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Abstract

Purpose

The aim of the study was to investigate the components of day-to-day variability of repeated

phase contrast mapping (PCM) magnetic resonance imaging measurements of global cere-

bral blood flow (gCBF).

Materials and methods

Two dataset were analyzed. In Dataset 1 duplicated PCM measurements of total brain flow

were performed in 11 healthy young volunteers on two separate days applying a strictly

standardized setup. For comparison PCM measurements obtained from a previously pub-

lished study (Dataset 2) were analyzed in order to assess long-term variability in an aged

population in a less strictly controlled setup. Global CBF was calculated by normalizing total

brain flow to brain volume. On each day measurements of hemoglobin, caffeine and glucose

were obtained. Linear mixed models were applied to estimate coefficients of variation (CV)

of total (CVt), between-subject (CVb), within-subject day-to-day (CVw), and intra-session

residual variability (CVr).

Results

In Dataset 1 CVt, CVb, CVw and CVr were estimated to be 11%, 9.4%, 4% and 4.2%, respec-

tively, and to 8.8%, 7.2%, 2.7% and 4.3%, respectively, when adjusting for hemoglobin and

plasma caffeine. In Dataset 2 CVt, CVb and CVw were estimated to be 25.4%, 19.2%, and

15.0%, respectively, and decreased to 16.6%, 8.2% and 12.5%, respectively, when adjust-

ing for the same covariates.
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Discussion

Our results suggest that short-term day-to-day variability of gCBF is relatively low compared

to between-subject variability when studied in standardized conditions, whereas long-term

variability in an aged population appears to be much larger when studied in less a standard-

ized setup. The results further showed that from 20% to 35% of the total variability in gCBF

can be attributed to the effects of hemoglobin and caffeine.

Introduction

Quantitative measurements of global cerebral blood flow (gCBF) are of general interest both

for basic physiological investigations and for our understanding of brain aging and the patho-

physiology of brain diseases [1] Many brain diseases are associated with altered gCBF, and sev-

eral studies have reported that decreased total brain flow or gCBF may be associated with

severity of vascular lesions and brain atrophy [2], impaired cognitive function [3] and may

even predict overall future mortality in old age [4]. However, in order to fully interpret these

results, more detailed knowledge of the normal variability between and within individuals is

required.

Previous studies investigating variability of gCBF measurements have mainly focused on

separating between-subject variability from residual intra-session variability considered to

reflect method imprecision [5–7]. These studies have confirmed large and similar between-

subject variability, whereas intra-session variability varies substantially depending on the

method applied. However, when obtaining measurements at two different time-points, the

within-subject variability consists of both the true inter-session (day-to-day) variability and

the intra-session variability (imprecision). Little is known about the normal temporal variabil-

ity of gCBF and the factors influencing this variability. Like most other physiological parame-

ters gCBF is expected to exhibit temporal variations, probably with both high-frequency

(seconds to minutes) variations reflecting variations in blood pressure and respiration pattern

[8], low frequency variations related to diurnal variations [9] and sleep [10], very low fre-

quency variations related to menstrual cycle [11], and also age related changes [12]. Accord-

ingly, intra-subject variability is expected to increase over time and may also depend on both

the population studied and the experimental setup.

In cross-sectional studies it is of key interest to know how representative a single gCBF

measurements is for a particular participant, i.e. how much would gCBF vary if the measure-

ment was obtained on a different day? Establishing normal variability over time is therefore

essential for interpreting the association of gCBF with various factors or of temporal changes

in gCBF, and such knowledge is also useful for planning studies involving measurement of

gCBF.

It is generally assumed that cerebral metabolic rate of oxygen should be relatively constant

during resting awake conditions, and consequently the delivery of oxygen to the brain should

exhibit low temporal variability [13]. However, a number of factors may influence the relation-

ship between cerebral blood supply and metabolism. The hemoglobin concentration has been

shown to be a major determinant of gCBF [14], but is expected to show minimal temporal var-

iability and thus mainly influence between-subject variability. In contrast, caffeine, which is

widely consumed in the public, may decrease gCBF by up to 30% after dietary intake in normal

quantities [15, 16], and may thus be an important cause of day-to-day variation in gCBF [17].
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The aims of this study were to estimate the components of the day-to-day variability of

repeated measurements of gCBF and to assess the influence of hemoglobin and plasma caffeine

levels on these components. Further, we wished to compare variability of short-term repeated

measurements obtained in strictly controlled conditions with long-term variability in an aged

population under less well-controlled conditions.

Materials and methods

Day-to-day variability was investigated in two separate datasets. In Dataset 1 short-term vari-

ability was investigated in healthy young male volunteers examined in standardized conditions

with duplicate PCM measurements performed on each of two study days < 2 weeks apart. In

Dataset 2 long term-variability was assessed from single PCM measurements in elderly,

healthy volunteers performed on two study days> 3 months apart. Data are provided as sup-

porting information (S1 Data).

Both studies were approved by the Scientific Health Ethics Committee of the Capital region

of Denmark (Ref. H-D-2008-002 and H-B-2008-075) following the standards of The National

Committee on Health Research Ethics, and were conducted in accordance with the Helsinki

Declaration. All volunteers gave informed written consent.

Dataset 1

Subjects. A total of 12 healthy young male volunteers were included in the study (mean

age 24 [range 21 to 28] years). One participant was subsequently excluded due to a detected

structural abnormality. Eligible subjects had a caffeine intake of 1–5 cups of tea or coffee daily.

Exclusion criteria comprised prior incidents of severe head trauma, a history of neurological,

psychiatric, or endocrine disorders, or contraindications to MRI.

Study design. Duplicate measurements of total brain flow were performed on two sepa-

rate days (1–16 days apart) using an identical imaging protocol. Venous blood samples were

collected on each study day and analyzed for hemoglobin, glucose and caffeine. All scans were

performed during the daytime by the same researcher (A.I).

MRI experiment. MRI scans were performed on a 3T hybrid PET/MR system (Biograph

mMR, Siemens Healthcare, Erlangen, Germany) using a 16 channel receive head-neck coil.

On each day MRI measurements were conducted within a single session of approximately 45

minutes. Participants were instructed to abstain from coffee or other methylxanthine contain-

ing beverages or food items six hours prior the experiment, and not to consume any food two

hours prior to the scan.

Initially a 3D inflow angiogram (64 slices per slab, voxel size 1.4×1.0×1.66 mm, TE = 6.04

ms, TR = 39.90 ms, flip angle 15˚) of the cerebral vessels was obtained. Based on coronal and

sagittal maximal intensity projections the PCM measurement slice was placed as perpendicular

as possible to the vertebral and internal carotid arteries at the level of the third vertebral artery

segment (Fig 1). Measurements were obtained with the following parameters (1 slice, slice

thickness = 5.0 mm, voxel size 0.8×0.8×5.0 mm, TE = 3.38 ms, TR = 37.40 ms, flip angle 25˚, 6

measurement, encoding velocity = 150 cm/s). The sequence was pulse triggered (retrospective

gaiting 20 frames/cycle).

On one of the study days a structural scan for tissue segmentation and calculation of brain

volume was acquired using a 3D T1 weighted gradient echo sequence (TR = 1900 ms,

TE = 2.44 ms, flip angle 9˚, voxel size: 1.0×1.0×1.0 mm3).

Image and data processing. PCM data were processed using in-house software based on

Matlab (Mathwoks, Natick, MA). Regions of interest were manually drawn around the internal

carotid and vertebral arteries on the mean velocity image (Fig 1). Flow in each vessel was
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calculated by multiplying mean velocity with vessel area and integrating over time. All process-

ing was performed by the same investigator (A.I.).

For calculation of brain volume, the 3D T1 weighted scan was converted into NIfTI format

and analyzed using the FSL tools BET and FAST (FMRIB Software Library, Oxford University,

Oxford, UK). Total brain volume was calculated as the sum of the white and grey tissue vol-

umes including also cerebellum and brain stem. Mean gCBF was calculated as the sum of

flows (ml/min) in the four arteries (total blood flow) divided by the brain volume, and

reported in ml/100ml/min. The same segmented scan and brain volume was used for calcula-

tion of all gCBF values in each participant.

Dataset 2

Repeated PCM measurements obtained as a part of a previously published study were analyzed

for comparison. Single PCM measurements were performed on two study days> 3 months

apart (range 140 to 252 days) in 13 aged healthy volunteers (6 men / 7 women, age 52–68

years) [18]. Repeated measurements have not been published previously. Study populations

characteristics and experimental design including MRI sequence parameters and post-process-

ing have been described in details previously [18]. Estimates of intrasession variability (CVr)

was obtained from a previous study of young healthy volunteers [7]. Both studies were per-

formed on a 3T Philips Achiva MR system using very similar imaging protocols (details are

provided in S1 Table). Triggered PCM measurements of the basilar and internal carotid arter-

ies were analyzed using in-house software based on Matlab. Brain volume was obtained from a

3D T1 scan as described above.

Fig 1. Planning and analysis of phase contrast mapping measurements in Dataset 1. Top panel shows planning of

the PCM measurement slice (yellow line) on sagittal (left) and coronal (right) maximum intensity projections of

cerebral arteries. Lower panels shows color coded velocity maps. The right (red) and left (blue) cerebral arteries are

clearly visible on the mean velocity image. Lower right panel shows manually drawn regions of interest corresponding

to each artery.

https://doi.org/10.1371/journal.pone.0197807.g001
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Participants were allowed to consume coffee and tea as usual, and blood samples for deter-

mination of plasma caffeine, blood hemoglobin and plasma glucose were obtained and ana-

lyzed as described above.

Statistical analysis

All statistical analysis was performed using SAS version 9.4 (SAS Institute Inc., Cary, NC).

Repeatability of repeated measurements was assessed by a Bland-Altman analysis, and a paired t-

test was applied for significance testing of bias. In Dataset 1 we investigated both intra-session

repeatability on study day 1 (measurement 1- measurement 2) and inter-session (or day-to-day)

repeatability (measurement 1 day 1—measurement 1 day 2). For simplicity and for comparabil-

ity with Dataset 2, only repeatability of the first measurement on day 1 is reported in Bland-Alt-

man analysis, whereas all measurements were include in the mixed linear model below.

Total variance (s2
t ) is the sum of between-subject (s2

b), within-subject (s2
w) and residual (s2

r )

variance:

s2

t ¼ s2

b þ s2

w þ s2

r

These variance components can be estimated along with regression coefficients of covariates

using by applying a 3-level mixed linear model with subject (level 3) and day (within-subject,

level 2) as random effects (and replicate measurement as residual, level 1), and measurement

number and study day as fixed effects:

gCBFi;j;k ¼ gCBFpop þmeasurement þ day þ di þ zi;j þ εi;j;k;

where gCBFpop represents the population mean and δi, zj,i and εi,j,k denote mean off-set of the

i’th subject from population mean, offset from subject mean on the j’th day, and off-set of the

k’th measurement from the subject day mean, respectively. Each of these random components

can be described by a normal distribution with mean value of zero and a standard deviation of

σb, σw, σr., respectively. The corresponding coefficients of variation (CVt, CVb, CVw and CVr)

can be calculated as the standard deviation (σ) of each component divided by the mean value

of all measurements. To assess the effects of co-variates on variability, hemoglobin and caffeine

were successively added to the model as fixed effects. No effect of glucose on gCBF was

observed, and glucose was not included in the final models.

Dataset 2 was analyzed as above, except that a 2-level linear mixed model was applied with

study day as fixed effect. An additional model including also caffeine and hemoglobin as fixed

effects was also investigated. A similar model was applied to data from ref. [7] (including only

data from the 14 participants with duplicate measurements) to estimate same-day s2
r and s2

w.

In Dataset 2 residual variance equals the sum of s2
r and s2

w, i.e. the total within-subjects vari-

ance (s2
tw) Under the assumption that method precision (intra-session CVr) is of similar rela-

tive size in Dataset 2 as in ref. [7], we can obtain an estimate of s2
r in Dataset 2 (by multiplying

population mean in Dataset 2 with CVr determined from data in ref. [7]) which in turn can be

subtracted from σtw
2 in Dataset 2 in order to obtain an estimate of s2

w taking methods precision

into account.

Results

Dataset 1

All volunteers completed successfully both study days. Data from one participant on one study

day were excluded due to poor quality of PCM measurements. Characteristics of participants

and MRI mean results are presented in Table 1.
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The Bland-Altman analysis showed slightly poorer day-to-day repeatability compared to

within-day repeatability (Fig 2A and 2B) No significant bias between repeated measurements

was observed.

In the final linear mixed model gCBF was inversely correlated with hemoglobin (-7.08 [95%

CI: -11.35 to -2.82] ml/100ml/min per mmol/l, p = 0.002), and tended also to be inversely

Table 1. Mean study population values.

Dataset 1 Dataset 2

Mean ± SD Range Mean ± SD Range

Hemoglobin (mmol/l) 9.3 ± 0.6 7.8–9.9 8.7 ± 0.6 7.6–9.9

Plasma caffeine (μmol/l) 0.70 (0.14–1.26)† 0.03–9.6 25.3 (8.3–32.0)† 0.01–108

Glucose (mmol/l) 4.8 ± 0.5 3.8–6.3 5.6 ± 0.8 4.0–7.6

Height (cm) 183.3 ± 6.1 174–196 169.6 ± 10.0 156–186

Weight (kg) 82.0 ± 12.0 65–98 77.2 ± 16.0 57–116

Body mass index (kg/m2) 24.3 ± 2.8 20.3–28.7 26.5 ± 3.5 22.3–34.3

Brain volume (ml) 1157.1 ± 71.8 1033–1270 1073.0 ± 103.8 888–1242

Total blood flow (ml/min) 733.5 ± 88.3 566.5–915.1 539.58 ± 145.9 305.6–791.9

Cerebral blood flow (ml/100ml/min) 63.4 ± 6.9 50.5–76.6 50.5 ± 13.6 25.4–74.4

†Median (interquartile range).

https://doi.org/10.1371/journal.pone.0197807.t001
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Fig 2. Repeatability of cerebral blood flow measurements. Scatter plots (left) and Bland-Altman plots (right) of repeated

measurements from Dataset 1 (top panels) and Dataset 2 along with same-day measurements in young volunteers from ref. [7] (lower

panels). Both measurements obtained on the same day (blue circles) and on different days (red circles) are shown. The dashed line in the

scatter plots represents the line of identity and the dashed lines in the Bland-Altman plots represents the intra-session (blue) and inter-

session (red) upper and lower limits of repeatability.

https://doi.org/10.1371/journal.pone.0197807.g002

Components of day-to-day variability of cerebral perfusion measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0197807 June 7, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0197807.t001
https://doi.org/10.1371/journal.pone.0197807.g002
https://doi.org/10.1371/journal.pone.0197807


associated with caffeine (-0.98 [95%CI: -2.19 to 0.24] ml/100ml/min per μmol/l, p = 0.107).

Excluding a single outlying and influential measurement (with very high caffeine levels and

low gCBF), the effect of caffeine on gCBF was further attenuated. Also, as the changes in

plasma caffeine between days were all close to zero, no association of change in plasma caffeine

with change in gCBF could be demonstrated (Fig 3).

The effects of adjusting for hemoglobin and caffeine on the total and individual compo-

nents of variability are presented in Table 2. Generally, CVb was found to be much larger than

CVw which in turn was slightly lower than CVr.

CVt decreased by 20% when including all covariates in the model. The reductions in total

variability were predominantly due to corresponding reductions in CVb, which decreased by

23%. The inclusion of caffeine did only result in a small decrease in CVw. Otherwise no effects

on CVw or CVr were observed.

Dataset 2

Bland-Altman analysis showed fair repeatability of gCBF measurements, but showed also

much wider limits of repeatability in long-term compared to intra-session repeated measure-

ments (Fig 2C and 2D). Mean gCBF on day 2 was lower than on day 1 (46.7 vs 54.4, p = 0.045).

Analysis of variance components (Table 2) showed that long-term variability is considerably

higher than intra-session variability, also when including covariates in the model. CVt

decreased by 35% when adjusting for caffeine and hemoglobin. Highly significant inverse asso-

ciations of gCBF with both hemoglobin (-11.41 [95%CI: -17.63 to -5.20] ml/100ml/min per

R2=0.20 , p=0.131
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Fig 3. Influence of caffeine on day-to-day gCBF changes. Scatter plot showing change in gCBF and in plasma caffeine from day 1 to

day 2 in standardized caffeine abstained state (Dataset 1, blue circles) and in spontaneous caffeinated state (Dataset 2, red circles and

regression line). From Dataset 1 only the first measurement from each day is included.

https://doi.org/10.1371/journal.pone.0197807.g003
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mmol/l, p = 0.001) and plasma caffeine (-0.25 [95%CI: -0.42 to 0.08] ml/100ml/min per μmol/

l, p = 0.006) were found. Excluding measurements with very high caffeine levels (>60 μmol/l),

the effects of caffeine remained significant (p = 0.031). Also, a non-significant inverse associa-

tion of change in gCBF with change in plasma caffeine between the two study days was noted

(Fig 3).

Discussion

Knowledge on the normal variability of cerebral perfusion measurements is crucial when plan-

ning and designing studies involving such measurements, and is also important when inter-

preting studies addressing cerebral perfusion. In order to understand the sources of variability

of serial gCBF measurements in more details, we analyzed repeated PCM measurements in

healthy volunteers obtained on two separate days. The main findings are that short-term day-

to-day variability assessed under strictly controlled conditions in a homogenous population in

whom low variability is expected, was found to be small and in the same range as residual

intra-session variability. In contrast, long-term variability is much higher when studied in an

aged population under less standardized conditions. We also found that from 20% to 35% of

the total variability of short-term repeated gCBF measurements can be attributed to important

covariates mainly influencing between-subject variability.

The mean and range of both total brain flow and gCBF measurements were similar to those

previously reported in studies of young and aged subjects using PCM MRI [7, 18–20]. The

mean CBF value in young males (Dataset 1) of 63.4 ml/100ml/min corresponds to 60.4 ml/

100g/min when assuming a brain tissue density of 1.05 g/ml [21] which is somewhat higher

than the classical text book value of 50 ml/100g/min derived from other techniques [22]. This

overestimation is probably related to partial volume effects due to the low resolution of PCM

relative to vessel size resulting in overestimation of flow in smaller vessel, in particular in verte-

bral and basilar arteries [23, 24]. Also, small systematic error may result depending on the level

of PCM measurements as flow intended for small extracerebral branches is included when

measuring at the level of vertebral arteries (as in Dataset 1), whereas cerebellar braches from

the vertebral arteries is not included when measuring at the level of the basilar artery (as in

Dataset 2). In the aged population (Dataset 2) we found a mean gCBF of 50.5 ml/100 ml/min

Table 2. Variance components of day-to-day variability of gCBF measurements.

gCBF Variability

Mean σb σw σr CVb CVr CVw CVt

(ml/100ml/min)

Dataset 1

No covariates 64.3 5.9 2.5 2.6 9.4% 4.2% 4.0% 11.0%

Hgb 64.3 4.8 1.9 2.6 7.7% 4.2% 3.0% 9.2%

Hgb+caffeine 64.3 4.5 1.7 2.7 7.2% 4.3% 2.7% 8.8%

Dataset 2

No covariates 50.5 9.69 - 8.37 19.2% - 15.0%† 25.4%

Hgb+caffeine 50.5 4.14 - 7.27 8.2% - 12.5%† 16.6%

Data from ref. [7]

No covariates 64.9 10.98 - 4,63 16.9% 7.1% - 18.4%

†Estimated using CVr from ref. [7], see statistics section.

Abbreviations: gCBF = global cerebral blood flow, σ = standard deviation, CV = coefficient of variation, Hgb = hemoglobin. Subscripts b, r and w refer to between-

subject variability, residual variability and within-subject variability, respectively.

https://doi.org/10.1371/journal.pone.0197807.t002
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(or 48.1 ml/100g/min) which is very similar to the value of 51.2 ml/100ml/min previously

reported in a large aged, mixed gender population [20]. The lower gCBF values found in aged

subjects compared to younger subjects is thus in agreement with previous publications apply-

ing PCM and probably reflects mainly a true age related gCBF decline also reported using a

range other techniques [12, 25, 26] and in lesser degree methodological bias.

In terms of intra-session repeatability our results are also in agreement with previous stud-

ies [7, 19, 27] confirming excellent intra-session repeatability. As expected, the repeatability

between days tended to be poorer compared to sequential same day measurements. Previous

studies on PCM day-to-day repeatability have not included duplicate measurements [19, 28],

and accordingly could not separate methodological imprecision from true variability. One

study of MRI measurements of CMRO2 including duplicate PCM measurements performed at

five sessions within a two week period reported intra-session and inter-session and inter-sub-

ject CV of gCBF to 2.8%, 7.5% and 17.4%, respectively [29]. Due to differences in the calcula-

tion of CV, these CV values cannot be compared directly with those reported in the present

study.

The present study aimed to quantify true day-to-day variability. In Dataset 1 we found that

for short-term repeated measurements this component to be relatively small compared not

only to between-subject variability, but also at the same level or slightly lower than the residual

intra-session variability. This finding suggests that resting gCBF is relatively constant over

time when examined in standardized conditions in a homogenous population with expected

low within-subject variability. From Dataset 2 it appears that even when taking important

physiological covariates and method imprecision into account, long-term variability estimated

in an aged and more heterogeneous population, and applying a less strictly controlled experi-

mental setup, is as expected much higher compared to short-term day-to-day variability. The

higher CVw in Dataset 2 may be attributed to a number of factors. Notably, as shown in Fig 2D

large gCBF changes >20 ml/100ml/min were observed in three participants suggesting that

the higher variability may partially be attributed to large single subject changes related to hor-

monal [11] or other factors not accounted for in the present analysis. Other potential sources

related to the applied techniques, study design and the effects of caffeine are addressed below.

The residual intra-session variability (CVr) was as expected lower than between subject var-

iability (CVb). The unadjusted gCBF CVb of 9.4% in the Dataset 1 is lower than the values esti-

mated from Dataset 2 including both males and females, whereas it is only slightly lower than

the value of 11.6% reported in a recent study also including only young males [24]. Also the

CVr of 4% is lower than the values of 7.1% in ref. [7] and of 6.5% reported previously [24]. The

lower residual variability is most likely due to the longer acquisition time of the PCM measure-

ments in the present study. Further, it should be noted that in Dataset 2, measurements were

performed at the level the basilar artery which may be less straight and less parallel to the ICAs

and thus compromise both accuracy and precision.

Variable planning may influence day-to-day variability. In Dataset 1, a screen dump of

planning from day 1 was available when planning PCM on day 2, whereas in Dataset 2 plan-

ning was based on the general criteria used in our laboratory. A recent study suggested that

applying an automatic PCM planning algorithm may reduce residual variability compared to

manual planning [28] and could be of particular value in studies involving repeated PCM mea-

surements. It is thus possible that more variable planning may have contributed to the higher

CVw in Dataset 2 compared to Dataset 1.

Caffeine withdrawal can increase gCBF and caffeine intake can decrease gCBF [17, 30];

effects that may depends on daily caffeine intake suggesting that cerebral perfusion is adapted

to habitual caffeine levels. Therefore, instructing study participants to abstain from their habit-

ual caffeine intake is actually an intervention that might influence the measurements [17, 31].
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Both in Dataset 1 and Dataset 2 day-to-day variability (CVw) decreased only slightly when

including caffeine in the model. As suggested by Fig 3, caffeine abstinence (Dataset 1) appears

to effectively reduce plasma caffeine day-to-day variability and associated gCBF changes com-

pared to the spontaneous caffeinated state (Dataset 2), although the association of plasma caf-

feine change with gCBF change was not significant. It is also remarkable that even if

participants were asked to abstain from caffeine before the experiment, plasma caffeine levels

up to 10 μmol/l were observed. Whether this reflects lack of compliance or variable metabo-

lism is not clear, but similar observations have been made in patients undergoing myocardial

perfusion imaging [32].

Also in agreement with previous studies, we found hemoglobin to an important determi-

nant of cerebral perfusion [14]. With increasing hemoglobin levels, lower gCBF is required to

maintain a constant cerebral oxygen delivery (and vice versa). Adjusting for hemoglobin did

not reduce residual intra-session variability as hemoglobin was relatively constant. However,

in other studies involving interventions that might change hemoglobin or when larger within

variability could be expected, e.g. repeated measurements in pre-menopausal women, adjust-

ing for hemoglobin would be relevant.

The present study has some limitations. First of all, sample size in Dataset 1 was relatively

small, and in order to minimize the possible gender and age related effects on gCBF [26, 33]

we included only young healthy males. For comparison we therefor also included data from a

previous study in order to assess the estimates of variability in a dataset where larger variability

is expected. Although applying very similar methods in Dataset 1 and Dataset 2, smaller differ-

ences related to imaging techniques, participants and in study design prohibit direct pooling

of data. Accordingly, it cannot be determined if the larger day-to-day variability in Dataset 2

compared to Dataset 1 is related to the longer interval between study days per se or to other

factors such as the population studied or factors related to the study design and the applied

techniques.

Secondly, it would have been of interest to include measurement of arterial partial pressure

of CO2. Spontaneous variations in end-tidal PCO2 have been shown to induce in particular

intra-subjects gCBF changes in the order of 10–15% per kPa [33, 34]. Data from previous stud-

ies from our laboratory [24, 33] shows day-to-day changes in arterial or end-tidal PCO2 within

±0.4 kPa corresponding to maximum day-to-day gCBF changes of 4–6%. Assessment of arte-

rial PCO2 may obtained by either arterial cannulation or capnography through a closed breath-

ing system, neither of which were considered practical in the experimental setup or generally

performed in MRI studies of cerebral perfusion.

An important limitation to the analysis of Dataset 2 is that we derived CVr from another

population. It would have been optimal if CVr in Dataset 2 had been determined in the same

population using a design similar to that of Dataset 1. As the imaging protocols and setup in

ref [7] and in Dataset 2 were very similar, we used the CVr from [7] to estimate CVw in Dataset

2 assuming that CVr would be similar. We cannot know if this assumption holds true, but we

believe that the differences in data acquisition in [7] and Dataset 2 are minor and it is unlikely

that true CVr in Dataset 2 differs from that in ref [7] to an extend that would alter the main

finding of a much larger CVw in Dataset 2 than in Dataset 1.

We believe that the findings of the present study can provide researchers with valuable

information for planning futures studies involving gCBF measurements. Using the variance

estimates from the Dataset 1, a power calculation shows that in order to detect a 10% differ-

ence in gCBF between two groups, a sample size of 21 in each group is required. Performing

duplicate measurements and including covariates reduces sample size to 17 and 14, respec-

tively. For within-subject changes, adding duplicate measurements reduces sample size from 8

to 6 in order to detect a 10% change, and adding covariates further reduces the required
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sample size to 5 subjects. The analyses, however, do also suggest that such low temporal vari-

ability may only be achieved when studying a homogenous population under strictly con-

trolled conditions, and that the estimated temporal variability cannot be applied to more

heterogeneous populations studied in less well controlled conditions, e.g. large population

based studies [2, 20] or studies of aging involving repeated measurements at different time

points [2, 35].

In conclusion, our results suggest that the contribution of short-term day-to-day variability

to total variability is relatively small compared to between-subject variability of repeated gCBF

measurements when performed close in time and under standardized conditions. The study

also shows that a substantial fraction of the total variability can be attributed to the effects of

easily obtained covariates predominantly by reducing between subject variability. By including

covariates and performing duplicate measurements, the ability to detect temporal changes in

gCBF may be improved in future studies.

Supporting information

S1 Table. Imaging parameters Dataset 2 and ref. [7].

(DOCX)

S1 Data. Dataset 1 and 2.

(CSV)

Acknowledgments

The project was supported by Rigshospitalets Forskningsfond. The authors wish to thank radi-

ographer Jakup Martin Poulsen and technologists Marianne Federspiel and Karin Stahr for

scanner assistance and training. The Siemens mMR hybrid PET/MR system at Copenhagen

University Hospital Rigshospitalet was generously donated by the John and Birthe Meyer

Foundation. We thank Julie Lyng Forman, Sect. of Biostatistics, University of Copenhagen, for

statistical advice.

Author Contributions

Conceptualization: Abd R. A. Ismaili, Ian Law, Otto M. Henriksen.

Data curation: Abd R. A. Ismaili, Otto M. Henriksen.

Formal analysis: Abd R. A. Ismaili, Helle H. Johannesen.

Funding acquisition: Ian Law.

Investigation: Abd R. A. Ismaili, Otto M. Henriksen.

Methodology: Mark B. Vestergaard, Adam E. Hansen, Henrik B. W. Larsson.

Project administration: Otto M. Henriksen.

Resources: Adam E. Hansen, Ian Law, Otto M. Henriksen.

Software: Mark B. Vestergaard.

Supervision: Mark B. Vestergaard, Adam E. Hansen, Henrik B. W. Larsson, Ian Law, Otto M.

Henriksen.

Validation: Abd R. A. Ismaili, Otto M. Henriksen.

Visualization: Mark B. Vestergaard.

Components of day-to-day variability of cerebral perfusion measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0197807 June 7, 2018 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197807.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197807.s002
https://doi.org/10.1371/journal.pone.0197807


Writing – original draft: Abd R. A. Ismaili, Otto M. Henriksen.

Writing – review & editing: Abd R. A. Ismaili, Mark B. Vestergaard, Adam E. Hansen, Henrik

B. W. Larsson, Helle H. Johannesen, Ian Law, Otto M. Henriksen.

References
1. Mazza M, Marano G, Traversi G, Bria P, Mazza S. Primary cerebral blood flow deficiency and Alzhei-

mer’s disease: shadows and lights. J Alzheimers Dis 2011; 23(3):375–89. https://doi.org/10.3233/JAD-

2010-090700 PMID: 21098977

2. Appelman AP, van der GY, Vincken KL, Tiehuis AM, Witkamp TD, Mali WP, et al. Total cerebral blood

flow, white matter lesions and brain atrophy: the SMART-MR study. J Cereb Blood Flow Metab 2008

Mar; 28(3):633–9. https://doi.org/10.1038/sj.jcbfm.9600563 PMID: 17912270

3. Poels MM, Ikram MA, Vernooij MW, Krestin GP, Hofman A, Niessen WJ, et al. Total cerebral blood flow

in relation to cognitive function: the Rotterdam Scan Study. J Cereb Blood Flow Metab 2008 Oct; 28

(10):1652–5. https://doi.org/10.1038/jcbfm.2008.62 PMID: 18575459

4. Sabayan B, van der Grond J, Westendorp RG, Jukema JW, Ford I, Buckley BM, et al. Total cerebral

blood flow and mortality in old age: a 12-year follow-up study. Neurology 2013 Nov 26; 81(22):1922–9.

https://doi.org/10.1212/01.wnl.0000436618.48402.da PMID: 24174588

5. Madsen PL, Holm S, Herning M, Lassen NA. Average blood flow and oxygen uptake in the human brain

during resting wakefulness: a critical appraisal of the Kety-Schmidt technique. J Cereb Blood Flow

Metab 1993 Jul; 13(4):646–55. https://doi.org/10.1038/jcbfm.1993.83 PMID: 8314918

6. Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility study, Part II: Results from a multi-

center Arterial Spin Labeling test-retest study. Neuroimage 2010 Jan 1; 49(1):104–13. https://doi.org/

10.1016/j.neuroimage.2009.07.068 PMID: 19660557

7. Henriksen OM, Larsson HB, Hansen AE, Gruner JM, Law I, Rostrup E. Estimation of intersubject vari-

ability of cerebral blood flow measurements using MRI and positron emission tomography. J Magn

Reson Imaging 2012 Jan 13; 35(6):1290–9. https://doi.org/10.1002/jmri.23579 PMID: 22246715

8. Panerai RB, Simpson DM, Deverson ST, Mahony P, Hayes P, Evans DH. Multivariate dynamic analysis

of cerebral blood flow regulation in humans. IEEE Trans Biomed Eng 2000 Mar; 47(3):419–23. https://

doi.org/10.1109/10.827312 PMID: 10743786

9. Conroy DA, Spielman AJ, Scott RQ. Daily rhythm of cerebral blood flow velocity. J Circadian Rhythms

2005 Mar 10; 3(1):3. https://doi.org/10.1186/1740-3391-3-3 PMID: 15760472

10. Madsen PL, Schmidt JF, Wildschiodtz G, Friberg L, Holm S, Vorstrup S, et al. Cerebral O2 metabolism

and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol 1991

Jun; 70(6):2597–601. https://doi.org/10.1152/jappl.1991.70.6.2597 PMID: 1885454

11. Krejza J, Mariak Z, Huba M, Wolczynski S, Lewko J. Effect of endogenous estrogen on blood flow

through carotid arteries. Stroke 2001 Jan; 32(1):30–6. PMID: 11136910

12. Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. Aerobic glycolysis in the human brain is

associated with development and neotenous gene expression. Cell Metab 2014 Jan 7; 19(1):49–57.

https://doi.org/10.1016/j.cmet.2013.11.020 PMID: 24411938

13. Hayashi T, Watabe H, Kudomi N, Kim KM, Enmi J, Hayashida K, et al. A theoretical model of oxygen

delivery and metabolism for physiologic interpretation of quantitative cerebral blood flow and metabolic

rate of oxygen. J Cereb Blood Flow Metab 2003 Nov; 23(11):1314–23. https://doi.org/10.1097/01.WCB.

0000090506.76664.00 PMID: 14600439

14. Ibaraki M, Shinohara Y, Nakamura K, Miura S, Kinoshita F, Kinoshita T. Interindividual variations of

cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured

by positron emission tomography in humans. J Cereb Blood Flow Metab 2010 Jul; 30(7):1296–305.

https://doi.org/10.1038/jcbfm.2010.13 PMID: 20160738

15. Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochem-

ical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 1992 May; 17(2):139–70. PMID:

1356551

16. Pelligrino DA, Xu HL, Vetri F. Caffeine and the control of cerebral hemodynamics. J Alzheimers Dis

2010; 20 Suppl 1:S51–S62.

17. Addicott MA, Yang LL, Peiffer AM, Burnett LR, Burdette JH, Chen MY, et al. The effect of daily caffeine

use on cerebral blood flow: How much caffeine can we tolerate? Hum Brain Mapp 2009 Oct; 30

(10):3102–14. https://doi.org/10.1002/hbm.20732 PMID: 19219847

Components of day-to-day variability of cerebral perfusion measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0197807 June 7, 2018 12 / 13

https://doi.org/10.3233/JAD-2010-090700
https://doi.org/10.3233/JAD-2010-090700
http://www.ncbi.nlm.nih.gov/pubmed/21098977
https://doi.org/10.1038/sj.jcbfm.9600563
http://www.ncbi.nlm.nih.gov/pubmed/17912270
https://doi.org/10.1038/jcbfm.2008.62
http://www.ncbi.nlm.nih.gov/pubmed/18575459
https://doi.org/10.1212/01.wnl.0000436618.48402.da
http://www.ncbi.nlm.nih.gov/pubmed/24174588
https://doi.org/10.1038/jcbfm.1993.83
http://www.ncbi.nlm.nih.gov/pubmed/8314918
https://doi.org/10.1016/j.neuroimage.2009.07.068
https://doi.org/10.1016/j.neuroimage.2009.07.068
http://www.ncbi.nlm.nih.gov/pubmed/19660557
https://doi.org/10.1002/jmri.23579
http://www.ncbi.nlm.nih.gov/pubmed/22246715
https://doi.org/10.1109/10.827312
https://doi.org/10.1109/10.827312
http://www.ncbi.nlm.nih.gov/pubmed/10743786
https://doi.org/10.1186/1740-3391-3-3
http://www.ncbi.nlm.nih.gov/pubmed/15760472
https://doi.org/10.1152/jappl.1991.70.6.2597
http://www.ncbi.nlm.nih.gov/pubmed/1885454
http://www.ncbi.nlm.nih.gov/pubmed/11136910
https://doi.org/10.1016/j.cmet.2013.11.020
http://www.ncbi.nlm.nih.gov/pubmed/24411938
https://doi.org/10.1097/01.WCB.0000090506.76664.00
https://doi.org/10.1097/01.WCB.0000090506.76664.00
http://www.ncbi.nlm.nih.gov/pubmed/14600439
https://doi.org/10.1038/jcbfm.2010.13
http://www.ncbi.nlm.nih.gov/pubmed/20160738
http://www.ncbi.nlm.nih.gov/pubmed/1356551
https://doi.org/10.1002/hbm.20732
http://www.ncbi.nlm.nih.gov/pubmed/19219847
https://doi.org/10.1371/journal.pone.0197807


18. Henriksen OM, Jensen LT, Krabbe K, Guldberg P, Teerlink T, Rostrup E. Resting brain perfusion and

selected vascular risk factors in healthy elderly subjects. PLoS One 2014; 9(5):e97363. https://doi.org/

10.1371/journal.pone.0097363 PMID: 24840730

19. Spilt A, Box FM, van der Geest RJ, Reiber JH, Kunz P, Kamper AM, et al. Reproducibility of total cere-

bral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imag-

ing 2002 Jul; 16(1):1–5. https://doi.org/10.1002/jmri.10133 PMID: 12112496

20. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Vrooman HA, Hofman A, et al. Total cerebral

blood flow and total brain perfusion in the general population: the Rotterdam Scan Study. J Cereb Blood

Flow Metab 2008 Feb; 28(2):412–9. https://doi.org/10.1038/sj.jcbfm.9600526 PMID: 17622253

21. Torack RM, Alcala H, Gado M, Burton R. Correlative assay of computerized cranial tomography CCT,

water content and specific gravity in normal and pathological postmortem brain. J Neuropathol Exp

Neurol 1976 Jul; 35(4):385–92. PMID: 932786

22. Lassen NA. Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min. J Cereb

Blood Flow Metab 1985 Sep; 5(3):347–9. https://doi.org/10.1038/jcbfm.1985.48 PMID: 4030914

23. Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast flow measurements in the presence of par-

tial-volume effects. J Magn Reson Imaging 1993 Mar; 3(2):377–85. PMID: 8448400

24. Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Rasmussen P,

et al. Comparison of global cerebral blood flow measured by phase-contrast mapping MRI with (15) O-

H2 O positron emission tomography. J Magn Reson Imaging 2017 Mar; 45(3):692–9. https://doi.org/10.

1002/jmri.25442 PMID: 27619317

25. Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y, Flicker B, et al. Alterations in cerebral metabolic rate

and blood supply across the adult lifespan. Cereb Cortex 2011 Jun; 21(6):1426–34. https://doi.org/10.

1093/cercor/bhq224 PMID: 21051551

26. Aanerud J, Borghammer P, Chakravarty MM, Vang K, Rodell AB, Jonsdottir KY, et al. Brain energy

metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 2012 Jul; 32

(7):1177–87. https://doi.org/10.1038/jcbfm.2012.18 PMID: 22373642

27. Jain V, Langham MC, Wehrli FW. MRI estimation of global brain oxygen consumption rate. J Cereb

Blood Flow Metab 2010 Sep; 30(9):1598–607. https://doi.org/10.1038/jcbfm.2010.49 PMID: 20407465

28. Liu P, Lu H, Filbey FM, Pinkham AE, McAdams CJ, Adinoff B, et al. Automatic and reproducible posi-

tioning of phase-contrast MRI for the quantification of global cerebral blood flow. PLoS One 2014; 9(5):

e95721. https://doi.org/10.1371/journal.pone.0095721 PMID: 24787742

29. Liu P, Xu F, Lu H. Test-retest reproducibility of a rapid method to measure brain oxygen metabolism.

Magn Reson Med 2013 Mar 1; 69(3):675–81. https://doi.org/10.1002/mrm.24295 PMID: 22517498

30. Cameron OG, Modell JG, Hariharan M. Caffeine and human cerebral blood flow: a positron emission

tomography study. Life Sci 1990; 47(13):1141–6. PMID: 2122148

31. Field AS, Laurienti PJ, Yen YF, Burdette JH, Moody DM. Dietary caffeine consumption and withdrawal:

confounding variables in quantitative cerebral perfusion studies? Radiology 2003 Apr; 227(1):129–35.

https://doi.org/10.1148/radiol.2271012173 PMID: 12616005

32. Majd-Ardekani J, Clowes P, Menash-Bonsu V, Nunan TO. Time for abstention from caffeine before an

adenosine myocardial perfusion scan. Nucl Med Commun 2000 Apr; 21(4):361–4. PMID: 10845225

33. Henriksen OM, Kruuse C, Olesen J, Jensen LT, Larsson HB, Birk S, et al. Sources of variability of rest-

ing cerebral blood flow in healthy subjects: a study using 133Xe SPECT measurements. J Cereb Blood

Flow Metab 2013 May; 33(5):787–92. https://doi.org/10.1038/jcbfm.2013.17 PMID: 23403374

34. Wise RG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant

low frequency variations in BOLD signal. Neuroimage 2004 Apr; 21(4):1652–64. https://doi.org/10.

1016/j.neuroimage.2003.11.025 PMID: 15050588

35. Zonneveld HI, Loehrer EA, Hofman A, Niessen WJ, van der Lugt A, Krestin GP, et al. The bidirectional

association between reduced cerebral blood flow and brain atrophy in the general population. J Cereb

Blood Flow Metab 2015 Nov; 35(11):1882–7. https://doi.org/10.1038/jcbfm.2015.157 PMID: 26154865

Components of day-to-day variability of cerebral perfusion measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0197807 June 7, 2018 13 / 13

https://doi.org/10.1371/journal.pone.0097363
https://doi.org/10.1371/journal.pone.0097363
http://www.ncbi.nlm.nih.gov/pubmed/24840730
https://doi.org/10.1002/jmri.10133
http://www.ncbi.nlm.nih.gov/pubmed/12112496
https://doi.org/10.1038/sj.jcbfm.9600526
http://www.ncbi.nlm.nih.gov/pubmed/17622253
http://www.ncbi.nlm.nih.gov/pubmed/932786
https://doi.org/10.1038/jcbfm.1985.48
http://www.ncbi.nlm.nih.gov/pubmed/4030914
http://www.ncbi.nlm.nih.gov/pubmed/8448400
https://doi.org/10.1002/jmri.25442
https://doi.org/10.1002/jmri.25442
http://www.ncbi.nlm.nih.gov/pubmed/27619317
https://doi.org/10.1093/cercor/bhq224
https://doi.org/10.1093/cercor/bhq224
http://www.ncbi.nlm.nih.gov/pubmed/21051551
https://doi.org/10.1038/jcbfm.2012.18
http://www.ncbi.nlm.nih.gov/pubmed/22373642
https://doi.org/10.1038/jcbfm.2010.49
http://www.ncbi.nlm.nih.gov/pubmed/20407465
https://doi.org/10.1371/journal.pone.0095721
http://www.ncbi.nlm.nih.gov/pubmed/24787742
https://doi.org/10.1002/mrm.24295
http://www.ncbi.nlm.nih.gov/pubmed/22517498
http://www.ncbi.nlm.nih.gov/pubmed/2122148
https://doi.org/10.1148/radiol.2271012173
http://www.ncbi.nlm.nih.gov/pubmed/12616005
http://www.ncbi.nlm.nih.gov/pubmed/10845225
https://doi.org/10.1038/jcbfm.2013.17
http://www.ncbi.nlm.nih.gov/pubmed/23403374
https://doi.org/10.1016/j.neuroimage.2003.11.025
https://doi.org/10.1016/j.neuroimage.2003.11.025
http://www.ncbi.nlm.nih.gov/pubmed/15050588
https://doi.org/10.1038/jcbfm.2015.157
http://www.ncbi.nlm.nih.gov/pubmed/26154865
https://doi.org/10.1371/journal.pone.0197807

