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Abstract

Telomeres serve the dual function of protecting chromosomes from genomic instability as well as protecting the ends of chromosomes
from DNA damage machinery. The enzyme responsible for telomere maintenance is telomerase, an enzyme capable of reverse transcrip-
tion. Telomerase activity is typically limited to specific cell types. However, telomerase activation in somatic cells serves as a key step
toward cell immortalization and cancer. Targeting telomerase serves as a potential cancer treatment with significant therapeutic bene-
fits. Beyond targeting cancers by inhibiting telomerase, manipulating the regulation of telomerase may also provide therapeutic benefit
to other ailments, such as those related to aging. This review will introduce human telomeres and telomerase and discuss pharmaco-
logical regulation of telomerase, including telomerase inhibitors and activators, and their use in human diseases.
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Introduction

Telomeres are the DNA-protein complexes of linear chromosomes
that protect the ends from genomic instability caused by the loss
of small portions of the chromosomes during DNA replication [1].
In humans, telomeres are comprised of a repetitive TTAGGG
sequence [1, 2]. This sequence length varies greatly across
species, from approximately 300 base pairs to greater than 20 kb
in length, and contains a 3� G-rich single strand overhang [2–4].
Regulation of telomere length through replication is essential to
overcoming the limitations of normal cellular division [5].

Part of the role of the telomere in generating chromosome sta-
bility is in protection of chromosomes from recognition by DNA
repair machinery [6, 7]. In addition to the potential loss of genetic
material associated with replicating linear chromosomes, the ends
of these chromosomes resemble DNA breaks [6]. Repair machin-
ery has the potential to see these ends and attempt to repair them
[8]. This can result in both end-to-end fusions and additional loss

of genetic material during additional cycles of replication. The 3�

overhang is essential to the protection of the telomere from these
end-to-end fusions as well as unregulated nuclease digestion. It
accomplishes this by folding upon itself forming a higher order
structure known as the t-loop [9, 10]. The ability of the telomere
to form higher order DNA structures is due to its GC rich compo-
nent and may present a significant obstacle for DNA replication
machinery. Although the inherent nature of the sequence allows
for higher order structures, formation of these structures includ-
ing the t-loop requires additional proteins known as telomere-
associated proteins [11].

Telomere-associated proteins are essential to telomere func-
tion. Telomere-associated proteins recognize and bind to the
repeat sequence stabilizing it. For example, the shelterin complex
binds to the telomere organizing and defining it. Shelterin is com-
prised of six individual proteins: TRF1 (telomere repeat binding
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factor 1), TRF2 (telomere repeat binding factor 2), RAP1 (repressor/
activator protein 1), POT1 (protection of telomeres 1), TIN2 (TRF1
interacting nuclear factor 2) and TPP1 (also known as adrenocor-
tical dysplasia homolog-mouse; TINT1, ‘TIN2 interacting protein
1’/PIP1, ‘POT1-Interacting Protein 1’ /PTOP 1, ‘POT1 and TIN2
Organizing Protein’) [7, 12–14]. This simple complex has a role in
many activities including regulating telomere length and forming
the t-loop.

Replication of the telomere requires a specialized enzyme
capable of reverse transcriptase activity called telomerase [15]. In
normal, healthy cells telomerase activity is mostly limited to
embryonic cells, adult male germline cells and stem cells, but is
virtually absent in somatic cells [16]. In stem cells, telomerase
activity serves the function of elongating telomeres thus protect-
ing these cells from typical cellular aging and senescence [17].
The human telomerase is comprised of two major subunits, the
RNA template and the catalytic enzyme [15, 18, 19]. The telom-
erase RNA template (hTR or hTERC) contains a complementary
sequence to the human telomere that serves as the base for repli-
cation of the telomere repeat sequence [20, 21]. The extension of
telomeres is completed through the catalytic enzyme, telomerase
reverse transcriptase (hTERT) [19, 22]. Together this complex
catalyses the addition of the six nucleotide repeat to the ends of
chromosomes. Along with these two main components are addi-
tional telomere/telomerase-associated proteins. Formation of the
functional holoenzyme complex requires associated proteins
including the box H/ACA small nucleolar RNA proteins: dyskerin,
NOP10 (NucleOlar Protein 10), NHP2 (Non-Histone Protein 2) and
GAR1 (Glycine-Arginine Rich 1) [23, 24].

Telomerase activity and hTERT expression regulation is com-
plex. Transcriptional, post-transcriptional, post-translational,
localization, subunit assembly and epigenetic regulation as well as
telomeric proteins and RNAs all contribute to telomerase regula-
tion [25, 26]. Inability to properly regulate telomerase, such as in
cases of genetic dysfunction of telomerase, can lead to a variety of
diseases including cancer and bone marrow disorders [27–29]
(for more specific reviews on telomerase regulation and disease,
the reader is invited to see references 28 and 29). For example,
components of the telomerase complex are up-regulated in over
90% of human malignancies and contribute to the increased pro-
liferation and limitless replicative potential of cancer cells [30–33].
This differential expression between normal and malignant cells
makes telomerase an ideal target in cancer therapeutics [28].
Artificially regulating telomerase may be useful as a treatment not
only for cancer, but also for genetic and immunodeficiency disor-
ders involving dysregulated telomerase or telomere length. It is
important to note that there is a potential for additional effects of
telomerase regulation due to additional activities of telomerase
related to DNA repair, cell survival and death, stem cell mainte-
nance and the regulation of gene expression [34, 35].

The development of telomerase inhibitors for cancer treatment
is a major field of study. By inhibiting telomerase, it is possible to
kill cancerous cells while limiting toxicity to neighbouring normal
cells. Several mechanisms of telomerase inhibition have been

explored for use as therapeutic agents. For example, there have
been inquiries into regulating telomerase by immunotherapy vac-
cines. These vaccines target the active site of telomerase, which
elicits an immune response against cancer cells (see Liu et al.
review for more detailed discussion of this topic) [36]. In addition,
adenoviruses, such as telomelysin, are being developed that can
selectively replicate in cancer cells by using the TERT promoter as
a molecular switch; this replication causes viral toxicity that selec-
tively kills the cancer cells (see Nemunaitis et al. for a review on
immunotherapy) [37]. While telomerase inhibition stands as a
promising neoadjuvant therapy, it is important to note that activa-
tion of telomerase in some cells may prove beneficial. Telomerase
activation is currently being studied for use in immunodeficient
patients to stimulate proliferation of T cells as well as in regener-
ative medicine and a treatment to combat the signs and symptoms
of aging. This review will focus on telomerase activity and the use
of pharmacological intervention to alter this activity as a treatment
for diseases such as cancer.

Telomerase inhibitors

Though several synthetic compounds with telomerase inhibition
properties have been developed in recent years, the majority of
these compounds are highly toxic [38]. In addition, it can be diffi-
cult to determine whether these inhibitors have a direct or indirect
effect on telomerase (see Fig. 1 for targets of telomerase). The
compounds may themselves cause telomerase inhibition (direct
effect) or it may be that the compounds cause cell death and due
to apoptosis telomerase activity slows or stops (indirect effect).
Various targets, such as the RNA template, TERT protein and
associated proteins, are all being investigated to develop telom-
erase inhibitors. One clinically relevant compound, imetelstat, has
been developed to date as a specific oligonucleotide competitive
inhibitor of telomerase activity. Imetelstat, or GRN163L, was
developed by the Geron Corporation (Menlo Park, CA, USA) to 
target the RNA template for TERT by binding to the catalytic site of
telomerase preventing action [39]. This inhibitor has been applied
to breast cancers [40, 41], prostate cancers [42], glioblastoma
[43], myeloma [44] and leukaemia [39]. It has been shown to 
augment the effects of paclitaxel in breast cancer cells [41]. Four
phase I and I/II trials were completed in 2009, and the company is
planning phase II studies and combinations studies for breast and
lung cancers. Throughout each of these studies, few long-term
side-effects of telomerase inhibition have been reported. The lack
of significant detrimental side-effects enhances the potential of
telomerase inhibition to continue to be used clinically to augment
current treatment protocols.

In addition to synthetic compounds, various chemical com-
pounds that occur naturally in plants, or phytochemicals, have been
suggested to inhibit telomerase activity in various cancers (Table 1).
Allicin, an organophosphate derived from garlic, was shown to
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decrease telomerase activity and increase apoptosis in gastric 
adenocarcinoma cells though the mechanism is undetermined
[47]. Curcumin, a phenol present in turmeric, has been shown to
decrease telomerase activity in several cancer types [38, 48–53].
This inhibition has been shown to be due to the inhibition of
translocation of TERT to the nucleus [38] by dissociating Hsp-90
co-chaperone p23 from TERT [50] as well as the reduction of
TERT expression [48, 49]. A flavonolignan found in milk thistle,
silbinin, has been shown to decrease TERT expression as well as
telomerase activity [54]. The organosulfur derived from crucifer-
ous vegetables, sulforaphane, has been shown to cause epige-
netic regulation resulting in a decrease of TERT expression as
well as the phosphorylation of TERT which prevents translocation
to the nucleus. Epigallocatechin gallate (EGCG), a catechin in
green tea, has shown to inhibit TERT expression [55], which may
be largely due to epigenetic regulation of the TERT promoter [56].
Furthermore, EGCG showed inhibition of telomerase in several
cervical cancer cell lines only with concurrent retinoic acid treat-
ment. This effect was associated with a decrease in hTERT
expression [45]. Several of these chemicals have been tested on
normal, non-malignant, as well as cancerous cells. Curcumin
[48], genistein [57], EGCG [26] and sulforaphane [58] were all
tested on breast cancer cells and the non-malignant breast cell
line MCF10A; curcumin [48] and sulforaphane [58] had no effect
on normal cells whereas genistein was shown to inhibit telom-
erase in these MCF10A cells as well as the cancer cells [57]. It is
important to note, not all studies on these chemicals are in agree-
ment. Several compounds have been shown to act as both
inhibitors and activators of telomerase though this may be due to
treatment concentration or cell type differences. For example,
resveratrol has been shown to inhibit telomerase activity in can-

cer cells [59] and activate telomerase in epithelial [60] and
endothelial progenitor cells [61]. In addition to this, a study about
genistein (soybean) suggests it may activate telomerase activity
at low concentrations and inhibit telomerase activity at higher
treatment concentrations (see ‘Telomerase Activators’ and Table 1)
[46]. These studies suggest that more research needs to be done
on these phytochemicals to ascertain their specificity for their
potential development as effective telomerase inhibitors that
could be utilized for clinical applications.

Telomerase activators

As telomere length is associated with cellular aging, there have
been interesting inquiries into the development of telomerase
activators to reverse normal cellular aging and treat symptoms of
aging. Geron Corp. and TA Therapeutics developed a single
molecule telomerase activator, TAT2 (cycloastragenol). This small
molecule has been shown to transiently activate telomerase in T
lymphocytes that were no longer proliferating [62]. With continuous
treatment, this agent could be useful for patients with HIV/AIDS and
immunodeficiency. In addition, this molecule is being used to
develop nutraceuticals and cosmeceuticals to enhance immune
function and skin condition. However, more work needs to be done
to determine mechanism of action and safety of these products.

Also, certain phytochemicals have been shown to activate
telomerase (Table 1). Resveratrol has been shown to activate
telomerase in human mammary epithelial [60] and endothelial
progenitor cells [61]. It has been suggested that this may be due

Fig. 1. Targets of telomerase activity. Targets
of telomerase and its activity are repre-
sented [29]. The pharmaceutical agents 
and phytochemicals discussed in this 
paper have been suggested to affect expres-
sion or epigenetic regulation of telomerase.
More investigation into the specific anti-
telomerase activities of these chemicals is
necessary to define their mechanisms.
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to the up-regulation of SIRT1 [63]. As discussed above, one study
showed that the phytochemical genistein caused an activation of
telomerase in DU-145 and LNCaP prostate cancer cells as well as
MCF-7 breast cancer cells and SKOV-3 ovarian cancer cells at low
(0.5–1 �M) treatment concentrations. No activation was seen in
normal human prostate, PrEC, cells which are telomerase-nega-
tive. However, telomerase inhibition was seen at higher (50 �M)
concentrations with all lines and this result suggests that genistein
has a bilateral effect on telomerase activity in cancer cells [46].
Further screening of phytochemicals should be conducted to
determine other telomerase activators, and more studies are

needed to determine the effectiveness of these chemicals as
telomerase activators.

Furthermore, additional studies need to be conducted on the
safety of activating telomerase. There is little information to
address the possible over-activation of telomerase due to pharma-
ceuticals that could lead to uncontrolled cell growth. Examples of
this can be seen among non-pharmaceutical chemicals. For
instance, a major component of cigarettes, cotinine, has been
shown to activate telomerase causing abnormal proliferation [64].
In addition, it is possible that activation of telomerase could reac-
tivate the proliferative capability of benign tumours.

Phytochemical Cancer type Cell lines Mechanism of regulation

Inhibitor 

Allicin (Garlic) Gastric SGC-7901 [47] ND

Curcumin (Turmeric) Breast MCF-7 [48] • Transcriptional [48] 
• Translational [49] 
• Post-translational – Nuclear Localization

[38, 50]

Cervical HeLa, SiHa, Ca Ski [51]

Gastric SGC-7901 [52]

Leukaemia HL60 [52, 53], K-562 [38]

Liver Bel7402 [52]

Lung H1299 [50], A549 [49]

Epigallocatechin Gallate
(Green Tea)

Brain U87-MG, 1321N1 [65] • Transcriptional – Epigenetics [56] 
• Translational [55] Breast MCF-7 [26, 55, 56], MDA-MB-231 [26]

Cervical OMC-4, TMCC-1 [66]

Head and Neck Hep-2 [67]

Leukaemia HL60 [56]

Lung H69, H69VP [68]

Genistein (Soybean) Breast MCF-7 [57] • Transcriptional [69, 70] 
• Post-translational – Nuclear

Localization [70] 
Ovarian SKOV-3 [46]

Prostate LNCaP [69], PC-3 [66], DU-145 [70]

Resveratrol (Red Grape) Breast MCF-7 [59] • Post-translational – Nuclear
Localization [59]

Colon HT-29, WiDr [71]

Silibinin (Milk Thistle) Prostate LNCaP [54] ND

Sulforaphane 
(Cruciferous Vegetables)

Breast MCF-7, MDA-MB-231 [72] • Transcriptional [58] – Epigenetics [72] 
• Post-translational [58]Liver Hep3B [58]

Activator

Resveratrol (Red Grapes) - Epithelial cells [60], Endothelial 
progenitor cells [61]

• Post-translational [60]

Genistein (Soybean) Breast MCF-7 [46] • Transcriptional [46]

Ovarian SKOV-3 [46]

Prostate DU-145, LNCaP [46]

Table 1 Phytochemicals shown to have telomerase regulation properties

ND: not determined.
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Conclusions and perspectives

The potential benefits of regulating telomerase activity are clear.
Pharmaceutically inhibiting telomerase may prove an important option
in cancer therapy in conjunction with traditional chemotherapeutics.
Conversely, the activation of telomerase could be useful to treat age-
related diseases and HIV/AIDS patients where lymphocytes have
stopped proliferating. However, the long-term effects of regulating
telomerase either positively or negatively are unclear. It is possible that
inhibition of telomerase could have adverse side effects on normal
stem cell function and immune response as stem and immune cells
have increased telomerase activity to accommodate frequent prolifer-
ation. Understanding of telomerase regulation in normal cells is crucial
for the development of telomerase inhibitors and activators. The regu-
lation of telomerase is complex. This complexity may make pharma-
ceutical regulation difficult due to compensation by other regulatory
pathways. However, phytochemicals that seem to regulate telomerase
provide a starting place. These chemicals can be used as lead com-
pounds to develop drugs that may be able to be used in the clinic.
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