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Abstract: Sensor control is a challenging issue in the field of multi-target tracking. It involves
multi-target state estimation and the optimal control of the sensor. To maximize the overall utility
of the surveillance system, we propose a dual sensor control scheme. This work is formulated in
the framework of partially observed Markov decision processes (POMDPs) with Mahler’s finite set
statistics (FISST). To evaluate the performance associated with each control action, a key element is
to design an appropriate metric. From a task-driven perspective, we utilize a metric to minimize
the posterior distance between the sensor and the target. This distance-related metric promotes the
design of a dual sensor control scheme. Moreover, we introduce a metric to maximize the predicted
average probability of detection, which will improve the efficiency by avoiding unnecessary update
processes. Simulation results indicate that the performance of the proposed algorithm is significantly
superior to the existing methods.

Keywords: sensor control; POMDPs; multi-target tracking; FISST-based filter

1. Introduction

Multi-target tracking (MTT) refers to the state estimation of an unknown number of moving
targets. The measurements are subject to missed detections and clutter. Mahler’s finite set statistics
(FISST) [1] has provided a unified framework to deal with the MTT problem. For the MTT problem with
controllable sensors, it involves multi-target state estimation and optimal control of the sensor [2,3].
The sequential estimation and decision-making process constitute its main content. It has attracted
intense interest in the modern surveillance system [4]. Surveys of recent advances in multi-target
tracking and sensor control have been presented in [5,6].

The sensor control problem for multi-target tracking has been studied in the context of partially
observed Markov decision processes (POMDPs) [7] with FISST. As a key element in the POMDPs,
a predefined metric is used to evaluate the performance associated with each control action. Actually,
the optimal control process is carried out before the real measurement is observed. Generally,
the combination of an appropriate metric and an excellent filter will improve the overall performance.

To solve the above problem, scholars have developed a series of methods. Mahler has proposed
the idea of using the Kullback–Leibler discrimination as a metric in [8]. Later, he has defined a metric
as the posterior expected number of targets in [9]. Depending on the development of multi-target
filters, Ristic, and Vo [10,11] have developed the α-divergence based sensor control algorithms via the
probability hypothesis density filter [12,13]. Hoang and Vo [14] have used two objective functions
via the Cardinality Balanced Multi-Target Multi-Bernoulli (CB-MeMBer) filter [15]. Gostar et al. have
utilized the Cauchy–Schwarz divergence for the CB-MeMBer filter [16], etc. From an information
theoretic viewpoint, the mechanism of such algorithm is to measure the information gain between
the updated posterior densities and the predicted density [17,18]. In addition, several methods can be
classified as the task-driven algorithms [9,14,18,19], and others can be classified as the information-driven
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algorithms [8,10,11,16]. Obviously, the previous works have paid enough attention to the choice of
metrics (tasks or information divergences), while seldom focusing on the structure.

This paper was committed to improving the efficiency of sensor control algorithm and maximizing
the overall utility of the surveillance system. The main contribution is to propose a dual sensor control
scheme for the MTT problem. In addition, two novel metrics were developed for the sensor control
process. By minimizing the posterior distance between sensor and targets (PDST), the sensor can be
driven to the targets directly. By maximizing the predicted average probability of detection (PAPD),
more reliable measurements are observed. From a task-driven perspective, both the PDST and the
PAPD are based on the understanding of improving the performance of the surveillance system.
In particular, the distance-related metric PDST contributes to the redesign of the structure. Moreover,
the sensor control process using the PAPD metric is valid while avoiding unnecessary update steps.
Typically, a dual sensor control scheme contains two controllers, in which the metric pair is composed
to distinguish different algorithms. Furthermore, the existing evaluation functions can be applied to
the proposed dual sensor control scheme directly.

The remaining part of this article is structured as follows. A general formulation of the sensor control
process is given in Section 2. For completeness, we present a brief review of the δ-Generalized labeled
multi-Bernoulli (GLMB) filter in Section 3. Section 4 contains the main work of the proposed strategies,
and Section 5 describes the dual sensor control algorithms for MTT with one controllable sensor via
δ-GLMB filter. Simulation results and analysis are given in Section 6. Conclusions are drawn in Section 7.

2. The Formulation of Sensor Control

For a general nonlinear multi-target tracking system with the sensor control problem, we have

Xk = fk (Xk−1) + wk, (1)

Zk = hk (Xk, Sk) + vk, (2)

Sk = qk (Sk−1, Uk) + rk, (3)

where fk denotes an evolution model, hk denotes an observation model, and qk denotes a control model.
X represents the state of targets, Z represents the measurement, S represents the state of sensors, and U
represents the selected control actions. The noise is used to describe the uncertainty. This problem can be
roughly divided into three parts: Filter, Observer, and Controller. These three parts interact with each other.

Figure 1 illustrates a general diagram of the sensor control process. Generally, this process is
carried out in the framework of the POMDPs [2]. The key elements of a POMDP include:

1. a portrayal of the multi-target posterior probability density function (pdf);
2. the admissible control actions of the sensors;
3. a predefined metric works to evaluate various control actions.

The following parts of this section illustrate the three aspects specifically.

2.1. Bayesian Multi-Target Filtering

Mahler’s FISST has provided a batch of solutions to the MTT problem in the random finite
set (RFS) framework, and the methodologies throughout this paper are derived in this background.
Following the conventional notation, we use small letters to denote the single-target states, e.g., x, z
while the capital letters for the multi-target states, e.g., X, Z. In addition, blackboard bold letters
denote spaces, e.g., X, Z. F (X) represents the collection of all finite sets of the space X. At time k,
we have the following RFS descriptions of a multi-target state and a multi-target measurement:

Xk =
{

xk,1, . . . , xk,nk

}
∈ F (X) , (4)

Zk =
{

zk,1, . . . , zk,mk

}
∈ F (Z) , (5)
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where Xk in Equation (4) encapsulates the target motions, births, and deaths. In addition, Zk in
Equation (5) encapsulates the imperfect detection and false alarms. Let πk|k−1 (Xk|Z1:k−1) denote the
predicted multi-target posterior density, and πk (Xk|Z1:k) denote the updated multi-target posterior
density at k. Then, the predicted and updated multi-target posterior densities are calculated as follows:

πk|k−1 (Xk|Z1:k−1) =
∫

fk (Xk|X)πk−1 (X|Z1:k−1) δX, (6)

πk (Xk|Z1:k) =
gk (Zk|Xk)πk|k−1 (Xk|Z1:k−1)∫

gk (Zk|X)πk|k−1 (X|Zk) δX
, (7)

where fk (Xk|X) is the multi-target transition density and gk (Zk|Xk) is the multi-target likelihood
function. Generally, the multi-target posteriors can be computed sequentially via the prediction and
the update steps.

FilterVirtual 
Filter

Controller1

{Target state}k-1

{Sensor state}k-1

{Target state}k

Evaluation 
function1

Virtual 
observer Observer

{Sensor state}k

Figure 1. A general diagram of the sensor control process. (yellow lines represent the data flow of
targets’ states; blue lines represent sensors’ states; red lines are the observations; green lines represent
for the decision-making process).

2.2. Ideal Control Process

For the sensor control problem with a fixed number of controllable sensors, the state of the sensors
can be represented by

Sk =
{

sk,1, . . . , sk,i, . . . , sk,s
}

. (8)

A general task of the sensor control problem is to determine the optimal control action for each sensor.
Let Uk ∈ Uk denote the desired optimal control action and Uk be the admissible control actions. Then,

Uk =
{

uk,1, . . . , uk,i, . . . , uk,s
}

, (9)

where uk,i denotes the optimal control action for the ith sensor.
Most of the existing methods use an ideal control process (ICP) for simplification, in which

each sensor can be driven to several positions without considering the specific dynamic process.
Therefore, the admissible control actions are quantified. Given the previous positions of the sensors
Sk−1, their one-step ahead positions are adopted as

Sk = Sk (Sk−1, Uk) ∈ Sk (Sk−1,Uk) , (10)

where Sk (Sk−1,Uk) denote the admissible positions.
Actually, the term admissible control actions and the admissible positions of the sensors are

equivalent in the context of ICP. For instance, we can define a set of admissible control actions as [10]

Uk,i =

{(
xk−1,i + j

viT
nR

cos
(

l
2π

nθ

)
, yk−1,i + j

viT
nR

sin
(

l
2π

nθ

))}
, (11)

where
{
(xk−1,i, yk−1,i)

}s
i=1 represents for the previous positions of the sensors, vi can be viewed as the

maximum speed of the ith sensor, j = 0, 1, · · · , nR denotes the variety of the speeds, and l = 1, · · · , nθ
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denotes the variety of directions. nR and nθ are set to be constant. T is the step length of the control
process, and we set T = 1 in this paper to represent the single step control process.

Figure 2 gives an example of a single sensor situation with parameters s = 1, j = nR = 1,
and nθ = 8. The speed v is equivalent to the length of the arrow, and the endpoints represent the
admissible positions of the sensor. Once the optimal control action uk is determined, we can drive the
sensor to one of the eight positions.

0 X

Y

xk-1

yk-1

u6
u7

u4

u3
u2

u1

u8

u5

sk-4

sk-3

sk-2

Figure 2. The trajectory of a sensor using ICP. The black denotes the position of the sensor; the blue
→ denotes admissible control actions; and the black solid line denotes the trajectory.

2.3. Evaluation Function

Let E1 (·) denote a reward function. An optimal control strategy is formulated as [10]

U1
k = arg max

U∈U1
k

E
[
E1
(

U, πk−1 (Xk−1|Z1:k−1) , Z1
k (U, Sk−1)

)]
, (12)

where U 1
k is the admissible control actions, πk−1 (Xk−1|Z1:k−1) is the previous updated multi-target

posterior density calculated by Equations (6) and (7), and Z1
k (U, Sk−1) is a virtual observation

associated with a specific control action. The optimal control action is selected by maximizing this
expectation E[·] in Controller1.

From a POMDP perspective, the reward function E1 (U, π, Z) is a real-valued function associated
with the control U, the previous posterior pdf π, and the current measurement Z. In fact, the current
measurement Zk used by the Filter can only be observed after applying the sensor control process.
Therefore, the virtual measurement Z1

k (U, Sk−1) is involved. Once the optimal control action is
determined, we can drive the sensors to the new positions S1

k .
The previous studies have demonstrated that the predefined metric (reward function or cost

function) plays a very important role in the POMDPs. It is necessary to develop an efficient task-driven
strategy for the specific problem.

2.4. Predicted Ideal Measurement

Recall the virtual measurement Z1
k (U, Sk−1) in Equation (12). The predicted ideal measurement

(PIM) is introduced to substitute the missing measurement for its virtual update step. For example,
a PIM can be generated by taking the predicted state into the observation model hk in Equation (2).
Generally, different control actions will generate different PIMs. The validity of using the PIMs implies
that the observation model is accurate, which is a common assumption held by most existing methods.
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3. Delta-Generalized Labeled Multi-Bernoulli Filter

For the multi-target state estimation, this part provides a brief review of δ-Generalized labeled
multi-Bernoulli filter filter (GLMB) [20,21]. Following the conventional notations in the references,
a δ-GLMB is completely characterized by the set

{(
ω(I,ξ), p(ξ)(·, ·)

)}
I⊆L,ξ∈Ξ

. The δ-GLMB filter

propagates a δ-GLMB density through prediction and update steps recursively. For simplification,
we omit the time index and use the symbol “+” to denote the predicted quantities.

3.1. Prediction

The predicted density are combined with two parts, the existing density and the newborn density.
Assume that the birth process is formulated as a GLMB RFS in X× B, where B is the label space
of newborn targets. For the existing density, the label space is L. The two space should be distinct,
i.e., L∩B = ∅.

The labeled multi-Bernoulli birth model is

ωB (L) = ∏
l∈B

(
1− γ

(l)
B

)
∏
l∈L

1B (l) γ
(l)
B(

1− γ
(l)
B

) , (13)

pB (x, l) = p(l)B (x) . (14)

For the existing part, we have the δ-GLMB parameter set
{(

ω(I,ξ), p(ξ)(·, ·)
)}

I⊆L,ξ∈Ξ
. By using

the notations pS (·, l) and f (x|·, l) to denote the single-target survival probability and Markov transition
density, the parameters of the survival δ-GLMB are

ω
(ξ)
S (L) =

[
η
(ξ)
S

]L
∑

L⊆I⊆L

[
1− η

(ξ)
S

]I−L
ω(I,ξ), (15)

p(ξ)S (x, l) =

〈
pS (·, l) f (x|·, l) , p(ξ) (·, l)

〉
η
(ξ)
S (l)

, (16)

η
(ξ)
S (l) =

〈
pS (·, l) , p(ξ) (·, l)

〉
, (17)

where the notation 〈 f , g〉 ∆
=
∫

f (x) g (x)dx denotes the inner product.
Given the current δ-GLMB multi-target posterior and the birth density, the predicted

multi-target posterior to the next time is a δ-GLMB with parameter set
{(

ω
(I+ ,ξ)
+ , p(ξ)+ (·, ·)

)}
I+⊆L+ ,ξ∈Ξ

,

where L+ = L∪B denotes the new label space. The predicted δ-GLMB parameters are calculated by

ω
(I+ ,ξ)
+ = ω

(ξ)
S (I+ ∩L)ωB (I+ ∪L) , (18)

p(ξ)+ (x, l) = 1L (l) p(ξ)S (x, l) + 1B (l) pB (x, l) . (19)

3.2. Update

In the update step, the δ-GLMB filter takes missed detection and clutter into account.
Thus, the probability of detection is denoted as pD (x, l) if detected. Recalling the notation of
Equation (5), we use Z to denote the measurements set. For a measurement z, the clutter is assumed to
be a Poisson RFS with intensity κ (z). In addition, the likelihood of the measurement is denoted as

g (z|x, l). The parameters of the updated posterior
{{(

ω(I+ ,ξ,θ)(Z), p(ξ,θ)(·, ·|Z)
)}

θ∈Θ(I+)

}
I+⊆L+ ,ξ∈Ξ

are given by

ω(I+ ,ξ,θ) (Z) ∝ ω
(I+ ,ξ)
+

[
η
(ξ,θ)
Z (l)

]I+
, (20)
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p(ξ,θ) (Z) = p(ξ)+ (x, l)ψZ (x, l; θ)
/

η
(ξ,θ)
Z (l), (21)

η
(ξ,θ)
Z (l) =

〈
p(ξ)+ (·, l) , ψZ (·, l; θ)

〉
. (22)

The intermediate terms are

ψZ (x, l; θ) =

 1− pD (x, l) , if θ (l) = 0,

pD (x, l) g
(

zθ(l)|x, l
)/

κ
(

zθ(l)

)
, otherwise,

(23)

where θ ∈ Θ(I+) is the association between the label set and the measurements.

3.3. State Estimation

From an implementation viewpoint, the multi-target state estimation is the purpose of the sensor
chasing algorithm. In this part, we use a Marginal multi-Bernoulli estimator to extract the states,
and the core of this idea is to extract estimates via best cardinality. The distribution of cardinality is

ρ (n) = ∑
(I,ξ)∈Fn(L)×Ξ

ω(I,ξ), (24)

where n = 1, ..., Nmax, and Fn (L) denotes the subsets of space L with n targets, where Nmax is the
predefined maximum number of targets. The simplified estimation process is

N̂ = arg max ρ (n) , (25)

X̂ =

{
(x, l) : l ∈ I(ĥ, ĵ), x =

∫
yp(ĥ, ĵ) (y, l)dy

}
, (26)

where
(

ĥ, ĵ
)

:= arg max
(h,j)

ω(h,j)δN̂

(∣∣∣I(h,j)
∣∣∣) , which means we try to find the labels and states from the

highest weighted element that has the cardinality N̂.

4. The Proposed Strategies

4.1. A Novel Structure of Dual Sensor Control Scheme

For most existing works, once the control action is determined, no further correction step is
involved. To maximize the overall utility of the system, an additional decision-making process is
introduced. In this part, we propose a dual sensor control scheme. Figure 3 shows a diagram of the
proposed structure.

Let E2 (·) denote the evaluation function related to the Controller2, and the additional control
process is

U2
k = arg max

U2∈U2
k

E
[
E2
(

U2, πk (Xk|Z1:k) , Sk

(
U2, S1

k

))]
, (27)

where U 2
k is the admissible control actions, and πk (Xk|Z1:k) is the updated multi-target posterior

density after applying the current measurement Zk. Sk
(
U2, S1

k
)

is a one-step ahead position of the
sensors associated with a control action U2, and S1

k is the positions of the sensors after Controller1.
The optimal control action is selected by maximizing this expectation E[·] in the Controller2.

Compared to the sensor control process in Equation (12), the evaluation function E2 (U, π, S) is a
real-valued function associated with the control U, the current posterior pdf π, and the future positions
of the sensors S. In fact, the additional sensor control process is carried out by utilizing the real
measurement information. Similar to the Controller1, once the optimal control action is determined,
we can drive the sensors to the new positions Sk.
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FilterVirtual 
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Controller1

{Target state}k-1

{Sensor state}k-1

{Target state}k

Evaluation 
function1

Virtual 
observer Observer Evaluation

function2

Controller2 {Sensor state}k

Figure 3. The proposed sensor control structure.

4.2. Minimize the Posterior Distance between Sensor and Targets

For Controller2, an intuitive idea is to choose the control action that minimizes the distance between
sensors and targets after getting the real observation. Therefore, we define a distance-related metric,
namely the posterior distance between sensor and targets (PDST). Then, Equation (27) turns out to be

U2
k = arg min

U2∈U2
k

E
[
D
(

X̂k (πk (Xk|Z1:k)) , Sk(U2, S1
k)
)]

, (28)

where X̂k(·) is the estimated state of the targets extracted from the updated multi-target posterior
density πk (Xk|Z1:k). In addition, Sk

(
U2, S1

k
)

is a one-step ahead position of the sensors associated
with a control action U2.

Generally, the PDST is calculated between two sets with different cardinalities. As an example,
we recommend utilizing the optimal sub-pattern assignment (OSPA) [22] metric. The OSPA distance
between two sets X = {x1, · · · , xm} and X̂ = {x̂1, · · · , x̂n} is defined by

d̄(c)p =

(
1
n

(
min
π∈Πn

m

∑
i=1

d(c)
(

xi, x̂π(i)

)p
+ cp (n−m)

)) 1
p

, (29)

where d(c) (x, x̂) := min (c, ‖x− x̂‖), Πk is the set of permutations on {1, 2, . . . , k}, and the positive
integer p ≥ 1 and c > 0. Given the estimation X̂k(·) = {x̂k,1, . . . , x̂k,N̂k

} and an implementation of the

Sk(U2, S1
k) =

{
sk,1, . . . , sk,i, . . . , sk,s

}
, the PDST D

(
X̂k (·) , Sk(U2, S1

k)
)

is adopted as d̄(c)p by substituting
X = X̂k(·) and X̂ = Sk(U2, S1

k).
An equivalent sensor control strategy can also be designed for Controller1 by using the PDST

metric. Based on the output of the Virtual Filter, we can get the virtual updated multi-target posterior
density π1

k
(
X1

k |Z
1
k (U, Sk−1)

)
, Then, the corresponding control equation is

U1
k = arg min

U1∈U1
k

E
[
D
(

X̂1
k

(
π1

k

(
X1

k |Z
1
k (U

1, Sk−1)
))

, S1
k(U

1, Sk−1)
)]

, (30)

where X̂1
k (·) is the estimated state of the targets extracted from the virtual updated multi-target

posterior density π1
k
(
X1

k |Z
1
k (U, Sk−1)

)
, which is produced by the Virtual Filter. Compared to the X̂k(·)

in Equation (28), the main difference is the value of X̂1
k (·) is associated with the control action U1.

S1
k
(
U1, Sk−1

)
is a one-step ahead position of the sensors associated with a control action U1.

Actually, the metrics for the two controllers do not need to be the same. Next, we are committed
to developing a more efficient metric for Controller1.

4.3. Maximize the Predicted Average Probability of Detection

Since the computational mechanism of the existing evaluation functions depends on the virtual
updated multi-target posterior densities, the Virtual Filter has to be employed several times. Obviously,
it is very time-consuming in the Controller1.
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In order to improve the efficiency, we define a novel evaluation function, namely the predicted
average probability of detection (PAPD) metric. Equation (12) is simplified as

U1
k = arg max

U1∈U1
k

E
[
PD

(
X̂k|k−1

(
πk|k−1 (Xk|Z1:k−1)

)
, S1

k(U
1, Sk−1)

)]
, (31)

where X̂k|k−1(·) is the estimated state of the targets extracted from the predicted multi-target posterior
density πk|k−1 (Xk|Z1:k−1), which is calculated by Equation (6). S1

k
(
U1, Sk−1

)
is a one-step ahead position

of the sensors associated with a control action U1. Since the calculation of the PAPD metric PD(·) is carried
out based on the prediction, the update step is avoided. In addition, there is no need to involve the PIMs.
Consequently, the Virtual Observer and the Virtual Filter in Figure 3 are reduced to a Predictor.

For a comprehensive understanding, the following section describes the main steps of the
proposed dual sensor control algorithms.

5. Dual Sensor Control Algorithms

Following the structure in Figure 3, we present the details of the dual sensor control algorithms for
the MTT problem with one controllable sensor via δ-GLMB filter. We use a metric pair to distinguish
different algorithms. Algorithm 1 shows the pseudo-code of the dual sensor control algorithms.

Algorithm 1 Dual sensor control algorithms

Input: sensor position sk−1,the posterior pdf πk−1, and admissible control set Uk
1. Prediction: compute the predicted pdf πk|k−1 by Section 3.1
Controller1:
If Metric == PAPD
2. State estimation: extracted the predicted estimated targets’ stateX̂k|k−1 by Section 3.3
3. For u1 ∈ U1

k
4. Compute the admissible sensor position s1

k(u
1, sk−1) by Section 2.2

5. Evaluation: maximize the PAPD by Equation (32)
6. Endfor: obtain the optimal control u1

k , and drive the sensor to the new position s1
k(u

1
k , sk−1)

Elseif Metric == PDST
7. For u1 ∈ U1

k
8. PIMs: generate the virtual observation Z1

k (u
1) by Section 2.4

9. Update: compute the virtual updated posterior pdf π1
k (u

1) by Section 3.2
10. State estimation: extract the virtual estimated targets’ stateX̂1

k (u
1) by Section 3.3

11. Calculate the center of the virtual estimation 1
N̂1

k,u1
∑

N̂1
k,u1

i=1

[
x̂1

k,i(u
1)
]

12. Calculate the admissible sensor position s1
k(u

1, sk−1) by Section 2.2
13. Evaluation: minimize the PDST by Equation (34)
14. Endfor: obtain the optimal control u1

k , and drive the sensor to the new position s1
k(u

1
k , sk−1)

End
Observer: get the real observation Zk
15. Update: compute the posterior pdf πk by Section 3.2
16. State estimation: extract the estimated targets’ stateX̂k by Section 3.3
Controller2:

17. Calculate the center of the estimation 1
N̂k

∑N̂k
j=1

[
x̂k,j

]
18. For u2 ∈ U2

k
19. Calculate the admissible sensor position s2

k
(
u2, s1

k(u
1
k , sk−1)

)
by Section 2.2

20. Evaluation: minimize the PDST by Equation (35)
21. Endfor: obtain the optimal control u2

k , and drive sensor to the new position s2
k
(
u2

k , s1
k(u

1
k , sk−1)

)
Output: control pair{u1

k , u2
k}, sensor position sk, the posterior pdf πk, and the estimation X̂k

5.1. Dual Sensor Control Algorithm with PAPD and PDST

In this part, we set the PDST as the metric in the Controller1. At time k, input the previous position
of the sensor sk−1, the representation of the previous posterior density πk−1, and the set of admissible
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control actions Uk. The output is the optimal control pair {u1
k , u2

k}, the position of the sensor sk, and the
representation of the resulting posterior density πk.

Let X̂k|k−1 =
{

x̂k|k−1,1, . . . , x̂k|k−1,N̂k|k−1

}
denote the predicted multi-target state and X̂k ={

x̂k,1, . . . , x̂k,N̂k

}
denote the posterior multi-target state. For a given pD(·) function, the metric pair for

Algorithm 1 is calculated as

u1
k = arg max

u1∈U1
k

1
N̂k|k−1

∑
N̂k|k−1
i=1

[
pD

(
x̂k|k−1,i, s1

k(u
1, sk−1)

)]
, (32)

u2
k = arg min

u2∈U2
k

D
(

1
N̂k

∑N̂k
j=1

[
x̂k,j

]
, s2

k

(
u2, s1

k(u
1
k , sk−1)

))
, (33)

where D(·) is the Euclidean distance between the sensor and the center of the posterior multi-target

state 1
N̂k

∑N̂k
j=1

[
x̂k,j

]
in Controller2. Each time, the optimal control is determined, and the sensor will be

driven to a new location. At time k, the final position of sensor is sk = s2
k
(
u2

k , s1
k(u

1
k , sk−1)

)
.

5.2. Dual Sensor Control Algorithm with PDST and PDST

In this part, we set the PDST as the metric in the Controller1. Compared to the above formulas,
the main difference is in the Controller1. Recalling the term in Section 2.4, PIMs are involved in the
Virtual Filter. Due to the mechanism of a PIM generation, the result of the Virtual Filter changes with
different control actions. Hence, the metric pair for Algorithm 1 is calculated as

u1
k = arg min

u1∈U1
k

D

(
1

N̂1
k,u1

∑
N̂1

k,u1

i=1

[
x̂1

k,i(u
1)
]

, s1
k

(
u1, sk−1

))
, (34)

u2
k = arg min

u2∈U2
k

D
(

1
N̂k

∑N̂k
j=1

[
x̂k,j

]
, s2

k

(
u2, s1

k(u
1
k , sk−1)

))
, (35)

where N̂1
k,u1 =

∣∣X̂1
k (u

1)
∣∣ denotes the number of virtual estimated targets associated with control u1.

Note that the structure of the proposed algorithm does not depend on a specific filter. When it
comes to the dual sensor control scheme, the evaluation function for Controller2 is specified to be
a PDST metric. In addition, single sensor control counterparts of the above algorithms can be easily
implemented by omitting the Controller2.

6. Simulations

6.1. Setup of the Simulations

A nonlinear multi-target scenario is studied in this section. The number of targets varies over
time, and the observations are affected by imperfect detection and clutter. Figure 4 is the ground truths
of targets with a total of six targets in the surveillance area of 4000 m× 4000 m.

The survival time of each target during the simulations: Target1 from 1 to 100; Target2 from 10 to
100; Target3 from 20 to 100; Target4 from 40 to 100; Target5 40 to 100; and Target6 from 60 to 100.

The single-target state xk =
[
(x̃k)

′ , wk

]′
is comprised of the location and velocity x̃k = [xk, ẋk, yk, ẏk]

′

and the turning rate wk. In addition the single-target transition density is defined as

fk|k−1 (x|xk) = N (x; m (xk) , Q) ,

where m (xk) =
[
(F (wk) x̃k)

′ , wk

]′
, Q = diag

([
σ2

wGG′, σ2
u
])

, and the parameters
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F (w) =


1 sin wT/cos wT 0 −(1− cos wT)

/
w

0 cos wT 0 − sin wT
0 (1− cos wT)

/
w 1 sin wT/w

0 sin wT 0 cos wT

 , G =


T2/2 0

T 0
0 T2/2
0 T

 ,

where T = 1 s is the sampling time. The standard deviation of the process noise σw = 5 m/s2,
the standard deviation of the turn rate noise σu = π

180 rad/s. The survival probability (for prediction)
is set to be constant ps = 0.99. For the birth process, we follow the model in [20].

The initial position of the mobile sensor is (−2000 m,−2000 m). We assume that the sensor
control process is an ideal control process in Section 2.2. In addition, the admissible control actions is
calculated by Equation (11). The number of sensor s = 1. Given the previous position of the sensor
sk−1 = (xsk−1 , ysk−1), the admissible positions of sensor follows

Sk =

{(
xsk−1 + j

v
NR

cos
(

l
2π

Nθ

)
, ysk−1 + j

v
NR

sin
(

l
2π

Nθ

))}Nθ

l=1
,

for j = {0, 1, 2} and NR = 2. v = 50 m/s represents for the maximum speed of the sensor and
Nθ = 8 is the directions. Figure 5 shows seventeen admissible positions of the mobile sensor. We use
sk =

(
xsk , ysk

)
to denote the current position of the sensor.
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Target6

Birth

Death

Figure 4. The ground truths of the simulations. (in total, six targets are involved with different colors
to distinguish).
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Figure 5. The admissible positions of the sensor.
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The location-dependent probability of detection is

pD,k (xk) ∝ pD max · N
(

xk; sk, diag([4000, 4000])2
)

,

where pD max = 0.98 is its peak value. If detected, each target shall produce one observation z = [θ, r]′,
namely bearing and range measurement.

The likelihood is calculated as

gk (z|xk, sk) = N (z; µ (xk, sk) , R) ,

where µ (xk, sk) =

[
arctan

( xk−xsk
yk−ysk

)
,
√(

xk − xsk

)2
+
(
yk − ysk

)2
]

and R = diag
([

σ2
θ , σ2

r
]′). We set

σθ = π
180 rad and σr = 5 m.

Recalling the clutter model in the update step, it follows a Poisson RFS with intensity
κk(z) = λcU(Z), where U(Z) denotes a uniform density on the disc of radius 2000 m, and we
set λc = 8× 10−4(radm)−1 for an average of 10 clutters per scan.

The particle implementation of σ-GLMB filter is employed in the simulations, for its flexibility in
dealing with the nonlinear tracking problems. The setup of particle filter is 1000 particles per target,
and 500 particles is the threshold on effective number of particles before resampling.

6.2. Results and Analysis

In this part, we use the “double controller” to denote the algorithm with a dual sensor control
scheme. Figure 6 is a single run of the Algorithm 1 with metric pair PAPD-PDST. We assign each
track of the estimation results with different colors in Figure 6a. Figure 6b shows the trajectory of the
sensor, and each point denotes the sensor position after Controller2. Figure 7 provides the results of
Algorithm 1 with metric pair PDST-PDST. It shows that the proposed algorithms can obtain acceptable
estimation results while achieving the task of tracking. Both of the algorithms can drive the sensor to
the center of targets.
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(b) Trajectory of the sensor

Figure 6. Dual sensor control algorithm with PAPD and PDST.
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Figure 7. Dual sensor control algorithm with PDST and PDST.

To analyze the statistically characteristics of the algorithms, we performed 100 Monte Carlo
simulations on each of them. The expected sensor trajectories with timestamps after employing the
sensor control processes are given in Figure 8a,b. For comparison, we use the sensor control method
based on Cauchy–Schwarz divergence, and the results are provided in Figure 8c. The trajectories of the
first two pictures are quite similar, while exhibiting significant difference with Figure 8c. Approximate
analysis based on the timestamps, we find that the proposed algorithms with double controller are
more effective. The tracking results of the Cauchy–Schwarz divergence-based algorithms are tardy,
especially for its single controller situation. Fortunately, the introduction of double controller has
improved the efficiency of tracking.
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Figure 8. The expected trajectory of sensor (100 Monte Carlo trials).

The average values of each metric during the Controller1 are drawn in Figure 9. Figure 9a
shows the tendency of average probability of detection gradually increases until it reaches its peak
(approximately 40 s for double controller and 70 s for single controller). Figure 9b shows the tendency
of average distance between sensor and targets gradually decreases until the sensor reaches targets’
center (approximately 45 s for double controller and 90 s for single controller). No obvious trend
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is indicated in Figure 9c. Note that the missing part in Figure 9b (first 20 s) is because no target is
extracted in some Monte Carlo trials.
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Figure 9. The average evaluation values for Controller1 (100 Monte Carlo trials).

To evaluate the performance of different algorithms in multi-target state estimation, the optimal
sub-pattern assignment (OSPA) [22] metric is utilized, the calculation is carried out by Equation (29).
Figure 10a shows the results of OSPA (with parameters, c = 100 and p = 1), and it indicates that the
errors of double controllers are smaller. Figure 10b shows the cardinality of estimations compared to
the truth. It indicates a similar performance, except for the single controller with a Cauchy–Schwarz
divergence (C–S divergence). Whenever the number of targets changes, the OSPA errors will suddenly
increase (at 20, 40, 60, 80 time steps) and eventually settle to a certain value.

Table 1 shows the average computing time for 100-time steps. It indicates that a double controller
with the PAPD metric uses the least computing time, approximately 8.34 s per step. For one step,
the PDST-based algorithms need about 44 s and Cauchy–Schwarz divergence-based algorithms needs
50 s. This result validates the effectiveness of the proposed PAPD metric. Actually, Table 1 indicates that
double sensor control algorithms require less computing time overall than that of a single controller.
This is because the additional controller can increase the overall tracking efficiency by driving the
sensor to a location with a higher detection probability. The simulations are implemented in MATLAB
R2017b (The MathWorks, Inc., Natick, MA, USA) on a desktop computer with an Intel Core i5-4570
CPU (Santa Clara, CA, USA) and 4 GB of RAM.
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Figure 10. Cont.



Sensors 2018, 18, 1653 14 of 16

0 10 20 30 40 50 60 70 80 90 100

Time/s

0

1

2

3

4

5

6

7

C
a

rd
in

a
lit

y

Truth

50 55 60 65

5

5.5

6

(b) The average cardinalities of the simulation results

Figure 10. Performance evaluations (100 Monte Carlo trials).

Table 1. The average computing time of the algorithms.

PAPD PDST C–S Divergence

Double controller 8.34× 102 s 4.47× 103 s 5.00× 103 s

Single controller 8.85× 102 s 4.73× 103 s 5.80× 103 s

6.3. Further Discussion

To investigate the adaptability of the dual sensor control algorithm with PAPD and PDST,
another commonly used location-dependent detection function is introduced,

pD(x, sk) =

{
pD max if ‖x− sk‖ ≤ R
max {0, pD max − h · (‖x− sk‖ − R)} otherwise,

where pD max = 0.98, R = 300 m, and h = 1.25× 10−4 m−1.
Figure 11a indicates that the expected trajectory is similar to the double controller in Figure 8a.

In addition, Figure 11b exhibits a significant tendency of increasing in PAPD during the first 40 time
steps. Based on these simulation results, the adaptability of Algorithm 1 is verified.
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Figure 11. Simulation results using the alternative pD function (100 Monte Carlo trials).
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7. Conclusions

A dual sensor control scheme for multi-target tracking was proposed in the context of POMDPs
with FISST. The proposed scheme does not rely on a specific filter, and the existing evaluation
function can be applied to the dual sensor control scheme straightforwardly. Typically, a dual sensor
control algorithm is characterized by the metric pair. From a task-driven perspective, two novel
metrics were developed. The PDST metric is based on an understanding of multi-target tracking.
In addition, the motivation of the PAPD metric is to improve the efficiency. Simulation results
demonstrated that the proposed dual sensor control scheme can improve the multi-target state
estimation accuracy and the overall efficiency. Moreover, the algorithm that uses the recommended
metric pair (PAPD-PDST) has shown excellent performance and adaptability. For the further study,
we will apply these methods to the multi-sensor and more complex scenarios.
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