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François Gonzalvez1,5¤c, Eyal Gottlieb5, Jesus Ayala-Sanmartin6, Beate Klösgen4, Petra Schwille3,

Patrice X. Petit1*
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Abstract

Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is
triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin
has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane
surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is
characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro
system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the
platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these
vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for
caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles
and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical
approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of
these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of
the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the
gap between death receptors and mitochondria.
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Introduction

The initiation of apoptosis leads to distinct morphological

changes culminating in the dismantling of the cell by a family of

cysteine proteases called caspases [1] and ultimate cell clearance

by other cells. Apoptosis can proceed by either the intrinsic or the

extrinsic pathway [2]. CD95 (APO-1/Fas) has become the model

death domain-containing receptor, and it is the most extensively

studied death receptor that activates the extrinsic apoptosis

pathway. The triggering of this receptor results in the formation

of the death-inducing signalling complex (DISC), a complex of

signalling proteins recruited by activated CD95 immediately after

the addition of agonistic anti-CD95 antibodies or the CD95 ligand

[3]. The formation of the DISC is associated with the recruitment

and activation of caspase-8 and the direct cleavage of downstream

effector caspases. The formation of the DISC, consisting of the

adapter molecule FADD/MORT1 [4,5] and caspase-8 [6,7,8]

results in the release of active caspase-8 at the DISC and the

cleavage of various intracellular death substrates [9,10]. The DISC

proteins, FADD and caspase-8, have been shown to be essential

components of the CD95 signalling machinery [8,11,12,13]. In

contrast, the intrinsic apoptosis pathway is triggered from within

the cell, either by the direct activation of caspases or through

intracellular changes, such as DNA damage, which result in the

release of pro-apoptotic factors and the activation of effector

caspases.

In the death receptor pathway of apoptosis induction, the best

characterised connection between the two pathways is Bid,
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a member of the Bcl-2 family that is translocated to the

mitochondria after cleavage by caspase-8. The dimerisation of

two caspase-8 monomers (p55/p55) results in a conformational

change that exposes the active site of the caspase through

a mechanism known as ‘induced proximity’ [14,15]. Dimerisation

was shown to be sufficient for the activation of caspase-8, but it has

been suggested that full activity may require self-cleavage

[14,16,17,18]. Caspase-8 initially cleaves itself between the p18

and p10 domains, forming a heterodimer within a heterotetrameric

complex (p43–p10/p43–p10) (Fig. 1a). This first cleavage is

necessary for the recognition of other substrates, including effector

caspases (such as caspase-3) and the pro-apoptotic Bcl-2 family

member Bid [16,17]. Extrinsic apoptosis follows one of two

pathways, type I or type II, depending on the level of caspase-8

activation upon DISC formation [7]. In the type I pathway, large

amounts of DISC and active caspase-8 are formed, leading to the

direct cleavage of effector caspases in the cytosol [19]. In the type

II pathway, DISC assembly is slower, and smaller amounts of

active caspase-8 are generated [7]. XIAP (X-linked inhibitor of

apoptosis) was shown also to inhibit this pathway [20]. Thus, cells

containing large amounts of XIAP require a tBid mitochondrion-

mediated amplification of the caspase cascade to overcome the

caspase inhibition by XIAP. In this context, caspase-8 must be

engaged in the intrinsic pathway to amplify the death signal and

execute apoptosis. Transition from the extrinsic pathway to the

intrinsic pathway is achieved through the processing of Bid by

caspase-8 [21,22], leading to the generation of tBid, which then

interacts with cardiolipin via its hairpin-forming domain [23]. This

interaction disturbs mitochondrial bioenergetics, leading to Bax/

Bak delocalisation [24] and permeabilisation of the mitochondrial

outer membrane (MOMP).

We recently showed that the mitochondrial surface becomes

enriched in caspase-8 during type II extrinsic apoptosis induced by

Fas. Proof of this concept was obtained with lymphoblastoid cells

(type II cells) derived from Barth syndrome patients and tafazzin

knock-down HeLa cells, which contain no mature cardiolipin (CL)

but large amounts of monolysocardiolipin [25]. We also showed

that a blockade of the association of caspase-8 with mitochondria

due to cardiolipin deficiency resulted in the inhibition of p43–p10

formation, preventing both Bid cleavage and apoptosis [25]. It has

also recently been shown that caspase-8 and Bid form a supramo-

lecular complex on the surface of the mitochondrial outer

membrane [26], in so-called ‘‘mitosomes’’. There is thus

a mechanism by which low levels of proteolytically active

caspase-8 can specifically target sufficient amounts of Bid at the

surface of mitochondria, to produce tBid [26]. It was also shown

that tBid binds CL [23,24,27,28]. Thus, contact sites between the

inner and outer mitochondrial membranes are enriched in CL,

which is predominantly found in the inner mitochondrial

membrane and can adopt an HII conformation [29], rendering

it accessible from outside the mitochondria. This location provides

CL with access to all the factors required for the formation of

a caspase-8/cardiolipin/Bid platform at the mitochondrial mem-

brane surface.

Confirmation of a key role for CL in platform formation

requires investigation of the basic components of this platform in

a simplified ‘‘in vitro’’ system, thus avoiding confounding effects of

unknown factors. Cell-free model systems have been shown to

reproduce correctly the behaviour of Bcl-2 proteins during

apoptosis [30,31,32,33]. In this study, we developed a simplified

system constituted of giant unilamellar membranes, with or

without CL, to investigate interactions between caspase-8 and

CL and to seek experimental evidence for the functional activity of

the caspase-8/Bid/cardiolipin platform. Our findings shed light on

a fundamental aspect of cell death-activating processes and

especially on the major role of cardiolipin in both the formation

and functional activity of the reaction platform. Our data are

consistent with a model in which caspase-8 binding to CL is a key

step in early apoptotic signal transduction, linking the Fas-receptor

complex with mitochondria. This model suggests that lipid/

protein interactions at the mitochondrial membrane are of major

importance and unravels the ‘‘embedded together’’ model of the

interaction of Bcl-2 family members with intracellular membranes.

Experimental Procedures

All the fluorescent probes were from Molecular probes

(Invitrogen, Life Technologies SA, Saint-Aubin, France) and all

lipids were from Avanti Polar Lipids, Inc. (Alabaster, Alabama,

USA).

Protein Preparation
We prepared fluorescently labelled human tBid, as previously

described [34], from Bid cDNA in pET15b with a single cysteine

residue at position 64 in the tBid fragment, which we labelled with

Alexa647 maleimide (Invitrogen) [33]. We purified full-length Bid

(Bid) with the same protocol as for tBid, but from a cDNA with

C15S and C28S mutations and with Bodipy488 or Alexa647

maleimide labelling. Bid and non-fluorescent tBid were kindly

provided by J.C. Martinou (Geneva, Switzerland). For the caspase-

8 we have used two sources: 1 - An in vitro translated P55 form

purified as described in the work of Gonzalvez et al. [25]

(essentially used for the work with liposomes in Figure 1) and 2 -

The second caspase-8 has been provided by J.C. Martinou (P10
and P18 subunits expressed separately in Escherichia Coli and

reconstituted in their active form). This is what was used in the

article unless indicated otherwise.

Preparation of Liposomes
All liposomes were prepared as previously described [27].

Liposomes contained either the same lipids as mitochondrial

contact sites (CS) - 9% cholesterol, 22% phosphatidylethanol-

amine (PE), 8% phosphatidylinositol (PI), 20% cardiolipin (CL)

and 34% phosphatidylcholine (PC) [35] - or each individual lipid

from CS, tested separately and with PC used to make up the

difference. The lipid ratios in the so-called single lipid liposomes

were as follows: PC, 100% PC; PI, 8% PI and 92% PC; Chol, 9%

cholesterol and 91% PC; PE, 22% PE and 78% PC; PG, 20%

phosphatidylglycerol and 80% PC; PA, 20% phosphatidic acid

and 80% PC. PC/no Casp8 are PC liposomes with no addition of

caspase-8. For all PC liposomes containing CL and PE, the

corresponding proportions are indicated on the graphs. The

liposomes, suspended in light buffer (100 mM NaCl, 2 mMMgCl2
and 10 mM Tris-HCl, pH 7.1), were centrifuged for 1 h at

55,000 rpm in a Beckman SW 70.1 rotor at 10uC.

Binding of Bid and Caspase-8 to Liposomes
Pelleted liposomes were obtained as described above (the

liposome mixture was shiny and free of aggregates); 50 ml of the
precipitate was resuspended in 450 ml of light buffer and incubated

with either caspase-8 (290 nM) or Bid (50 nM) for flow cytometry

analysis.

Immunoblot Analysis
The liposome pellet was lysed in 1% sodium cholate,

resuspended in a protein sample buffer containing DTT, and

resolved by SDS-PAGE in a 4–12% polyacrylamide gel (Nu-

PAGE). The proteins were transferred to a membrane and p55

The Mitosome: Cardiolipin-Caspase-8-Bid
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and p43 bands were detected with anti-caspase antibodies directed

against the DED domain of caspase 8 (Becton-Dickinson).

Preparation of Giant Unilamellar Vesicles
The GUVs consisted mostly of DOPC and CL, with CL content

ranging from 0 to 20% (mol/mol), as indicated in the figure

legends. All lipid mixtures were prepared in chloroform stock

solution, at a total concentration of 1 mg/ml, with the appropriate

lipid DOPC/CL ratio. Vesicles were grown in sucrose solutions

(300 mOsm). For confocal microscopy, GUVs were prepared by

the electro-swelling method [36]. We spread 5 ml of lipid mixture

(1 mg ml21 in chloroform) directly onto two Pt wire electrodes

kept 1 cm apart in a swelling chamber. The chamber was filled

with swelling solution (300 mM sucrose) and the wires were

connected to a power generator; a voltage of 2.3 V at 10 Hz was

applied for 1 h at room temperature, for the field-supported

Figure 1. Binding of Bid and caspase-8 to CL-containing large unilamellar liposomes (LUVs). (a) Schematic diagram of caspase-8
autoprocessing during Fas-mediated apoptosis. Upon dimerisation, procaspase-8 (p55) is initially cleaved between its two active subunits, p18 and
p10, to generate the p43/p10 heterodimer; p43 is then cleaved between the death effector domain (DED) and the p18 subunit, to produce the fully
active p18/p10 form. (b) Western blot analysis of caspase-8 binding to the ‘‘contact site mimetic’’ liposomes or similar liposomes without CL, in which
the CL was replaced with PE (22%) (c) Caspase-8 binding, as detected by caspACE FITC-VAD-fmk binding to the active site, to liposomes of various
compositions (monolipid liposomes made from PA, PC, PE, PI, PG or cholesterol, and mixed liposomes composed of DOPC+CL, DOPC+PE,
DOPC+CL+PE at various molar ratios, contact site mimetic liposomes; for details see materials and methods). (d) Flow cytometric analysis of CL+ and
DOPC-only liposomes in the presence or absence of BidAlexa488. The black spectrum correspond to control vesicles whereas the red spectrum
correspond to the vesicles plus BidAlexa488. The blue spectrum results from an alkaline wash of the CL+ liposomes. The alkaline wash involved
centrifugation of liposomes and resuspending them in 0.1 M Na2CO3, pH 11.5. The liposomes were then analysed directly by flow cytometry. Fm:
fluorescence mean value, in arbitrary units (a.u.).
doi:10.1371/journal.pone.0055250.g001
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swelling of GUVs from the lipid films. The GUVs were then

detached from the electrodes by increasing the frequency to 2 kHz

for 30 min. Finally, they were carefully harvested with a syringe

with a large-diameter needle.

For flow cytometry, GUVs were prepared by the electroforma-

tion technique, from lipid films deposited on ITO slides [37].

Laurdan Fluorescence Measurements
Generalised polarisation experiments were carried out with

Laurdan, as follows: Laurdan was added to the phospholipid

solution in chloroform such that the molar ratio of dye to lipid was

400:1. The solvent was removed by evaporation and the dry lipid

film was hydrated (20 mg/ml) by incubation in phosphate citrate

buffer (pH 7.0). The liposomes were then prepared as previously

described [38]. Fluorescence was measured in a Hitachi F4500

fluorometer (150 W Xe). A band-pass setting of 2.5 nm was used

for both excitation and emission. Liposomes were incubated with

proteins for 1 hour and then centrifuged at 160,000 g, for 1 hour

in an Airfuge centrifuge. Spectra were recorded for the

resuspended pellets in a thermostatically controlled quartz cuvette

(1 cm path length). We recorded 3D spectra with the following

parameters: excitation wavelength from 320 to 420 nm (1 nm gap)

and emission wavelength from 420 to 550 nm, at 37uC, on 150 mg
Laurdan liposomes in the presence of 1 nM tBid or 50 nM Bid

and/or 290 nM procaspase-8. The excitation generalised polar-

isation was calculated as previously described [39]:

GPex~(Ig{I1)=(IgzIl),where Ig and Il are the fluorescence

intensities at the maximum emission wavelength in the gel and in

the liquid crystalline phases, respectively, at a fixed excitation

wavelength (360 nm).

Microaspiration Studies
The mechanical response of test membranes to CL and tBid was

studied in microaspiration experiments, which were carried out

and analysed as previously described [40]. Isolated single GUVs

swollen in 300 mM sucrose (CL/DOPC=5%) and transferred to

iso-osmolar glucose solution for contrast enhancement were

exposed to an increasing membrane tension by microaspiration.

A series of snapshots taken from a video recording at various

aspiration pressures [600 Pa, 1600 Pa] was analysed for each

GUV, to obtain the expansion modulus Ks (mN/m) and the

rupture tension tr (mN/m) for the recorded data. The results are

expressed as the means for several isolated vesicles studied under

conditions that are as close to identical as possible.

Confocal Microscopy
We resuspended 50 ml of GUVs electroswollen in 300 mM

sucrose in 500 ml PBS containing the following proteins: 9 nM Bid

Bodipy488 and/or 290 nM unlabelled procaspase-8. Caspase-8

and Bid, in the presence of caspase-8, bound very rapidly, so

measurements were made immediately, at room temperature. We

used a LSM 510 Meta microscope (Zeiss) with a 406 1.2 NA C-

Apochromat water objective (Zeiss) in multitrack mode. We used

UV/488/543/633 and 545 nm filters as the principal and

secondary dichroic filters. We used an argon laser operating at

an excitation wavelength of 488 nm, with a 505–530-nm band-

pass filter for the green channel, whereas a red diode laser

operating at an excitation wavelength of 633 nm, with a 650-nm

long-pass filter for the red channel. The DiD [(1,19-dioctadecyl-

3,3,39,39-tetramethylindodicarbocyanine, 4-chlorobenzenesulfo-

nate salt (‘DiD’ solid)] used to stain the lipid in the GUV was

from molecular probes (InVitrogen, USA). Images were processed

with ImageJ software (http://rsbweb.nih.gov/ij/).

Flow Cytometry Analysis
Aliquots of 10 ml of a solution of electroformed GUVs in 100 ml

of PBS was made up to a volume of 500 ml with PBS for flow

cytometry analysis, which was carried out as previously described

[41]. When necessary, GUVs were incubated with sedimented

proteins and the washed pellet, to eliminate the non-specific

binding of dyes and proteins, before flow cytometry. Most

experiments were performed online in the flow cytometer: the

reaction was started by adding the proteins directly to the tube

during data recording, and protein binding and enzymatic activity

were detected by monitoring changes in light scattering or by

fluorescence measurements. We added Bid-Alexa647 to concentra-

tions ranging from 10 to 100 nM. Caspase-8 was added to

a concentration of 290 nM. We used a FACS Calibur 4C (Becton-

Dickinson) machine equipped with an argon laser operating at

488 nm and a red diode laser operating at 635 nm. A 530630 nm

band pass filter was used for green fluorescence and a 661616 nm

bandpass filter was used for red fluorescence. Beads (10 mm) were

added to the samples for use as size markers, when appropriate.

Results

We tested for direct interaction between caspase-8 and

cardiolipin, by incubating liposomes with the same lipid compo-

sition as the mitochondrial contact site prepared as previously

described [28] with in vitro-translated caspase-8 (p55). Western blot

analysis of the precipitated liposomes (Fig. 1b) showed that the

intensities of the p43–p55 caspase-8 bands were significantly

stronger in the presence of CL than in its absence, with a greater

abundance of the p43 form. In samples from CL-deficient

liposomes these two bands were barely detectable (about 45 to

55% of the total caspase-8 loaded onto the gel bound to

liposomes). This significant enrichment in the p43-processed form

of caspase-8 may be due to the activation of caspase-8 on the

liposome or the higher affinity of cleaved p43 for the membrane.

We investigated the function of CL in the binding of caspase-8 to

liposomes further, using different liposome compositions ranging

from single-lipid combinations of phosphatidylcholine (PC) and

CL to liposomes mimicking mitochondrial contact sites [27].

Caspase-8 clearly showed a marked tendency to bind to CL-

containing liposomes, whereas phosphatidylethanolamine (PE)

liposomes bound caspase-8 only weakly (Fig. 1c). Bid showed

no specific binding to DOPC-only or CL+-LUVs; however, low

levels of binding to the contact sites of mimetic liposomes (see

materials and methods) were observed. Moreover, washing the

liposomes in an alkaline solution before flow cytometry analysis

dissociated most of the Bid from the CL+-LUV (Fig. 1d). The very
small amounts of Bid present on LUVs may therefore be

attributed purely to non-specific binding.

Changes in Liposome Membrane Fluidity Due to
Successive Binding to Caspase-8 and Bid
The fluorescence properties of Laurdan were used to monitor

fluctuations, due to protein binding, in the organisation and

fluidity of the surrounding lipid membrane. Generalised polarisa-

tion (GP; as presented in the materials and methods section) was

measured on liposomes consisting of either DOPC or a mixture of

DOPC and CL, after the separate or simultaneous addition of

procaspase-8 and Bid or tBid (Fig. 2). The data obtained indicate

that a low GP value was associated with high fluidity of the

‘‘DOPC-CL’’-system and that this property was not significantly

modified by the addition of Bid. Indeed, Bid had only a small

effect on the GP of DOPC-CL vesicles, whereas the addition of

caspase-8 was followed by an increase in the GP. tBid alone

The Mitosome: Cardiolipin-Caspase-8-Bid
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modified the GP considerably and the combination of Bid and

caspase-8 gave values similar to those obtained with tBid and

caspase-8.

Tension/rupture of Cardiolipin-containing Giant
Unilamellar Vesicles (GUVs) in the Presence or Absence of
Caspase-8 and Bid Proteins
The effects of caspase-8, caspase-8+ Bid and/or tBid on

membrane fluidity in Laurdan experiments (Fig. 2) suggest that
the interaction of these proteins with a target membrane affects the

elastic properties of the membrane. The elasticity theory for

membranes is based on the theory of thin liquid films [42]. Two

basic deformations can be identified: bending perpendicular to the

bilayer surface, described by a bending modulus k, and lateral

membrane compression/expansion within the bilayer plane,

quantified as a lateral compression modulus Ks [43]. Membrane

elasticity depends on the composition of the bilayer and its

thermodynamic state (gel/liquid) [44]. In pure lipid membranes, it

reflects interactions within the bilayer (lipid:lipid), the details of

which are modified by the presence of any other molecules within,

or along the aqueous interface of, the bilayer [40]. Thus,

membrane elasticity responds to the insertion/adsorption of

foreign molecules, in turn potentially affecting the association

affinities of these molecules [45,46] or their function within the

membrane [47,48,49].

We investigated the interaction and its mechanical effects, by

developing a minimal giant unilamellar vesicle (GUV) model

membrane system consisting of DOPC and DOPC-CL (95/5;

mol/mol). This model, although highly simplified, may be

considered to mimic mitochondrial contact sites. The micropipette

aspiration technique was used to explore the effects of the presence

of CL on the mechanical properties of the DOPC host membrane

and of the apoptotic proteins tBid and caspase-8. The area

expansion modulus (Ks), and the lysis tension (or tensile breaking

strength, tr) were used to quantify membrane stability.

The principal set-up and some results, compiled into two

histograms, are shown in Fig. 3. The simple presence of any of

the proteins investigated - tBid, caspase-8, and caspase-8 with Bid -

had no effect on the mechanical stability of the DOPC test

membrane. On the contrary, the addition of CL to a DOPC host

membrane had a clear impact: it decreased the area expansion

modulus and strongly decreased the overall sustainability of the

membrane when subjected to mechanical stress, as demonstrated

by the low value of the rupture tension tr. In the presence of tBid,

the membrane stability, assessed as the expansion modulus Ks,

returned to its initial value (Fig. 3b), but there was a further

decrease in the rupture tension tr (Fig. 3c), to about 30% of the

value initially obtained for the pure DOPC reference membrane.

The simultaneous presence of caspase-8 and Bid resulted in similar

values, whereas the addition of caspase-8 alone gave intermediate

values.

Confocal Microscopy Investigations of the Various
Proteins Binding to GUVs
Confocal microscopy provided evidence of an interaction

between proteins and the test membranes. A multicolour approach

was used: the membrane was labelled with DiD, shown in red in

Fig. 4, with Bid shown in green. The images show the results of

staining with the two dyes individually and the simultaneously

obtained overlay image. BidGreen did not bind to vesicles

containing phosphatidylcholine alone (Fig. 4a) or to CL-contain-

ing vesicles (not shown). These results are consistent with previous

reports that Bid does not bind to either DOPC or DOPC/CL

GUVs [33]. BidGreen did not bind to DOPC vesicles after the

addition of caspase-8 (Fig. 4a), unless CL was also present

(Fig. 4d). The binding of BidGreen to vesicles thus appeared to

require the presence of both CL within the membrane and

caspase-8 binding to it (Fig. 4d). The short-term effects of caspase-

8/BidGreen on CL-GUVs included not only complex binding

(Fig. 4d), but also vesicle reorganisation and collapse (Fig. 4d–f).
The vesicles also displayed a significant decrease in green

fluorescence (Fig. 4d) within a few minutes of addition of

BidGreen. This decrease in fluorescence resulted from cleavage of

the tagged BH1–BH2 domain, the fluorophore remaining in the

soluble p7 part of the protein after cleavage by capase-8 (as

illustrated in Table 1). These observations provide evidence of

a reaction platform, consisting of CL/caspase-8 and Bid,

presenting an enzymatic activity. The CL-containing GUVs had

a low rupture tension (Fig. 3c); they frequently broke and

resealed, forming either smaller vesicles or, more often, irregularly

shaped aggregates, due to the defective reorganisation of

membrane material.

Flow Cytometry Analysis of the Functional Activity of the
Caspase-8/Bid/cardiolipin Platform
Flow cytometry has rarely been used to follow and characterise

giant unilamellar vesicles interacting with proteins [50,51]. We

recently reported a flow cytometry analysis of giant unilamellar

vesicles based on both their light scattering and fluorescence

properties [41]. CL-GUVs were analysed after the addition of

protein and their fluorescence was recorded during the initial

stages of the interaction (Fig. 5a). In the presence of caspase-8,

vesicle fluorescence was detected immediately after the first

addition of Bid (Fig. 5a). The subsequent addition of larger

amounts of Bid-Alexa488 enhanced this fluorescence. In the

absence of caspase-8, the increase in fluorescence was not

significant (Fig. 5b). However, membrane-associated Bid fluores-

cence increased immediately after the addition of caspase-8 to the

system.

Figure 2. Analysis of the effects of caspase-8, Bid and tBid on
the Laurdan fluorescence of CL+ and CL2 liposomes. Generalised
polarisation (GP, arbitrary units, a.u.) determined from Laurdan
fluorescence measurements. GP values are reported for the various
preparations, as described in the materials and methods.
doi:10.1371/journal.pone.0055250.g002
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This binding was also associated with a change in the light-

scattering properties of the vesicles (Fig. 5c), evidencing a change

in vesicle size or shape distribution. Indeed, as described above

(Fig. 4), the binding of caspase-8 and Bid resulted in the

disruption of CL-containing GUVs to form aggregates and smaller

vesicles. In the absence of caspase-8, no change in side scatter was

recorded (Fig. 5c, lower histogram): the initially injected vesicles

were stable. We followed changes in the number of Bid-labelled

vesicles over time (Fig. 5d). After the addition of caspase-8, all

CL-containing GUVs were labelled with fluorescent Bid (closed

circles). The number of Bid-labelled vesicles decreased over time,

due to the cleavage of the Alexa488-labelled Bid domain after

caspase-8 action. The large decrease in vesicle fluorescence

provides further evidence for the activity of the newly formed

caspase-8-Bid-CL platforms. Pre-incubation of the system with

general caspase inhibitors (z-VAD-fmk and Boc-D-fmk) or

a specific caspase-8 inhibitor (z-IETD-fmk) abolished the fluores-

cence drop due to Bid cleavage by caspase-8 (not shown).

Discussion

Caspase-8 interacts with mitochondria in both healthy [52] and

apoptotic [53,54] cells. However, it has remained unclear how

caspase-8 interacts with CL in mitochondria. It has been suggested

that this enzyme is translocated into mitochondria together with its

known substrate, Bid [25]. However, caspase-8 translocation to

the mitochondria after Fas activation is unaffected in Bid knock-

down cells. Caspase-8 interaction with mitochondria may be

mediated by other proteins [54] or, as described for tBid, caspase-

8 may interact not only with other proteins, but also directly with

the lipid CL at the mitochondrial membrane. The ‘‘embedded

together’’ model for the association of Bcl-2 family members with

the lipid domain of membranes assumes that the insertion of these

proteins into the mitochondrial outer membrane during apoptosis

affects the affinities of the various Bcl-2 proteins, creating new

interaction surfaces [30,55]. It has been conjectured that

mitochondrial-membrane microdomains enriched in CL play an

important role in apoptosis and enzyme flux control [56].

We investigated the role of CL in the formation of such an

apoptosis-activating reaction platform, by generating a minimal

in vitro reconstitution system with biomimetic membranes (LUVs

and GUVs). Western blotting and flow cytometry (Fig. 1) were
used to distinguish between the specific and non-specific binding of

Bid and caspase-8. Indeed, whereas Bid interacted with neither

DOPC-only nor CL+-liposomes, caspase-8 was found to interact

with CL-containing LUVs, giving rise to the p43 kDa CL-

activated form (Fig. 1b, c).

We then used Laurdan as a fluidity tracer, to study the effects of

caspase-8, Bid and the caspase-8+ Bid complex on a relevant

membrane model. Differences in the excitation and emission

fluorescence spectra of Laurdan in the gel and liquid-crystalline

phase make it possible to use the general polarization (GP)

parameter to report on the local changes in membrane water

content related to changes in membrane fluidity due to protein

binding. Bid alone did not bind to liposomes (Fig. 4). By contrast,
caspase-8 and caspase-8 plus Bid decreased the fluidity of CL-

containing membranes (Fig. 2), as, to a lesser extent, did tBid.

This result is consistent with previous data indicating that the

presence of tBid may promote the formation of highly curved non-

lamellar phases [57]. One surprising finding was the marked effect

of procaspase-8 itself on the membrane and subsequent Bid

binding. The additive effect of procaspase-8 and Bid may result

from the acquisition of full functional activity upon binding to CL.

The interaction of CL with caspase-8 on the membrane is

important for the progression of apoptosis, with the formation of

a local CL-protein reaction platform evident from the change in

Figure 3. Determination of the micromechanical properties of
giant unilamellar vesicles (GUVs) by microaspiration. (a) Video
micrograph of a vesicle aspirated in a glass suction capillary. The
principal variables for the determination of the area expansion modulus
are indicated: RV: vesicle radius, pin and pout: pressure inside and outside
the vesicle, DL: length of membrane meniscus inside a glass pipette of
internal radius Rp. Excess membrane tension t is created by suction
such that Dp?0. (b and c) Histograms of the micromechanical
quantities measured in the test system under various experimental
conditions. (b) Ks: expansion modulus (mN/m); (c) tr : tensile breaking
strength (mN/m). Caspase-8 was added to a final concentration of
290 nM, tBid to 30 nM and Bid to 50 nM. Fisher’s test were used for
statistical analyses of differences for both Ks and tr measurements (**,
p,0.01 and *** p,0.05).
doi:10.1371/journal.pone.0055250.g003
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GP value. These results shed light on the role of mitochondrial

membranes in the regulation of Bcl-2 protein family activity [33].

The results of rupture-tension experiments and those for

Laurdan fluorescence are complementary. The rupture-tension

approach, originally developed by Evans and coworkers [see [43]

and citations therein], can be used to quantify the micro-

mechanical properties of a thin film, such as a lipid membrane,

by studying its deformation. Here, the expansion modulus (Ks) and

the rupture tension (tr) were evaluated by expanding large

unilamellar vesicles (GUVs), the membranes of which constituted

a model system mimicking mitochondrial contact sites. We found

that the addition of CL resulted in a marked decrease in the elastic

moduli of DOPC lipid bilayers, with both Ks and tr strongly

affected (Fig. 3b and 3c). The decrease in Ks following the

addition of CL indicates that the membrane becomes easier to

expand in the presence of this lipid (Fig. 3b). The CL molecule

has an inherent conical shape; in a pure phase system, it would

therefore preferentially be found in the inverted hexagonal phase.

In the model system used here (CL/DOPC=5/95 mol/mol), we

intentionally avoided setting up such a condition: Each CL

molecule was surrounded by DOPC molecules. In theory, the

system displayed almost ideal mixing, as the chains of the two

lipids (oleoyl-CL and DOPC) were identical. The predominance of

the species preferring a lamellar phase ensured the maintenance of

a lamellar state. The CL was, thus, structurally frustrated as it was

embedded as a minor component within its host membrane.

Nevertheless, its presence locally modifies spontaneous curvature.

Due to their four hydrocarbon chains, CL molecules subjected to

external force act like integrated springs that can be expanded

more easily than the DOPC molecules, resulting in a lower Ks.

However, it is not possible for the system to assume a hexagonal

phase and the limits of expansion of the lamellar phase are soon

reached. The rupture tension is, therefore, lower than that for the

pure system. The data for the pure control system are consistent

with published data for DOPC vesicles [58], giving a Ks value of

about 200 mN/m.

We then assessed the mechanical consequences of proteins in

the pure control system and in the PC/CL contact site model

(Fig. 3). None of the proteins tested interacted readily with the

pure DOPC control membrane. The properties of CL-containing

GUVs were not changed by Bid binding, whereas the binding of

caspase-8, tBid and caspase-8 plus Bid clearly modified the

mechanical properties of these vesicles (Fig. 3b and 3c). The
binding of caspase-8 alone partly reversed the effects of CL,

indicating a role for CL in binding. The structural frustration

observed when CL alone is added was reduced, such that the

expansion module value was between those for the control and the

DOPC/CL model system. The tensile breaking strength was

essentially the same as that for the pure system, being limited only

by the lipid membrane itself. Most probably, caspase-8 detects the

curvature frustration close to CL locations within the membrane,

and its insertion partially compensates for it. tBid alone also bound

to the model vesicles (DOPC/CL). In this case, the expansive

elastic response of the membrane, assessed by calculating the

modulus Ks, was fully restored to that of the pure DOPC control

system: The adsorption of this protein fully released the structural

frustration caused by the presence of CL. It is likely that all of the

interaction sites were saturated. Nevertheless, the presence of the

protein clearly caused defects that weakened the membrane to

mechanical stress. This is evident from the very low value of the

rupture tension. Although the membrane initially responded to

a deformation force with an increase in area similar to that for the

pure system, the total range of expandability was much lower, and

the membrane broke down when the tension increased by ,
4.2 mN/m, corresponding to a change of , 70% with respect to

the control systems (pure DOPC or DOPC/caspase-8). Evidently,

two domains with different elastic properties were formed. A

major part of the membrane consists of essentially pure DOPC

and does not participate in the interaction, or establishment of

a reaction platform. Its elastic properties are therefore not

modified, such that the observed Ks was ,200 mN/m. The other

part of the membrane, which contains CL as the initiator of

a reaction platform, is more rigid. It does not discernibly

contribute to membrane expansability but it limits the overall

strength, as shown by the low value of tr. A similar behaviour was

observed for caspase-8 plus Bid, within the limits of experimental

resolution, and in line with the GP results obtained with LUVs. All

these findings are consistent with the recently described interac-

tions between Bcl-XL [59] and tBid. We confirmed that CL plays

an essential role in the association between caspase-8 and

biomimetic membranes (Fig. 6), and most probably also biological

membranes [25]. We suggest that CL is a component of the

reaction platform formed subsequently (which also contain

caspase-8 and Bid), in which it acts as a cofactor for caspase-8

activation. As the platform is formed, it immediately acquires its

enzymatic function but only if CL is present (Fig. 4 and Fig. 5).
The production of tBid in the presence of caspase-8, when it

interacts which CL, promotes vesicle breakdown; this effect is

inhibited if caspase-8 inhibitors are added to the system [41].

These results indicate that the presence of caspase-8 linked to CL

is essential for the formation of the so-called ‘‘mitosome’’ [25,41].

In addition to interactions between CL and caspase-8, there may

also be protein-protein interactions in vivo. It remains unclear

whether other proteins, such as Rab5 [60,61], which requires

Table 1. Flow cytometry analysis of the GUVs.

Conditions Mean fluorescence (arbitray units, a.u.)

GUVs control 763

GUVs+Caspase-8 863

GUVs+Caspase-8+ Bid (0 min) 84615

GUVs+Caspase-8+ Bid (3 min) P1 (10%) 232650

GUVs+Caspase-8+ Bid (3 min) P2 (90%) 45612

GUVs+Caspase-8+ Bid (.3 min) 1965

The caspase-8+ Bid binds immediately to the GUVs when they contain CL. At 3 min, the caspase-8/bid system is functional and two subpopulations of vesicles are
present: one with a higher fluorescence (P1, 10% of the vesicles) and one with lower fluorescence (P2, 90% of the vesicles). After 3 min, the vesicle are small and exhibit
weak fluorescence indicating the loss of p7 fluorescence resulting from the full cleavage of Bid (fluorescent) to tBid (non fluorescent).
doi:10.1371/journal.pone.0055250.t001
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caspase-8 activation, or BAR [54] and FLASH, which mediate

caspase-8 translocation to mitochondria [62,63,64], play an

auxiliary role in the functional relationship between caspase-8

and CL. Possibly, MTCH2/MIMP [65] and its role in tBid

recruitment may act in synergy with CL-induced mitosome

formation to facilitate MOMP. The work we report here expands

our knowledge of Bid-induced pro-apoptotic signalling and

provides a description of the role of CL in capsase-8 recruitment

and activation at the surface of the mitochondrial outer

membrane. We are however far from grasping all the intricate

and complex molecular alterations and interactions that lead to

the activation of Bid, mitochondrial membrane permeabilisation

and apoptosis via the mitochondrial pathway following stimulation

of the death receptors.

The results that we present demonstrate and describe essential

roles played by lipids in biological processes. In particular, they

provide new insights into how mitochondrial specific lipids like CL

can have active functions that go far beyond simply constituting

a matrix for protein activities. Indeed, functional lipids appear to

contribute not only to modulating the interactions between Bcl-2

Figure 4. Confocal microscopy study of the binding of Bid and caspase-8 to giant unilamellar vesicles containing cardiolipin. Trios of
images (top, middle and bottom) for the same sample: two images obtained with two different detector channels of the microscope, together with
an overlay image. DOPC-only (100:0) vesicles are presented in panels a to c and DOPC/CL (90:10) vesicles in panels d to f. Top: in a and d, protein
binding to GUVs shown in green (this binding only becomes apparent when the green label accumulates at the membrane); middle: the GUV
membrane was labelled with 0.05% of the hydrophobic dye DiO, as shown in (b, c) and in red, as shown in (e, f); bottom: overlay of green and red
images (c, f). Time is indicated in minutes. The arrows indicate the decrease in GUV fluorescence following the formation of a complex between
procaspase-8 and BidAlexa488, resulting in a non-fluorescent tBid.
doi:10.1371/journal.pone.0055250.g004

Figure 5. Flow cytometric analysis of the interaction between CL-GUVs and caspase-8-Bid. (a–b) Short-term effects (20 time points at 20 s
intervals, total 6.66 min) of successive additions of procaspase-8 or Bid to GUVs-CL. (a–b) Each product (caspase-8 or Bid) was added progressively, at
1.66-minute intervals, as shown in the recording, and the mean fluorescence of the vesicles was then measured. (a) Caspase-8 (Casp8) was added
before Bid whereas, in (b), caspase-8 was added after three successive additions of Bid (10 nM, 40 nM and 60 nM). Even shortly after additions, the
enzymatic system was functional, provided that caspase-8 bound to the giant unilamelar liposomes (GUVs). (c) the upper histogram, in black,
corresponds to (a), and the lower histogram, in red, corresponds to (b); the occurrence of vesicles with a higher side scatter (SSC), due to procaspase-
8/Bid cleavage activity, was recorded and is plotted as a percentage (%) of the total vesicle population. (d) The intensity of Bid-Alexa647 fluorescence
associated with GUVs is shown as a function of procaspase-8 addition and time, for GUVs with (closed circles) or without (open circles) CL.
doi:10.1371/journal.pone.0055250.g005
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family members, but also as key players in recognition processes as

demonstrated by the example cardiolipin triggering the activation

of caspase-8 in the apoptotic process.
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Figure 6. Localised production of active, cleaved BID on cardiolipin platforms that serve for the assembly of active caspase-8 and in
the GUV ‘‘mimicking system’’. (a) The diagram depicts the sequence of events in cells of type II according to Gonzalvez et al. [25]. The CL (red
heads)/caspase-8 platform at the contact sites between inner and outer mitochondrial membranes (enriched in CL) binds BID resulting in the
production of the active truncated, C-termimal part of BID (tcBID). This in turn causes CL induced perturbations of the membrane curvature, BAK/BAX
oligomerization and cytochrome c release. (b) Schematic representation of the reconstituted functional platform on giant unilamellar vesicles
containing CL with the p18/p10. DD, death domain; DED, death effector domain; p10 and p18 form the catalytic core of the caspase. The p43/p10
caspase-8 isoform comprises two DEDs, one p10 domain and one p18 domain. IMM, inner mitochondrial membrane; IMS, inter membrane space; OM,
outer mitochondrial membrane. Red dots in the intermembrane espace, cytochrome c and the violet head correspond to the cardiolipin at the
contact sites between outer and inner membrane.
doi:10.1371/journal.pone.0055250.g006
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