 
(t = –0.866, p=0.394) or HAL conditions (t = –0.280, p=0.781) (Appendix 3—figure 2A). Simulated 
and calculated accuracy was significantly correlated for each participant under both PLA (r = 0.487, 
p=0.005) and HAL conditions (r = 0.712, p<0.001) (Appendix 3—figure 2B).

https://doi.org/10.7554/eLife.74893
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Appendix 3—figure 2 continued on next page
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Appendix 3—figure 2. Model validation. (A) Model simulations (left) and participant response data (right). Mean 
accuracy is displayed separately for volatile and stable environmental phases, under haloperidol (HAL; purple) and 
placebo (PLA; green). Boxes: standard error of the mean; shaded region: standard deviation; individual datapoints 
are displayed. (B) Participant data (left) juxtaposed against model simulations (right). Running average, across five 
trials of blue choices for probabilistic randomisation schedules 1–4. Shaded region: standard error of the mean.

In addition, to formally test model predictions of choice behaviour, for each participant we 
calculated the average value that the model estimated for the options chosen by the participant 
(collapsed across HAL and PLA conditions), and the average value that the model estimated for 
the options that were not chosen by the participant. If the chosen model was accurately describing 
participants’ choice behaviour, then the average estimated values for chosen options should be 
significantly higher than for the unchosen options. Indeed, a paired samples t-test illustrated that 
model-derived values for chosen options (‍̄x(σx̄)‍ = 0.607 (0.008)) were significantly greater than the 
values for unchosen options (‍̄x(σx̄)‍ = 0.393 (0.008); t(30) = 12.558, p<0.001).

To ensure that parameter estimates could be recovered, we simulated response data for each 
participant, based on estimated model parameters, using the function tapas_simModel.m from the 
TAPAS toolbox. Model parameters were subsequently estimated from simulated data and averaged 
over 100 iterations for each participant, separately for HAL and PLA conditions. All recovered 
parameters correlated significantly with estimated parameters under both HAL (αprimary: r = 0.991, 
p<0.001, αsecondary: r = 0.961, p<0.001) and PLA (αprimary: r = 0.975, p<0.001, αsecondary: r = 0.984, p<0.001) 
treatment conditions. A RM-ANOVA on recovered parameters showed the same pattern of results 
as with estimated parameters, including a significant interaction effect for our main interaction of 
interest (drug by information source: (F(1,29) = 4.027, p=0.054, ηp

2 = 0.122)).

Appendix 3—figure 2 continued
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Appendix 4
Extended statistical analyses
i. Learning rate analysis (n = 41)
An RM-ANOVA, with (square-root transformed) learning rate (α) as the DV and predictors information 
source, volatility, drug, and group, was carried out on estimates from the mixed model analysis which 
included all participants who completed at least one study day (N = 41). A significant main effect of 
information was observed (F(1,234) = 3.944, p=0.048, beta estimate (SE) = 0.019 (0.010); t = 1.986, 
CI [0–0.04]), with higher mean values for αprimary (‍x(σx)‍ = 0.429 (0.018)) compared with αsecondary (‍x(σx)‍ 
= 0.391 (0.018)).

A significant volatility by information interaction (F(1,234) = 4.676, p=0.032, beta estimate (SE) 
= 0.021 (0.010), t = –2.162, CI [0–0.04]) was observed. Post hoc comparisons revealed that, under 
stable phases, αprimary values (‍x(σx)‍ = 0.461 (0.023)) were significantly greater than αsecondary (estimate 
(SE)‍x(σx)‍ = 0.381 (0.023); z = 2.933, pholm = 0.007), with no difference between α in volatile phases 
(z = –0.125, pholm = 0.901). No main effect of group was observed; however, there was a significant 
information by group interaction (F(1, 234) = 32.471, p<0.001, beta estimate (SE) = 0.05 (0.010); 
t = 5.700, CI [0.04–0.07]). Post hoc comparisons revealed that, for the individual-primary group, 
αprimary (‍x(σx)‍ = 0.455 (0.026)) was significantly greater than αsecondary (‍x(σx)‍ = 0.307 (0.026); z = 5.351, 
pholm < 0.001). For the social-primary group, however, αsecondary (‍x(σx)‍ = 0.475 (0.025)) was significantly 
greater than αprimary (‍x(σx)‍ = 0.404 (0.025); z = 2.667, pholm = 0.015).

A significant volatility by group interaction was observed (F (1,234) = 4.168, p=0.042, beta 
estimate (SE) = 0.020 (0.010); t = 2.042, CI [0–0.04]). For the individual-primary group, αvolatile (‍x(σx)‍= 
0.351 (0.026)) was (marginally) significantly lower than αstable (‍x(σx)‍ = 0.411 (0.026), z = –2.192, pholm < 
0.057). For the social-primary group, however, αvolatile ( ‍x(σx)‍= 0.449 (0.025)) and αstable (‍x(σx)‍ = 0.431 
(0.025)) did not significantly differ (z = 0.672, pholm = 0.502). Most importantly, as with the analysis 
reported in the main text, a significant drug by information interaction was observed (F (1,234) = 
3.727, p=0.054, beta estimate (SE) = 0.01 (0.1); t = 1.69, CI [0.00–0.04]). Post hoc comparisons 
demonstrated that, under PLA, there was a significant difference between αprimary (‍x(σx)‍ = 0.451 
(0.023)) and αsecondary (‍x(σx)‍ = 0.375 (0.023); z = 2.727, pholm = 0.026, uncorrected p=0.006). This 
difference was nullified under HAL (αprimary ‍x(σx)‍ = 0.408 (0.023) and αsecondary ‍x(σx)‍ = 0.407 (0.023), z 
= 0.040, pholm = 0.968, uncorrected p=0.968). There was no significant group × information source 
× drug interaction (F(1,234) = 0.029, p=0.866, beta estimate (SE) = −0.002 (0.010), t = −0.169, CI 
[-0.02–0.02]).

ii. Accuracy
An analysis of accuracy was conducted in participants who had completed both study days (n = 31) 
to explore whether there was any systematic variation as a function of randomisation schedule and 
across drug and PLA conditions and volatile and stable phases. An RM-ANOVA, with WS factors 
drug (HAL, PLA) and volatility (stable, volatile), and between-subjects factor group (social-primary, 
individual-primary) and randomisation schedule (1–4), demonstrated no difference in accuracy 
between HAL (‍̄x(σx̄)‍ = 0.601 (0.011)) and PLA (‍̄x(σx̄)‍ = 0.614 (0.011); F(1,27) = 1.161, p=0.291, ηp

2 = 
0.041). However, a significant main effect of schedule was observed (F(3,27) = 3.004, p=0.048, ηp

2 = 
0.250), with the lowest accuracy observed for schedule 1 (‍̄x(σx̄)‍ = 0.558 (0.019)). Although accuracy 
for schedule 1 was lower than for schedule 2 (‍̄x(σx̄)‍ = 0.619 (0.018); t (27) = –2.358, pholm = 0.129), 
schedule 3 (‍̄x(σx̄)‍ = 0.614 (0.018); t(27) = (–2.162), pholm = 0.159), and schedule 4 (‍̄x(σx̄)‍ = 0.637 
(0.020); t(27) = –2.748, pholm = 0.063); these differences were no longer significant after correction for 
multiple comparisons. Mean accuracy for schedules 2–4 did not significantly differ from each other 
(all p-values = 1.000). In addition, there was a significant interaction effect between schedule and 
volatility (F(3,27) = 7.527, p<0.001, ηp

2 = 0.455). For all schedules except for schedule 3, there was 
no significant difference in accuracy between volatile and stable phases (all p>0.05). However, for 
schedule 3, accuracy was significantly higher for volatile (‍̄x(σx̄)‍ = 0.675 (0.022)) over stable phases 
(‍̄x(σx̄)‍ = 0.533 (0.022); t(27) = (3.656), pholm = 0.027). Accuracy was significantly higher for the social-
primary group (‍̄x(σx̄)‍ = 0.629 (0.013)) compared with the individual-primary group (‍̄x(σx̄)‍ = 0.586 
(0.013), F(1,29) = 5.196, p=0.030, ηp

2 = 0.152), and no other main effects or interactions were 
observed (all p>0.05).

https://doi.org/10.7554/eLife.74893
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iii. Relationship between accuracy scores and parameters from model-based 
analyses
A backward regression with PLA accuracy as the dependent variable, and αprimary and αsecondary (collapsed 
across volatile and stable phases), initial values 

‍Vprimary
(

i
)
‍
 and 

‍Vsecondary
(

i
)
‍
, β and ζ as predictors, 

was carried out. PLA accuracy was marginally significantly predicted by a model with αsecondary as a 
single predictor (R = 0.347, F(1,29) = 3.981, p=0.055). Under HAL, a backward regression with HAL 
accuracy as the dependent variable, and αprimary, αsecondary, ‍Vprimary

(
i
)
‍
, 
‍Vsecondary

(
i
)
‍
, β and ζ as predictors, 

revealed that HAL accuracy was significantly predicted by the full model. Within the model, αprimary 
was the only significant predictor (Appendix 4—table 1). Removing predictors did not significantly 
improve the fit of the model (R2 change < 0.001, F change (1,25) = –0.064, p=1.000).

Appendix 4—table 1. Coefficients from regression model with haloperidol (HAL) accuracy as the 
dependent variable.

β β (SEM) Standardised β t p-Value

Constant 0.431 0.089 4.840 <0.001

αprimary 0.195 0.077 0.431 2.532 0.018*

αsecondary 0.076 0.119 0.127 0.642 0.527

‍
Vprimary

(
i
)
‍ 0.121 0.090 0.230 1.342 0.192

‍
Vsecondary

(
i
)
‍ 0.033 0.131 0.050 0.249 0.806

β 0.002 0.001 0.329 1.698 0.102

ζ 0.045 0.043 0.189 1.066 0.297

* indicates statistical significance.

iv. Go-No-Go control task
To further investigate the neurochemical mechanisms underlying the observed decrease in ‍α‍primary 
under HAL, we measured performance on a probabilistic Go-No-go control task adapted from 
Frank and O’Reilly, 2006. Previous research (using a similar low, acute dose of HAL) resulted in 
enhancement of learning from positive reinforcement, indexed by an increase in learning from positive 
feedback (Frank and O’Reilly, 2006), suggested to be mediated via presynaptic antagonistic effects 
on phasic dopamine (DA) signalling. As an exploratory measure, participants were stratified into two 
subgroups based on performance during this task; those with a higher change in ‘Go’ performance 
for high reward trials under HAL, and those with a lower change in ‘Go’ performance under HAL, 
relative to PLA. For the participants who demonstrated increased ‘Go’ performance under HAL (n 
= 12), a significant drug by information effect was observed on the main behavioural task (F(1,10) 
= 4.773, p=0.054, ηp

2 = 0.323). However, this effect was not observed in participants with reduced 
‘Go’ performance under HAL (n = 19; F(1,17) = 2.001, p=0.175, ηp

2 = 0.105). Thus, suggesting 
that the observed effect of HAL on learning rate for primary information was driven by a subgroup 
of participants who exhibited increased ‘Go’ performance under HAL (relative to PLA). Given that 
such effects on Go performance have been linked to presynaptic antagonistic effects on phasic DA 
signalling (Frank and O’Reilly, 2006), these results suggest that the effects we observed on ‍α‍primary 
are likely mediated by effects of HAL on phasic DA signalling.

While an increase in Go performance suggests presynaptic effects of HAL on phasic dopamine 
release, the effects of HAL are also mediated via antagonism of heteroreceptors on non-dopaminergic 
neurons (Frank and O’Reilly, 2006), resulting in a reduction in tonic dopamine signalling. These 
tonic effects are commonly indexed by a slowing of response (Grace, 2002; Niv et  al., 2007). 
Indeed, HAL had a significant effect on (log) reaction time (RT), with higher RTs observed under HAL 
(‍x(σx)‍ = 1.580 (0.147) s) when compared with PLA (‍x(σx)‍ = 1.242 (0.150), p=0.002, η2 = 0.292). We 
therefore investigated whether there was a relationship between ‍∆RT ‍ and ‍∆α‍ under HAL. A median 
split (‍∆RT ‍) resulted in two subgroups of participants. Separate RM-ANOVAs, with (square root) 
learning rate estimates (‍α‍) as the dependent variable, and information, volatility, and task group 
as the predictor variables, were carried out for each subgroup. For the subgroup of participants 
who showed the greatest increase in RT (slowing of response) under HAL (n = 15), the drug by 
information interaction no longer reached significance (F(1,13) = 0.106, p=0.750, ηp

2 = 0.008). The 
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opposite pattern of results was observed for the subgroup of participants (n = 16) with a ‍∆RT ‍ 
below the median change (a reduced slowing of response under HAL): here, a significant drug by 
information interaction effect was observed (F(1,14) = 10.846, p=0.005, ηp

2 = 0.437). Results show 
that, for the subgroup of participants who showed the greatest slowing of response (‍∆RT ‍), HAL 
did not significantly affect learning rates. Given that response slowing has been linked to tonic 
dopamine, this pattern of results further reinforces the idea that our observed effects on ‍α‍primary are 
likely mediated by effects of HAL on phasic, not tonic, DA.

v. Effect of randomisation schedule and drug day on model parameters
Randomisation schedule (1–4) and drug day (i.e., HAL administered on testing day 1 or 2) were 
included as predictor variables in all analyses (with both n = 31 and n = 41 samples), with no main/
interaction effect(s) observed (all F < 1, all p>0.05). Additionally, testing session was used to check 
for the presence of practice effects. Testing session (session 1 or 2) was included as a predictor 
variable in all analysis, with no main/interaction effect(s) observed (all F < 1, all p>0.05).

vi. Effects of baseline VWM on model parameters
As there is evidence to suggest that the effects of dopamine manipulation are dependent on 
baseline DA synthesis, with working memory capacity shown to predict dopamine synthesis in 
healthy adults (Cools et al., 2008), we stratified participants into high and low VWM groups, based 
on mean baseline (under PLA) accuracy scores on a VWM task (Sternberg, 1969). VWM (high/low) 
was included as a predictor in a mixed model analysis (n = 31). A type III RM-ANOVA conducted on 
model estimates revealed a significant interaction between VWM and information type (F(1,189) = 
5.932, p=0.016, beta estimate (SE) = 0.026 (0.010), t = 2.436, CI [0.00–0.05]) with planned contrasts 
revealing that, for low VWM participants, ‍αsecondary‍ values (‍x(σx)‍ = 0.364 (0.031)) were significantly 
lower than ‍αprimary‍ values (‍x(σx)‍ = 0.447 (0.031); z(30) = 2.820, pholm = 0.010). There was no significant 
difference between ‍αprimary‍ and ‍αsecondary‍ for high VWM participants (z(30) = –0.641, pholm = 0.522). 
No other main or interaction effects of VWM on ‍α‍ values were observed (all F < 0.01, all p>0.05). 
Additionally, the pattern of results was unchanged from the previous analysis excluding VWM, with 
the drug by information interaction effect remaining significant (F(1,189) = 3.967, p=0.048, beta 
estimate (SE) = 0.021 (0.010), t = 1.992, CI [0.00–0.04]). Finally, while including baseline VWM as 
continuous predictor variable in a RM-ANOVA, no main or interaction effect(s) of VWM on ‍α‍ values 
were observed. Additionally, neither gender, age, nor BMI interacted with any outcome variables (all 
F < 0.01, all p>0.05). Results suggest that the observed decrease in ‍αprimary‍ under HAL is not related 
to variation in working memory capacity.
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Appendix 5
Instruction scripts
Individual-primary group
Welcome. You have a choice: either choose the blue shape or the green shape. One shape is correct 
– guessing which one it is will give you points. To help you to choose, one of the shapes is filled 
with red. This indicates the most popular choice selected by a group of four people who previously 
played this task. When the question mark appears, try picking a shape by pressing the left or right 
keyboard buttons. [Participant responds]

Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if the 
group of previous players were correct or incorrect.

Here they think the blue shape (filled with red) will be correct. Try picking a shape now. [Participant 
responds]

Blue is correct! This means that this time the others got it right.
Things happen in phases in this game. The game could be in a phase where the blue shape is 

more likely to be correct. Have another go. [Participant responds]
And blue again! It certainly looks as though you are in a blue phase but make sure you pay 

attention to what the right answers are because the phase that you are in can change at any time. 
Here’s a tip – ignore which side of the screen the shapes are on – it’s the colour that is important! 
[Participant responds]

The others got it right again. It looks like, right now, you could be in a phase where the group’s 
information is useful. Perhaps these are trials from the end of their experiment, when they had 
developed a pretty good idea of what was going on. Be careful though because we have mixed up 
the order of the other people’s trials so that their choices will also follow phases. Try again. Perhaps 
the other shape is right this time? [Participant responds]

Green! This time the green shape was right! The chance of each shape being right or wrong 
will change as you play, so pay attention! The group were incorrect this time. Remember that 
sometimes you will see less useful information from the group – for example from the beginning of 
their experiment where they didn’t have a very good idea of what was going on. Have another go 
… [Participant responds]

This time the green shape was right! The chance of each shape being right or wrong will change 
as you play, so pay attention. The group were correct too. It looks like, right now, you could be in 
a phase where the group’s information is useful. Try to be as accurate as possible. Getting it right, 
gives you points. Get enough points and you could earn a silver or even a gold prize! Have another 
go … [Participant responds]

Things happen in phases in this game. Remember, the tick or cross in the middle tells you if the 
group were correct or incorrect. That means that the shape with the red box was the correct choice. 
Have another go … [Participant responds]

Social-primary group
Welcome. You have a choice between going with, or against advice from a group. Below you can 
see a blue and green frame, one frame is filled with a red box: this indicates the most popular choice 
selected by a group of four people who previously played this task. One frame is correct. You can 
pick the same frame as the group have picked or choose to go against the group’s advice. When 
the question mark appears, make your selection by pressing the left or right keyboard buttons. 
[Participant responds]

Feedback: After you make a choice, a tick or cross will appear in the middle. This tells you if the 
group of previous players were correct or incorrect.

This time they were correct! This means that the frame filled with the red square was the correct 
frame.

Here they think the blue frame (filled with red) will be correct. Try picking a frame now. [Participant 
responds]

The group were correct! This means that this time the others got it right and picked the correct 
colour.

Things happen in phases in this game. The game could be in a phase where the group are more 
likely to be correct. Have another go. [Participant responds]

https://doi.org/10.7554/eLife.74893


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Rybicki et al. eLife 2022;11:e74893. DOI: https://doi.org/10.7554/eLife.74893 � 39 of 39

The group were correct again! The blue frame was right again. It certainly looks as though you are 
in a phase where the group are correct but make sure you pay attention to the feedback because the 
phase that you are in can change at any time. Blue and green can also go through phases: it looks 
like you might be in a phase where the blue frame is more likely to be correct. Try again. [Participant 
responds]

The others got it right again. It looks like, right now, you could be in a phase where the group’s 
information is pretty useful. Perhaps these are trials from the end of their experiment, when they had 
developed a pretty good idea of what was going on. Be careful though because we have mixed up 
the order of the other people’s trials so that their choices will follow phases. Try again. [Participant 
responds]

The group were incorrect this time. This time the green frame was correct. The chance of each 
frame being right or wrong will change as you play, so pay attention! Remember that sometimes you 
will see less useful information from the group – for example from the beginning of their experiment 
where they didn’t have a very good idea of what was going on. Have another go … [Participant 
responds]

The group were correct this time. The chance of each frame being right or wrong will change as 
you play, so pay attention. Try to be as accurate as possible. Getting it right, gives you points. Get 
enough points and you could earn a silver or even a gold prize! Have another go … [Participant 
responds]

Things happen in phases in this game. Remember, the tick or cross in the middle tells you if the 
group were correct or incorrect. That means that the frame filled with the red was the correct choice. 
Have another go … [Participant responds]

Feedback questionnaire
Participants competed a short feedback questionnaire after the behavioural task. 100% of participants 
said that they understood the task instructions and what they were supposed to do. Participants 
were then asked to rate on a 5-point Likert scale how often they (1) used the group’s suggestions 
(red shape) to help make their decision, comprising the social rating score, and (2) if they paid 
attention to the colour of the shape (blue/green) that was correct when making their decision (the 
individual rating score). Social and individual ratings were submitted to separate one-sample t-tests 
to ensure that participants in both the individual-primary and social-primary groups were paying 
attention to both sources of information. Both social (t(42) = 30.765, p<0.001) and individual ratings 
(t(42) = 29.565, p<0.001) were significantly greater than zero.

https://doi.org/10.7554/eLife.74893
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