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Computational derivation of a 
molecular framework for hair 
follicle biology from disease genes
Rachel K. Severin1, Xinwei Li2, Kun Qian3, Andreas C. Mueller2 & Lynn Petukhova1,4

Knowledge about genetic drivers of disease increases the efficiency of interpreting patient DNA 
sequence and helps to identify and prioritize biological points of intervention. Discoveries of 
genes with single mutations exerting substantial phenotypic impact reliably provide new biological 
insight, although such approaches tend to generate knowledge that is disjointed from the complexity 
of biological systems governed by elaborate networks. Here we sought to facilitate diagnostic 
sequencing for hair disorders and assess the underlying biology by compiling an archive of 684 genes 
discovered in studies of monogenic disorders and identifying molecular annotations enriched by 
them. To demonstrate utility for this dataset, we performed two data driven analyses. First, we 
extracted and analyzed data implicating enriched signaling pathways and identified previously 
unrecognized contributions from Hippo signaling. Second, we performed hierarchical clustering on 
the entire dataset to investigate the underlying causal structure of hair disorders. We identified 35 
gene clusters representing genetically derived biological modules that provide a foundation for the 
development of a new disease taxonomy grounded in biology, rather than clinical presentations alone. 
This Resource will be useful for diagnostic sequencing in patients with diseases affecting the hair follicle, 
improved characterization of hair follicle biology, and methods development in precision medicine.

In an age of precision medicine, faced with interpreting DNA sequence in the genomes of patients, it becomes 
critical to understand both the spectrum of genes that could be contributing to a particular clinical presentation, 
and the pathways that are mediating genetic effects. An archive of disease genes facilitates diagnostic sequenc-
ing1. Rigorous analysis of the functional relationships across a set of genes linked to a particular disease state has 
the potential to provide robust molecular characterization of both disease pathogenesis and human physiology, 
and could help illuminate a causal structure that underpins health and tissue homeostasis. Such work can have 
a profound impact on patient care by prioritizing pathways to therapeutically target, guiding drug development, 
suggesting drug repurposing opportunities, and improving the efficiency of clinical trials2. Additionally, efforts 
to functionally organize disease genes would provide a foundation for the development of a new disease taxon-
omy that is grounded in biology, rather than clinical observations of symptoms alone. The need to develop an 
improved disease taxonomy by incorporating mechanistic information from molecular data has been identified 
as a critical challenge in the advancement of precision medicine3. However, such efforts have yet to be rigorously 
pursued in clinical areas outside of oncology.

Our knowledge of genes that influence human health and disease is largely derived from two complemen-
tary gene mapping approaches. Linkage studies and exome sequencing in families segregating rare Mendelian 
(i.e. monogenic) diseases have identified mutations that are rare in the population and exert strong biological 
effects that tend to be easy to interpret, thereby facilitating identification of a definitive causal gene and providing 
insight into disease mechanism. On the other hand, genome-wide association studies (GWAS) are performed in 
large cohorts of unrelated patients and controls and identify genetic variants with greater population frequencies. 
Variants identified through GWAS tend to be intergenic and have obscure biological effects, thereby hampering 
the definitive identification of individual causal genes. Therefore, Mendelian disease genes offer a clear advantage 
over GWAS loci in gaining biological insight.
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Although Mendelian diseases are infrequent within the population, evidence continues to emerge from 
human genetic studies that etiological information derived from rare diseases caused by single mutations is 
sometimes generalizable to diseases that are common in the population and have a polygenic architecture1,4–7. 
Conceptually, there are a finite number of physiological processes that can drive a particular disease manifes-
tation. If we consider a single biological pathway that contributes to homeostasis in a particular tissue (or set of 
tissues), there may be genes for which a single mutation exerts an extreme effect, or genes for which an accumula-
tion of variants shifts the tissues towards a disease state. This suggests that diseases across the full spectrum of eti-
ological heterogeneity and population prevalence could share an underlying causal structure. Examples in which 
gene identification in Mendelian diseases have led to new therapeutic approaches to common diseases provide 
the most direct evidence for a shared underlying biological architecture1. In further support of this theory, there 
is evidence that Mendelian disease genes make direct contributions to common disorders, for example when 
GWAS identify loci that harbor genes that cause Mendelian disorders1,5,6. Finally, it has been shown that delete-
rious variants in Mendelian loci can contribute non-additively to the risk of developing certain complex diseases 
affecting similar systems5. Therefore, we propose that constructing a molecular taxonomy from genes implicated 
in rare disorders could provide valuable insight into the underlying causal structure of common disorders that 
have clinical presentations overlapping partially with more extreme Mendelian phenotypes.

Dermatological disorders provide salient opportunities for developing methods in precision medicine. Direct 
visual assessment of diagnostic cues and histological findings allows for a relatively high precision in diagnoses 
and nuanced phenotypic subtyping. Hair disorders in particular represent a unique opportunity to develop dis-
ease taxonomies from genetic data, as gene mapping in humans and animal models has identified hundreds of 
genes that affect multiple aspects of hair follicle biology, including hair follicle size, density and cycling, as well 
as hair fiber length, shape, texture and pigmentation. Despite the tremendous amount of data generated from 
genetic studies of hair, and from molecular and functional studies of genes, there has yet to be a large-scale anal-
ysis to integrate all of the available information and generate new biological knowledge about genetic modulators 
of the hair follicle.

Here, we have curated a database of genes for which a single mutation influences hair follicle phenotypes. We 
identified 684 genes from publicly available resources and from literature describing single gene hair disorders in 
humans and mammalian models. We annotated these genes across multiple molecular and functional domains 
and identified 4,937 terms significantly enriched by these genes. In order to demonstrate utility for such a data set, 
we performed two sets of analyses. First, we extracted data pertaining to cellular signaling pathways to construct 
and analyze a hair follicle signaling network. Second, we performed hierarchical clustering analysis and natural 
language processing (NLP) to identify functional clusters of genes and describe relationships within and among 
these sets of genes. This work provides a valuable resource for advancing the implementation of precision medi-
cine and may be used for diagnostic sequencing, genetic characterization of the hair follicle at an unprecedented 
scale, and methods development in disease taxonomy.

Results
We identified 684 protein-coding genes that influence the integrity of the hair follicle via an inherited genetic 
mutation in human patients and/or mammalian models and could be mapped to unique Human Genome 
Organization (HUGO) gene nomenclature committee (HGNC) approved gene symbols (Supplementary Table 1). 
We characterized the biology implicated by these genes by performing annotation enrichment analysis, which 
identified 4,937 significantly enriched annotations (Supplementary Table 2), including terms descriptive of gene 
ontology, biological pathways, protein domains and interactions, gene expression patterns in tissues, and disease 
connections (Supplementary Table 3).

Several biological themes emerge from a review of the significantly enriched annotations. For example, 962 
gene ontology (GO) terms are significantly enriched by 678 genes; 91 of these genes are involved in various cellu-
lar metabolic processes, including glucose and lipid metabolism; 222 influence development of organs and tissues 
outside of the integumentary system including heart, kidney, brain and other tissues of the nervous system, and 
digestive system including pancreas. Pathway analysis identified 300 pathways significantly enriched by 384 of the 
684 genes, including 153 genes that enrich one or more cancer pathways, including not only melanoma and basal 
cell carcinoma, but also brain, pancreatic, thyroid, lung, endometrial, and colorectal cancers, among others; 134 
genes enrich pathways that are annotated to be implicated in response to a viral or bacterial pathogen.

There are 57 cellular signaling pathways significantly enriched by 220 genes, including Wnt, Hippo, TGFβ, 
Hedgehog, Notch, PI3K-Akt, MAPK, ErbB, Ras, and JAK-STAT pathways, among others (Supplementary 
Table 4). An analysis of gene distributions across these signaling pathways reveals a complex network in which 
all pathways are linked by various subsets of genes (Fig. 1). Genes display differing levels of connectivity within 
this signaling network, participating in as few as one pathway (n = 70) and as many as 40 pathways (MAP2K1). 
The most highly connected genes in the network (n = 11), participating in 19 or more pathways each, connect 49 
of the 57 pathways. Of the remaining eight pathways, which do not contain any of these highly connected genes, 
seven are connected by a set of 59 genes linking the Hippo pathway to Hedgehog, Wnt, Notch, and p53 signaling 
pathways (Fig. 1, red edges). This subnetwork is additionally identified by gene community detection (Fig. 1, red 
gene nodes), which identified a total of four gene groupings (modularity = 0.2346) on the basis of pathway mem-
bership (Supplementary Table 4).

We next performed a hierarchical clustering analysis to characterize the functional relationships among these 
684 genes that are captured by significantly enriched annotations. We utilized an unsupervised agglomerative 
clustering algorithm to generate a dendrogram that can be used to estimate relative pairwise molecular and func-
tional similarity between any two genes by tracing branches between them (Fig. 2; Supplementary Table 5). For 
example, a longer distance along branches between two genes indicates fewer similarities, and close neighbors are 
expected to have more annotations in common.
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Finally, we sought to investigate the causal structure of hair disorders under the hypothesis that this compre-
hensive set of genes would converge upon a discrete number of biological processes that are critical for governing 
hair follicle biology. The dendrogram allows us to optimize the number of gene clusters by varying an arbitrary 
height threshold. Through an iterative process, we found that setting the height to h = 1.15 generated 35 seman-
tically meaningful gene clusters. We validated this threshold with two sequential procedures. First, principal 
component analysis (PCA) was performed and the number of components was set to 100, which was indicated to 
be reasonable on the basis of variance analysis. Second, subsequent t-SNE visualization of the PCA output with 
35 clusters labeled was performed, revealing adequate boundaries among clusters, reproduced at various levels of 
perplexity. NLP identified defining features of each cluster (Supplementary Table 6), which were used to develop 
semantic descriptions based on functional annotation content for each of the clusters (Table 1).

Discussion
Perturbations in hair follicle biology are manifested in multiple ways, for example interrupting a developmen-
tal process leading to hair loss, or affecting the integrity of the hair fiber leading to a change in length, texture 
or pigmentation. Since one of our goals was to construct a resource that could be used to provide a compre-
hensive assessment of the biology of this organ, we set out to identify monogenic hair genes regardless of their 
specific phenotypic consequences. We identified 684 protein-coding genes that alter the hair follicle in human 
patients and/or mammalian models, representing the most comprehensive archive of hair follicle genes identified 
in genetic mapping experiments to date (Supplementary Table 1). This resource will be useful for constructing 
filtering algorithms for human genome sequence data generated for diagnostic or investigative purposes. While 
this set of genes is larger than has previously been reported in reviews of hair follicle genetics in humans or mouse 
models (e.g.8,9), as a reference point, gene expression experiments in human and murine models report differ-
ential expression of thousands of genes in the hair follicle (e.g.10,11). In order to be comprehensive, we included 
genes identified in either human or animal studies. We included genes that have only been characterized in 

Figure 1.  Hair follicle signaling network revealed by genes underlying monogenic disorders. Annotations 
significantly enriched by the 684 genes we identified include 57 cellular signaling pathways (diamond nodes) 
that are connected by a network of 220 genes (rectangular nodes). Edges represent gene-pathway memberships. 
The most highly connected genes (black outlines) connect 49 pathways (black outlines). Of the eight pathways 
that do not contain any of the highly connected genes (red outlines), seven are connected by a set of 59 genes 
(indicated by red edges). This subnetwork was also identified by the Louvain method for gene community 
detection (red nodes) as one of four gene communities, and includes all 29 genes of the Hippo pathway. The 
other three gene communities are color-coded, indicating a consistency of results across both analytic methods.
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animal models because of the possibility that they do contribute to human traits, but have not yet been identified 
in patients. For example, animal studies had identified fibroblast growth factor 5 (FGF5) as a crucial regulator of 
hair growth two decades before it was found to underlie a human condition12,13. If this gene list is incorporated 
into algorithms designed for filtering human DNA sequence data, we recommend including animal model genes 
and down-weighting evidence scores.

The genes we identified significantly enrich a set of 4,937 annotations, which provide insight into genetic reg-
ulators of hair follicle biology and relationships among disease genes (Supplementary Table 2). For example, the 
metabolic demands of the hair follicle dramatically increase during the growth stage of the hair cycle (anagen) to 
support the extensive cell proliferation and differentiation that occurs as the organ regenerates, transitioning from 
a quiescent state. It has been shown previously that glucose is a substantial source of energy in the growing hair 
follicle, which utilizes aerobic glycolysis14,15. We identified 40 genes annotated by glucose regulation. Likewise, 
lipid homeostasis is known to be important for maintaining a healthy hair follicle through the identification of 
several genes in various hair loss disorders16. Our analysis identified a total of 36 genes annotated to be involved 
with lipid metabolism. Other metabolic pathways implicated in hair follicle biology by our analysis include pro-
teoglycan metabolism (four genes), cellular amino acid metabolism (six genes), and vitamin metabolism (three 
genes).

Our analysis identified multiple significantly enriched cancer pathways. Limitations of our analytic approach 
prevent us from inferring a relationship between hair disorders and cancers. Rather, the presence of cancer anno-
tations could simply reflect the critical role that regulation of cell proliferation plays in hair follicle biology, given 
that this organ undergoes cycling between regeneration and regression throughout the lifespan. Likewise, anno-
tations that implicate tissues outside of the integumentary system may be capturing shared biology or develop-
mental lineage, and/or could be indicative of multisystem disease, but further studies are needed to understand 
these relationships as well.

While roles for several cellular signaling pathways in hair biology have been previously established, our work 
provides a comprehensive overview of how these pathways are genetically linked in the hair follicle, revealing 
important inflection points that await further investigation, including the identification of a new pathway for 
prioritization in studies focused on modulating hair growth. Previously, the WNT pathway has been shown to be 
a critical regulator of hair follicle development and cycling, and roles for TGFβ, Notch, Hedgehog and JAK-STAT 
signaling have also been established17,18. Our network analysis not only demonstrates contributions from these 
pathways in causing genetic perturbations in the hair follicle, but also implicates Hippo signaling through the 
identification of 29 genes annotated to participate in this pathway (Fig. 1; Supplementary Table 4). While Hippo 
signaling has been previously studied in the skin, specifically in mouse epidermal development and human cuta-
neous squamous cell carcinoma19,20, the pathway has yet to be investigated as a potential modulator of the hair 
follicle.

Hippo signaling has been extensively studied in the contexts of cancer and development, and has been shown 
to influence tumor or organ size through the regulation of cell proliferation and apoptosis21,22. In fact, the pathway 
was originally given its name because genetic perturbations thereof generated “hippopotamus-sized” organs22. 
Interestingly, the most common form of hair loss, androgenetic alopecia (i.e. male pattern baldness; MPB), has 
long been characterized as a process of organ miniaturization, whereby hair follicles continue to cycle but undergo 
a reduction in size, resulting in a transition from thick terminal hair to fine vellus hair23. While Hippo signaling 
has yet to be specifically implicated in MPB, there is preliminary genetic evidence that is consistent with such a 

Figure 2.  Molecular taxonomy of hair disorder genes revealed by functional hierarchical clustering analysis of 
684 genes and 4,937 annotations. Unsupervised agglomerative hierarchical clustering was performed to group 
684 genes based on the degree of similarity among their functional annotations. Color-coding distinguishes 35 
clusters created by using an arbitrary threshold of height (h) = 1.15, indicated by a black horizontal line. Genes 
with similar functional annotations are grouped within the same or neighboring clusters. We propose that 
each cluster represents a biological module, a set of genes that converge on a shared biological feature whose 
diagnostic and clinical utility remain to be established.



www.nature.com/scientificreports/

5SCIENtIfIC RePorTS | 7: 16303  | DOI:10.1038/s41598-017-16050-9

hypothesis. The largest MPB GWAS performed to date included a gene-based analysis that identified 112 autoso-
mal genes with genome-wide significant association (Bonferroni correction of α < 2.769e-06)24, four of which are 
annotated to participate in Hippo signaling within the Kyoto Encyclopedia of Genes and Genomes (KEGG; path-
way hsa04390), including WNT6, WNT10A, WNT3, and CTNNB1. We performed pathway enrichment analysis 
of these 112 genes and identified hsa04390:Hippo signaling pathway at a significance level of p = 0.049. Three 

Cluster Gene Count Mapped Genes Term Extraction

1 11 11 choline metabolism in cancer, binding site:atp, kinase, hsa04722:neurotrophin signaling 
pathway, hsa04071:sphingolipid signaling pathway, hsa04910:insulin signaling pathway

2 24 23 pi3k-akt signaling pathway, hsa04014:ras signaling pathway, kinase

3 15 15 hsa05100:bacterial invasion of epithelial cells, hsa04520:adherens junction, hsa04510:focal 
adhesion

4 15 15 hsa04110:cell cycle, 7157:tp53tumor protein p53, heat shock protein, nucleolin

5 8 8 obesity, dna-binding region:nuclear receptor, steroid hormone receptor

6 8 8 NKκB signaling pathway

7 7 7 autoimmune disease, infection, graft-versus-host disease

8 19 18 cardiovascular diseases, autoimmune disease, atherosclerosis, obesity, metabolic syndrome, 
type 2 diabetes

9 13 13 T-cell factor dependent signaling, hormone

10 12 12 lysosome, lysosomal lumen, glycosaminoglycan degradation

11 4 4 synaptic vesicle transport, melanosome organization, lysosomal organelles biogenesis

12 15 14 keratinocyte differentiation, foreskin

13 10 10 keratin, intermediate filament, ipr003054:type ii keratin

14 6 6 keratin, intermediate filament, ipr002957:keratin type i

15 23 21 magnesium, protein heterooligomerization

16 18 17 cell differentiation, fatty acid biosynthesis, iron, go:0030148 sphingolipid biosynthetic 
process

17 3 3 ribosomal protein

18 22 22 cell-cell adherens junction, methylation, gaba type a receptor associated protein like

19 36 36 go:0045892 negative regulation of transcription dna-te, 3065:hdac1histone deacetylase 1, 
domain:leucine-zipper, ipr011598:myc-type basic helix-loop-helix (bhlh) domain

20 22 21 chromatin regulator, 3066:hdac2histone deacetylase 2, go:0006310 dna recombination

21 15 15 go:0007568 aging, hsa04913:ovarian steroidogenesis, iron

22 51 41 cytoplasmic vesicle, endosome, go:0000139 golgi membrane

23 5 5 go:0004713 protein tyrosine kinase activity, go:0008543 fibroblast growth factor receptor 
signaling, go:0036092 phosphatidylinositol-3-phosphate biosynthesic process

24 39 39 go:0042438 melanin biosynthetic process, go:0033162 melanosome membrane, go:0043066 
negative regulation of apoptotic process

25 6 6 go:0030057 desmosome, ipr014868:cadherin prodomain, ipr027397:catenin binding 
domain

26 16 16 go:0032496 response to lipopolysaccharide, myocardial infarction, go:0006954 
inflammatory response

27 61 53 go:0007399 nervous system development, lipoprotein, cell projection

28 21 18 homeobox, go:0001942 hair follicle development

29 34 32 5914:retinoic acid receptor alpha(rara), cross-link:Glycyl lysine isopeptide (Lys-Gly) 
(interchain with G-Cter in SUMO), dna-binding, transcription regulation

30 37 35 go:0005887 integral component of plasma membrane, calcium transport, go:0043588 skin 
development

31 40 31 go:0043473 pigmentation

32 27 27 go:0007155 cell adhesion, go:0030198 extracellular matrix organization, go:0005788 
endoplasmic reticulum lumen

33 14 14 ipr001881:egf-like calcium-binding, ipr009030:insulin-like growth factor binding protein, 
n terminal

34 10 10
hsa04550:signaling pathways regulating pluripotency of stem cells, hsa05205:proteoglycans 
in cancer, hsa04390:hippo signaling pathway, hsa04916:melanogenesis, wnt signaling 
pathway

35 17 16 go:0005125 cytokine activity, sm00204:tgfb, growth factor, go:0008285 negative regulation 
of cell proliferation

Table 1.  Summary of natural language processing of cluster annotations. NLP identified the most frequent 
significantly enriched annotations specific to each of the 35 clusters, allowing for semantic interpretation of 
the hierarchical clustering analysis. Mapped genes indicate the number of genes annotated by at least one 
NLP feature. Dominant features of clusters suggest the functional significance of modules revealed by our 
analytic approach. In order to increase specificity of terms, annotations that appeared in more than 21 clusters 
(60%) were excluded from NLP. A list of the 20 most enriched annotations for each cluster may be found in 
Supplementary Table 6.
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of these genes reside at loci that were also associated with MPB in an independent GWAS (WNT6, WNT10A, 
WNT3)25. Our analysis of genes that establish a hair follicle cellular signaling network identified the Hippo path-
way and a set of 59 genes that link this pathway to Wnt, Notch, Hedgehog and p53 signaling pathways (Fig. 1). A 
definitive role for Hippo signaling in the pathogenesis of MPB awaits further investigation.

In order to characterize relationships among the 684 genes that influence hair follicle biology through single 
mutations, we used the set of 4,937 significantly enriched annotations to perform hierarchical clustering. We 
identified an organizational scheme derived from functional and molecular data, and thus rooted in biology 
(Fig. 2; Supplementary Table 5). As a preliminary strategy to understand the biological structure suggested by 
this clustering, we defined 35 gene clusters by optimizing a height threshold (h = 1.15) and using NLP to identify 
biological themes within clusters (Table 1). We propose that each cluster represents a biological module, a set of 
genes that converge on a shared biological feature whose diagnostic and clinical utility remain to be established. 
We found, for example, that Cluster 7 represents a set of genes annotated by terms related to autoimmune disease 
and pathogen response, and contains a number of genes that mediate tissue interactions with the immune system, 
including INFG, IL2, IL2RB, and FAS. This supports recent work that has implicated the immune system in hair 
follicle development26, and suggests further investigation into roles that the immune system may play in hair 
follicle cycling and homeostasis is warranted.

While our work provides a framework for understanding the biology that influences hair follicle disease, 
future work linking the biological modules that we identified to disease phenotypes will help to better understand 
the complex relationship between molecular functions of genes and the disease that arise from mutations in them. 
There is preliminary evidence that our gene clustering may have diagnostic relevance. For example, cluster 18 is 
enriched with annotations such as “cell-cell adherens junction” and contains genes that code for components of 
cellular anchoring junctions. Disruptions in these proteins produce multi-system clinical manifestations that 
include hypotrichosis and/or woolly hair27. Mutations in Plakophilin 1 (PKP1) cause an inherited disease impact-
ing ectodermal structures, and patients display hypotrichosis, nail dystrophy, and skin fragility9. Mutations in 
junctional plakoglobin (JUP) and desmoplakin (DSP) cause Naxos disease and Carvajal syndrome respectively, 
two cardiocutaneous syndromes that include symptoms of woolly hair, cardiomyopathy, and palmoplantar kera-
toderma9. Our analysis places these three genes adjacent to each other in cluster 18, seemingly capturing biolog-
ical similarities among disease entities with partially overlapping phenotypes.

Alternatively, some clustering results suggest that there may be degenerate mapping between clinical symp-
toms and molecular or functional characterization of disease genes. For example, uncombable hair syndrome is a 
nonsyndromic hair disorder with three recently identified causative genes: tricohyalin (TCHH), transglutaminase 
3 (TGM3), and peptidylarginine deiminase 3 (PADI3)28. Our hierarchical clustering analysis placed TGM3 and 
TCHH in cluster 22, whereas PADI3 is in cluster 31. An analysis of annotations that are significantly enriched 
by these three genes suggests that it is the distribution of transcription factor binding sites that is driving this 
distinction (Supplementary Table 7). Interestingly, these genes show different patterns of gene expression in The 
Genotype-Tissue Expression (GTEx) database29, which suggests differences in regulatory elements. While further 
investigation is required to determine if these results have clinical relevance, this example does suggest possible 
biological distinctions between diseases that are traditionally grouped together as a single entity on the basis of 
symptoms, providing motivation for further development of a disease taxonomy that incorporates data from 
molecular biology experiments. Future work should focus on integrating and evaluating clinical manifestations 
with molecular annotations.

The goal of clustering methods is to find structure within data, grouping similar elements within the same 
cluster and dissimilar elements in different clusters. For example, our clustering model separates genes encod-
ing type II (basic) keratins (cluster 13) and type I (acidic) keratins (cluster 14) into adjacent clusters, capturing 
both their similarities and differences by their relative dendrogram positions. However, as with any unsupervised 
machine learning method, analytic outcomes may be influenced by the data available for input and the choice of 
algorithms used to determine similarities among elements (in this case, genes). For example, we annotated genes 
with functional and molecular data that is currently available in the public domain and integrated into pathway 
analysis software30. Experimental data that continues to accumulate over time could influence clustering results. 
Furthermore, there are a number of algorithms available to uncover structure in data. We applied unsupervised 
agglomerative hierarchical clustering, which required us to empirically determine an optimal number of clusters 
within the data set. We used an iterative process evaluating and integrating NLP results to partition our dendro-
gram into 35 clusters, obtained by setting a height threshold of h = 1.15. We believe this to be an optimal oper-
ationalization of causal structure because it generated semantically meaningful clusters with NLP. Additionally, 
while the dimensionality reduction method that we employ has been widely adopted for deriving meaning from 
high-dimensional data31, interpretation of results has some inherent challenges. For example, the algorithm 
adapts to the underlying data, performing different translations on different regions of data, which may present 
a source of confusion in visual interpretation32. The analysis that we report here is presented as an example of the 
diverse analytic approaches that could be applied to this Resource in future investigations.

Our work in identifying and functionally annotating a comprehensive set of genes that underlie hair disor-
ders provides a valuable resource for both research and clinical communities embarking on precision medicine 
initiatives for skin and hair disorders, and could be useful for methods development more broadly relevant to the 
implementation of precision medicine across other clinical areas. Understanding disease causation in patients 
and devising efficient therapeutic strategies requires knowledge not only of the genes implicated in disease, but 
also of their interactions through biological pathways, which may reveal a higher order causal structure of dis-
ease4. This archive provides a tool for pinpointing loci harboring critical mutations that underlie diseases with 
clinical manifestations in the hair follicle, and for surveying pathways and biological processes that modulate the 
hair follicle. We have utilized analytic approaches drawn from the field of machine learning in an initial attempt to 
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functionally link genes based on biological knowledge that is currently available in the public domain, uncovering 
insight into physiology that is critical to hair biology and disease. Our work invites prioritization of the Hippo 
signaling pathway in future studies of molecular modulation of hair growth and has identified higher order bio-
logical structure among these 684 genes. This work creates an opportunity for future methods development in 
precision medicine.

Methods
Identification of genes.  We compiled a genotype-phenotype database incorporating genes from two pub-
licly available data sources, Online Mendelian Inheritance in Man (OMIM) catalog and Jackson Laboratories 
Mouse Genome Informatics (MGI) database, as well as human and mammalian model studies from the literature 
(Supplementary Table 1).

A preliminary list of human genes influencing hair phenotype was created using a series of phenotype searches 
within OMIM. We defined the following 7 categories to characterize hair phenotype: alopecia, hair cycling, 
hypertrichosis, hair morphogenesis, hair pigmentation, hair structure, and secondary effects on hair. “Secondary 
effects” refers to alterations in hair phenotype secondary to a primary alteration in metabolic phenotype. We 
reduced the risk of false-negative search results by using multiple synonymous descriptors as search terms in 
OMIM (Supplementary Table 8). We mitigated the risk of false-positive search results by excluding genes that 
were annotated in OMIM to be without a known gene sequence, and/or with a provisional relationship with the 
disease, and/or without a gene map locus. Corresponding search terms were used to identify mouse genes with 
human orthologs linked to hair phenotypes within the MGI database. A list of additional genes known to influ-
ence hair phenotype in humans and other mammalian models, including mouse, rat, dog, and horse, was com-
piled from reports in the literature28,33–39. We next excluded genes that are not protein-coding and/or do not have 
human orthologs, removing pseudogenes, heritable phenotypic markers, quantitative trait loci, chromosomal 
inversions, transgenic mutations that implicated multiple genes, and polygenic mutations. Gene symbols were 
standardized to HGNC-approved gene symbols for subsequent annotation and analysis.

Gene annotation.  The list of official gene symbols was uploaded to the functional annotation tool on the 
Database for Annotation, Visualization and Integrated Discovery (DAVID) v.6.8. Species and background were 
set to “Homo sapiens.” Queried categories of annotations are listed in Supplementary Table 3. Functional anno-
tations for which p < 0.05 were downloaded to an Excel database (Excel 2016, Microsoft Corp, Seattle, WA). 
Significantly enriched annotations that were molecularly uninformative were removed (“disease mutation”, “pol-
ymorphism”, and “sequence variant”). To prepare the data for functional hierarchical clustering, a binary matrix 
of annotations for the set of genes was created in Excel.

Signaling network construction.  Significantly enriched pathways that contain the term “signaling” were 
extracted from the gene annotation database (Supplementary Table 2). Pathway names and gene names were 
imported to Cytoscape v.3.4.0 (Supplementary Table 4) to construct a network with the edge-weighted spring 
embedded layout40. Highly connected genes are defined as being within the 95th percentile of pathway connec-
tions, which was empirically determined to be participating in more than 16 pathways (Supplementary Figure 1).

Gene community detection.  To identify communities of genes with similar pathway membership we used 
the Louvain method as implemented in R 3.3.3 using the igraph package, first constructing an adjacency matrix 
from Supplementary Table 4 in R41.

Hierarchical clustering.  Subsequent analyses were performed using Python in Jupyter Notebook, using 
the numpy, sklearn, pandas, and SciPy packages, as well as matplotlib and Seaborn visualization libraries. 
Dimensionality reduction was performed using the principal component analysis function from sklearn with the 
number of components set to 100, followed by visualization using t-distributed stochastic neighbor embedding 
(t-SNE) via the TSNE function from sklearn, with perplexity values in the range (5–250). A pairwise distance 
matrix was created using the pdist function in the scipy.spatial.distance module in Python, applying the Jaccard 
metric. Unsupervised agglomerative hierarchical clustering was performed with the linkage function in the scipy.
cluster.hierarchy module, with method set to Ward (i.e. Ward variance minimization). The output was plotted 
with the Seaborn visualization library in Python. Several iterations of NLP (see below) were performed at various 
height thresholds partitioning the dendrogram into different numbers of clusters. An arbitrary height threshold 
of 1.15 was set to partition the dendrogram into a set of 35 clusters, which was found to yield semantically mean-
ingful results from NLP.

Natural language processing.  NLP using pandas and numpy packages and matplotlib plotting library 
in Python identified the most frequent annotations associated with each cluster. All significantly enriched 
annotations that appeared in fewer than 60% of the clusters (n ≤ 20) were used for the analysis. Weights were 
assigned based on the relative frequency of a given annotation across clusters, to preferentially down-weight 
common annotations (Supplementary Table 5). The relative weights were defined as the count of a given anno-
tation in a given cluster, multiplied by the natural log of the inverse quotient of the count of that annotation 
across all clusters divided by the total count of all annotations across all clusters. This allowed for the rational 
development of semantic descriptions of clusters, derived from frequent annotations associated with a given 
cluster (Table 1).



www.nature.com/scientificreports/

8SCIENtIfIC RePorTS | 7: 16303  | DOI:10.1038/s41598-017-16050-9

References
	 1.	 Chong, J. X. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. American journal of 

human genetics 97, 199–215, https://doi.org/10.1016/j.ajhg.2015.06.009 (2015).
	 2.	 Brooks, P. J., Tagle, D. A. & Groft, S. Expanding rare disease drug trials based on shared molecular etiology. Nat Biotechnol 32, 

515–518, https://doi.org/10.1038/nbt.2924 (2014).
	 3.	 In Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease The National 

Academies Collection: Reports funded by National Institutes of Health (2011).
	 4.	 Bauer-Mehren, A. et al. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental 

diseases. PloS one 6, e20284, https://doi.org/10.1371/journal.pone.0020284 (2011).
	 5.	 Blair, D. R. et al. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 155, 70–80, 

https://doi.org/10.1016/j.cell.2013.08.030 (2013).
	 6.	 Lupski, J. R., Belmont, J. W., Boerwinkle, E. & Gibbs, R. A. Clan genomics and the complex architecture of human disease. Cell 147, 

32–43, https://doi.org/10.1016/j.cell.2011.09.008 (2011).
	 7.	 Antonarakis, S. E. & Beckmann, J. S. Mendelian disorders deserve more attention. Nat Rev Genet 7, 277–282, https://doi.

org/10.1038/nrg1826 (2006).
	 8.	 Nakamura, M., Schneider, M. R., Schmidt-Ullrich, R. & Paus, R. Mutant laboratory mice with abnormalities in hair follicle 

morphogenesis, cycling, and/or structure: an update. Journal of dermatological science 69, 6–29, https://doi.org/10.1016/j.
jdermsci.2012.10.001 (2013).

	 9.	 Shimomura, Y. Journey toward unraveling the molecular basis of hereditary hair disorders. Journal of dermatological science 84, 
232–238, https://doi.org/10.1016/j.jdermsci.2016.08.006 (2016).

	10.	 Chew, E. G. et al. Differential Expression between Human Dermal Papilla Cells from Balding and Non-Balding Scalps Reveals New 
Candidate Genes for Androgenetic Alopecia. The Journal of investigative dermatology 136, 1559–1567, https://doi.org/10.1016/j.
jid.2016.03.032 (2016).

	11.	 Rezza, A. et al. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing 
Hair Follicles. Cell Rep 14, 3001–3018, https://doi.org/10.1016/j.celrep.2016.02.078 (2016).

	12.	 Hebert, J. M., Rosenquist, T., Gotz, J. & Martin, G. R. FGF5 as a regulator of the hair growth cycle: evidence from targeted and 
spontaneous mutations. Cell 78, 1017–1025 (1994).

	13.	 Higgins, C. A. et al. FGF5 is a crucial regulator of hair length in humans. Proceedings of the National Academy of Sciences of the 
United States of America 111, 10648–10653, https://doi.org/10.1073/pnas.1402862111 (2014).

	14.	 Philpott, M. P. & Kealey, T. Metabolic studies on isolated hair follicles: hair follicles engage in aerobic glycolysis and do not 
demonstrate the glucose fatty acid cycle. The Journal of investigative dermatology 96, 875–879 (1991).

	15.	 Adachi, K. & Uno, H. Glucose metabolism of growing and resting human hair follicles. Am J Physiol 215, 1234–1239 (1968).
	16.	 Stenn, K. S. & Karnik, P. Lipids to the top of hair biology. The Journal of investigative dermatology 130, 1205–1207, https://doi.

org/10.1038/jid.2010.52 (2010).
	17.	 Harel, S. et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv 1, e1500973, https://doi.org/10.1126/

sciadv.1500973 (2015).
	18.	 Paus, R. & Cotsarelis, G. The biology of hair follicles. The New England journal of medicine 341, 491–497, https://doi.org/10.1056/

NEJM199908123410706 (1999).
	19.	 Walko, G. et al. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. 

Nat Commun 8, 14744, https://doi.org/10.1038/ncomms14744 (2017).
	20.	 Zhang, H., Pasolli, H. A. & Fuchs, E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and 

differentiation in skin. Proceedings of the National Academy of Sciences of the United States of America 108, 2270–2275, https://doi.
org/10.1073/pnas.1019603108 (2011).

	21.	 Attisano, L. & Wrana, J. L. Signal integration in TGF-beta, WNT, and Hippo pathways. F1000Prime Rep 5, 17, https://doi.
org/10.12703/P5-17 (2013).

	22.	 Yu, F. X., Zhao, B. & Guan, K. L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163, 811–828, https://
doi.org/10.1016/j.cell.2015.10.044 (2015).

	23.	 Whiting, D. A. Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. Journal of the American 
Academy of Dermatology 45, S81–86 (2001).

	24.	 Hagenaars, S. P. et al. Genetic prediction of male pattern baldness. Plos Genet 13, e1006594, https://doi.org/10.1371/journal.
pgen.1006594 (2017).

	25.	 Heilmann-Heimbach, S. et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern 
baldness. Nat Commun 8, 14694, https://doi.org/10.1038/ncomms14694 (2017).

	26.	 Ali, N. et al. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell 169, 1119–1129 e1111, https://doi.
org/10.1016/j.cell.2017.05.002 (2017).

	27.	 Porter, P. S. The genetics of human hair growth. Birth defects original article series 7, 69–85 (1971).
	28.	 FB, U. B. et al. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome. 

American journal of human genetics 99, 1292–1304, https://doi.org/10.1016/j.ajhg.2016.10.004 (2016).
	29.	 Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv Biobank 13, 307–308, https://doi.

org/10.1089/bio.2015.29031.hmm (2015).
	30.	 Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nature protocols 4, 44–57, https://doi.org/10.1038/nprot.2008.211 (2009).
	31.	 Maaten, L. V. D. & Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579–2605 (2008).
	32.	 Wattenberg, M., Viégas, F. & Johnson, I. How to Use t-SNE Effectively. Distill 1, e2 (2016).
	33.	 Dierks, C., Momke, S., Philipp, U. & Distl, O. Allelic heterogeneity of FGF5 mutations causes the long-hair phenotype in dogs. 

Animal genetics 44, 425–431, https://doi.org/10.1111/age.12010 (2013).
	34.	 Drogemuller, C. et al. A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science 321, 1462, https://doi.

org/10.1126/science.1162525 (2008).
	35.	 Kaelin, C. B. & Barsh, G. S. Genetics of pigmentation in dogs and cats. Annual review of animal biosciences 1, 125–156, https://doi.

org/10.1146/annurev-animal-031412-103659 (2013).
	36.	 Oguro-Okano, M., Honda, M., Yamazaki, K. & Okano, K. Mutations in the melanocortin 1 receptor, beta-defensin103 and agouti 

signaling protein genes, and their association with coat color phenotypes in Akita-inu dogs. The Journal of veterinary medical science 
73, 853–858 (2011).

	37.	 Parker, H. G., Chase, K., Cadieu, E., Lark, K. G. & Ostrander, E. A. An insertion in the RSPO2 gene correlates with improper coat in 
the Portuguese water dog. The Journal of heredity 101, 612–617, https://doi.org/10.1093/jhered/esq068 (2010).

	38.	 Schoenebeck, J. J. & Ostrander, E. A. Insights into morphology and disease from the dog genome project. Annual review of cell and 
developmental biology 30, 535–560, https://doi.org/10.1146/annurev-cellbio-100913-012927 (2014).

	39.	 Shirokova, V. et al. Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation. Stem cells (Dayton, Ohio) 
34, 1896–1908, https://doi.org/10.1002/stem.2363 (2016).

http://dx.doi.org/10.1016/j.ajhg.2015.06.009
http://dx.doi.org/10.1038/nbt.2924
http://dx.doi.org/10.1371/journal.pone.0020284
http://dx.doi.org/10.1016/j.cell.2013.08.030
http://dx.doi.org/10.1016/j.cell.2011.09.008
http://dx.doi.org/10.1038/nrg1826
http://dx.doi.org/10.1038/nrg1826
http://dx.doi.org/10.1016/j.jdermsci.2012.10.001
http://dx.doi.org/10.1016/j.jdermsci.2012.10.001
http://dx.doi.org/10.1016/j.jdermsci.2016.08.006
http://dx.doi.org/10.1016/j.jid.2016.03.032
http://dx.doi.org/10.1016/j.jid.2016.03.032
http://dx.doi.org/10.1016/j.celrep.2016.02.078
http://dx.doi.org/10.1073/pnas.1402862111
http://dx.doi.org/10.1038/jid.2010.52
http://dx.doi.org/10.1038/jid.2010.52
http://dx.doi.org/10.1126/sciadv.1500973
http://dx.doi.org/10.1126/sciadv.1500973
http://dx.doi.org/10.1056/NEJM199908123410706
http://dx.doi.org/10.1056/NEJM199908123410706
http://dx.doi.org/10.1038/ncomms14744
http://dx.doi.org/10.1073/pnas.1019603108
http://dx.doi.org/10.1073/pnas.1019603108
http://dx.doi.org/10.12703/P5-17
http://dx.doi.org/10.12703/P5-17
http://dx.doi.org/10.1016/j.cell.2015.10.044
http://dx.doi.org/10.1016/j.cell.2015.10.044
http://dx.doi.org/10.1371/journal.pgen.1006594
http://dx.doi.org/10.1371/journal.pgen.1006594
http://dx.doi.org/10.1038/ncomms14694
http://dx.doi.org/10.1016/j.cell.2017.05.002
http://dx.doi.org/10.1016/j.cell.2017.05.002
http://dx.doi.org/10.1016/j.ajhg.2016.10.004
http://dx.doi.org/10.1089/bio.2015.29031.hmm
http://dx.doi.org/10.1089/bio.2015.29031.hmm
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1111/age.12010
http://dx.doi.org/10.1126/science.1162525
http://dx.doi.org/10.1126/science.1162525
http://dx.doi.org/10.1146/annurev-animal-031412-103659
http://dx.doi.org/10.1146/annurev-animal-031412-103659
http://dx.doi.org/10.1093/jhered/esq068
http://dx.doi.org/10.1146/annurev-cellbio-100913-012927
http://dx.doi.org/10.1002/stem.2363


www.nature.com/scientificreports/

9SCIENtIfIC RePorTS | 7: 16303  | DOI:10.1038/s41598-017-16050-9

	40.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 
2498–2504, https://doi.org/10.1101/gr.1239303 (2003).

	41.	 Blondel, V. D., Jean-Loup, G., Renaud, L. & Etienne, L. Fast unfolding of communities in large networks. Journal of Statistical 
Mechanics: Theory and Experiment 2008, P100008 (2008).

Acknowledgements
We received support from P30AR069632 Columbia University Skin Disease Resource-Based Center (epiCURE) 
and the National Alopecia Areata Foundation (to L.P.). Funding from Collaboratory@Columbia supported this 
collaboration between the Columbia University Data Science Institute and the Columbia University College of 
Physicians and Surgeons. We thank Drs Iuliana Ionita-Laza and Zihuai He for biostatistics advice, Dr. Claire 
Higgins for critical insights and perspectives on hair follicle biology, and Dr. Annemieke de Jong for help 
with interpreting lipid data. We are grateful to Drs Katherine A. Fantauzzo, Angela M. Christiano and Richard 
Mayeux for helpful feedback on this work.

Author Contributions
R.K.S. contributed to the development and execution of the search algorithm and analytic plan. K.C. provided 
additional analysis. X.L. and A.C.M. contributed to the development of the analytic plan and helped perform 
data analysis. R.K.S. and L.P. wrote the manuscript and prepared displays. L.P. contributed to data analysis and 
is responsible for the conception, design, oversight, and execution of this study, the interpretation of data, and 
the management of collaborations.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-16050-9.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1038/s41598-017-16050-9
http://creativecommons.org/licenses/by/4.0/

	Computational derivation of a molecular framework for hair follicle biology from disease genes

	Results

	Discussion

	Methods

	Identification of genes. 
	Gene annotation. 
	Signaling network construction. 
	Gene community detection. 
	Hierarchical clustering. 
	Natural language processing. 

	Acknowledgements

	Figure 1 Hair follicle signaling network revealed by genes underlying monogenic disorders.
	Figure 2 Molecular taxonomy of hair disorder genes revealed by functional hierarchical clustering analysis of 684 genes and 4,937 annotations.
	Table 1 Summary of natural language processing of cluster annotations.




