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The heparan sulfate proteoglycan Syndecan-1 binds cytokines, morphogens and

extracellular matrix components, regulating cancer stem cell properties and invasiveness.

Syndecan-1 is modulated by the heparan sulfate-degrading enzyme heparanase, but

the underlying regulatory mechanisms are only poorly understood. In colon cancer

pathogenesis, complex changes occur in the expression pattern of Syndecan-1 and

heparanase during progression from well-differentiated to undifferentiated tumors. Loss

of Syndecan-1 and increased expression of heparanase are associated with a change in

phenotypic plasticity and an increase in invasiveness, metastasis and dedifferentiation.

Here we investigated the regulatory and functional interplay of Syndecan-1 and

heparanase employing siRNA-mediated silencing and plasmid-based overexpression

approaches in the human colon cancer cell line Caco2. Heparanase expression and

activity were upregulated in Syndecan-1 depleted cells. This increase was linked

to an upregulation of the transcription factor Egr1, which regulates heparanase at

the promoter level. Inhibitor experiments demonstrated an impact of focal adhesion

kinase, Wnt and ROCK-dependent signaling on this process. siRNA-depletion of

Syndecan-1, and upregulation of heparanase increased the colon cancer stem

cell phenotype based on sphere formation assays and phenotypic marker analysis

(Side-population, NANOG, KLF4, NOTCH, Wnt, and TCF4 expression). Syndecan-1

depletion increased invasiveness of Caco2 cells in vitro in a heparanase-dependent

manner. Finally, upregulated expression of heparanase resulted in increased resistance

to radiotherapy, whereas high expression of enzymatically inactive heparanase promoted

chemoresistance to paclitaxel and cisplatin. Our findings provide a new avenue to target

a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic

spread and cancer recurrence.
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INTRODUCTION

In the tumor microenvironment (TME), repopulation of cells
after radiotherapy and chemotherapy represents a mechanism
of resistance and tumor recurrence (1). Abnormal changes in
extracellular matrix (ECM) components and their degradative
enzymes causes an imbalance between tissue homeostasis and
cancer, resulting in changes in cell plasticity associated with
increased invasion, metastasis and dedifferentiation (2). The
“metastatic niche” is regulated by the “cancer stem cell niche”
with abnormal changes in ECM dynamics (2–4). For example,
heparanase (HPSE), matrix metalloproteinases, and sulfatases,
are highly expressed in many cancers, whereas some heparan
sulfate sulfotransferases are silenced (5–7). Indeed, proteoglycan-
degrading enzymes such as HPSE, the only mammalian
endoglycosidase capable of cleaving heparan sulfate, regulate
ECM dynamics that are under the tight homeostatic control of
several signaling pathways (7, 8). Recent studies indicate that
the interplay between the cell surface proteoglycan Syndecan-
1 (Sdc-1) and HPSE have important functional connections in
the progression of colorectal cancer and myeloma. For example,
in colon cancer progression, there is a gradual increase in
the expression of HPSE (9) and a decrease in Sdc-1 (10)
expression during progression from well-differentiated to poorly
differentiated colon carcinoma. Differences in the mRNA and
protein expression of Sdc-1 have been noted, as Sdc-1 mRNAwas
strongly overexpressed inmetastatic colon tumors, whereas using
immunohistochemistry, metastatic tumors showed a dramatic
decrease in staining, while labeling was still strong in the
adjacent normal mucosa (11, 12). Moreover, in metastatic
tumors HPSE mRNA levels were reduced in 40% of patients,
whereas overexpression was observed in 20% of patients,
indicating considerable heterogeneity (11). Deeply invading
colon carcinoma cells showed decreased expression of Sdc-1
(13) and increased expression of HPSE (14, 15). Consistent with
these findings, the malignant transformation of Caco2 colon
carcinoma cells resulted in a decrease in the Sdc-1 expression (15)
which might also regulate HPSE activity. Transcriptional studies
show that loss of Sdc-1 (13, 16) and enhanced expression of
HPSE (17–19) correlate with tumor growth, invasion, metastatic
potential, and reduced postoperative survival of cancer patients
(20). In colitis and the associated tumorigenic models, the
transcriptional regulator early growth response 1 (EGR1) acts as
a potent inducer of HPSE in colonic epithelial tumor cells (17,
21, 22). While Sdc-1 expression maintains epithelial integrity,
loss of expression results in high HPSE expression, changes
in epithelial morphology and polarity, thereby promoting
epithelial-mesenchymal transition (EMT) (23). Thus, Sdc-1 and
HPSE work together to enhance cell invasiveness via EMT
pathways, which may further enhance stem cell-like pluripotency
signatures (24, 25). As EMT regulates metastasis (26–28), high
expression of HPSE may further enhance metastasis based on the
concept of migrating cancer stem cells (CSCs). Data in different
tumor entities have revealed further pathogenetic mechanisms
for the functional interplay of Sdc-1 and HPSE. For example,
in multiple myeloma, high HPSE expression is linked to poor
prognosis, and contributes to disease pathogenesis by inducing

Sdc-1 shedding from the tumor cell membrane (29), which
promotes sequestering of shed Sdc-1 bound growth factors
in the tumor microenvironment (30). Additional molecular
mechanisms linked to HPSE overexpression include activation
of the Erk signaling pathway, the reduction of nuclear Sdc-
1 leading to increased acetylated histone H3 and subsequent
upregulation of vascular endothelial growth factor (VEGF) and
matrix metalloproteinase (MMP)-9 (30). Finally, both HPSE
and Sdc-1 regulate the activity of pathways relevant to cancer
progression, such as the stemness-associatedWnt pathway (3, 31,
32) and metastasis-related focal adhesion kinase (FAK) signaling
(3, 33, 34).

Although high HPSE expression in various solid tumors
confers resistance to stress and chemo/radiotherapy (35–37),
its role in promoting tumor initiation via the expression of
CSC-like signatures has not been elucidated. Owing to the role
of Sdc-1 and HPSE in tumor growth, invasion and metastasis
we aimed at investigating the underlying molecular interplay
between Sdc-1 and HPSE and the possible signaling routes in the
well-established colon cancer cell line Caco2, applying both stable
overexpression and transient siRNA knockdown methods. Our
results report for the first time the dynamic interplay between
Sdc-1 and HPSE in stemness-associated colon cancer via a
signaling axis involving early growth response protein 1 (EGR1),
FAK, andWnt. Our findings could form a conceptual framework
for establishing novel therapeutic possibilities and recognize the
long-term driven functions of Sdc-1 and HPSE in colon cancer.

MATERIALS AND METHODS

Materials
Tissue culture supplies were from Gibco BRL (Karlsruhe,
Germany). Unless stated otherwise, all chemicals were from
Sigma Aldrich (Deisenhofen, Germany).

Cell Culture
The human colon carcinoma cell line Caco2 (German Collection
of Microorganisms and Cell Cultures, Department of Human
and Animal Cell Cultures, Braunschweig, Germany) was stably
transfected with a pcDNA3.1 control plasmid (Invitrogen), or
plasmids overexpressing Syndecan-1 cDNA (38), native HPSE,
or enzymatically inactive HPSE double mutated in Glu225 and
Glu343 (39). Stable clones were selected using 800µg/ml G418.
Caco2 cells were maintained in RPMImedia containing 10% fetal
calf serum (FCS), 1% glutamine, 1% penicillin/streptomycin and
800µg/ml G418 in a humidified atmosphere of 5% CO2 at 37◦C.
Successful transfection was confirmed by qPCR.

siRNA Knockdown of Syndecan-1 and
Egr1 Expression
siRNA knockdown was performed using pre-validated siRNAs
#12634 and # 4537 (Ambion, Cambridgeshire, UK) targeting
the coding regions of Syndecan-1, and EGR1, respectively,
and a negative control siRNA (negative control #1, Ambion).
In preliminary experiments, we optimized conditions for
the efficient transfection of Caco2 cells. Fresh medium was
added 16 h after transfection, and experiments were conducted
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FIGURE 1 | The heparan sulfate proteoglycan Syndecan-1 regulates Caco2 cell invasiveness in a heparanase-dependent manner. (A) Confirmation of Sdc-1 siRNA

knockdown and overexpression by qPCR. *p < 0.05 vs. all groups. (B) Confirmation of Sdc-1 siRNA knockdown by flow cytometry. (C) siRNA knockdown (siSdc1) or

plasmid-mediated overexpression (OE) of Sdc-1 leads to up-or downregulation of HPSE expression, respectively (qPCR). ***p < 0.001 vs. all groups. (D,E) Sdc-1

knockdown results in an upregulation of HPSE enzymatic activity (D) and a substantial 3-fold activation of HPSE promoter activity (E, luciferase reporter assay). *p <

0.05 vs. control. (F,G) Plasmid-mediated overexpression of enzymatically active HPSE (HPSE) results in a decrease of Sdc-1 expression (qPCR). Overexpression of an

enzymatically inactive HPSE variant (mut-HPSE) did not affect Sdc-1 expression. ***p < 0.01 vs. control. (H) Caco2 cell invasion is stimulated in response to

Sdc-1silencing. The HPSE inhibitor SST0001 abolishes the increased Matrigel invasiveness of Sdc-1 siRNA-treated Caco2 cells. *p<0.05 vs. control. (I) Sdc-1 siRNA

knockdown affects the expression of the EMT markers E-cadherin and vimentin. Upper panel: Western blotting demonstrates downregulation of the epithelial marker

E-cadherin (Cdh1) upon Sdc-1 silencing. Tubulin (Tub) = loading control. Representative picture of three independent experiments. Lower panel: qPCR analysis

reveals upregulation of the mesenchymal marker vimentin upon Sdc-1-silencing, which could be reversed by the HPSE inhibitor SST0001. *p < 0.05 vs. untreated

control and treated Sdc1 siRNA. All panels N ≥ 3. Error bars = SEM.
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48 h after transfection. Target downregulation was confirmed
by qPCR.

Cell viability and Chemosensitivity Assay
Cell viability was evaluated by MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) assay exactly as previously
described (6). To test chemosensitivity, the MTT assay was
performed in the presence of titrated concentrations of Paclitaxel
(10 pM−1µM), and cis-diamineplatinum II dichloride (50
nM−5mM), which were added 24 h after initial cell plating.

Invasion Assay
BioCoat Matrigel Invasion Chamber (BD Biosciences,
Heidelberg, Germany) assays are based on the chemotaxis-
driven invasion of porous filter membranes coated with a
basement membrane-like matrix. Assays were performed exactly
as previously described (6) using an invasion time of 4 days. For
inhibitor studies, SST0001 (1µg/ml; = Roneparstat) (40, 41)
was added to both compartments 24 h after cell plating. Relative
invasiveness was expressed as percentage of the cell number
on compound-treated inserts compared with control inserts.
The invasion experiments were performed and analyzed by two
different researchers (SKK, BP).

Quantitative Real-Time PCR
Total cellular RNA was isolated using rna-OLS (OMNI
Life Science, Hamburg, Germany) and reverse transcribed
(Advantage First strand cDNA synthesis kit; Fermentas, St.
Leon-Rot, Germany). qPCR and melting curve analysis were
performed using Qiagen QuantiTect SYBR Green PCR kit in
a LightCycler (Roche, IN). Expression of additional mRNAs
was analyzed using the following TaqMan probes on an ABI
PRISM 7300 Sequence Detection System, as described previously
(42): 18S rRNA Hs99999901_s1, KLF4 Hs00358836_m1, SDC1
Hs00174579_m1, HPSE Hs00180737_m1. The 2−11Ct method
was used to determine relative gene transcript levels after
normalization to 18S rRNA. PF-562271 (Sigma-Aldrich) was
used for 24 h at 10µg/ml in some experiments.

Western Blot and Immunoprecipitation
Immunoblotting was performed exactly as previously described
(6, 42), using the following primary antibodies (1:1,000): rabbit
polyclonal anti-phospho FAK Y925 (Cell Signaling, Beverly,
MA, USA), rabbit polyclonal anti-FAK (Cell Signaling), rabbit
monoclonal anti-human TCF4 (Cell Signaling), mouse anti-
E-cadherin (1:2,000; BD Biosciences), mouse anti-human α-
Tubulin (Sigma-Aldrich) and appropriate secondary antibodies
(diluted 1:5,000): HRP-conjugated goat-anti-mouse or goat-
anti-rabbit IgG (Merck-Millipore, Darmstadt, Germany). For
immunoprecipitation, cell lysates of Caco2 cells were prepared
72 h after transfection with control or Sdc-1 siRNA as described
previously (42). 0.5mg protein was incubated with 1:50 dilution
of primary antibody (rabbit monoclonal anti-human EGR1, Cell
Signaling) at 4◦C on a rocker platform overnight. Afterward,
the mixture was incubated analogously with 20 µl resuspended
protein A/G-PLUS-Agarose. Immunoprecipitates were pelleted
by centrifugation (1,000 g, 5min, 4◦C), washed four times with

RIPA buffer and boiled in 40 µl SDS sample buffer (5min).
SDS-PAGE, Western blotting, stripping and reprobing were
performed as described previously (6) using 30–60 µg of
protein/lane on 7.5– 12% gels.

Side Population Analysis
Side population (SP) analysis was performed using the Hoechst
33342 dye exclusion technique as previously described (43).
In this assay, a putative CSC population is identified based
on the dye efflux properties of ATP-binding cassette (ABC)
transporters, which are highly expressed in these cells (44). In
some experiments, the inhibitors IWP-2 (10µM) and SST0001
(10µg/ml) were used for 1 h prior to SP analysis. 1 × 106

cells were incubated in DMEM containing 2% (v/v) FCS for
90min at 37◦C either with 5µg/ml Hoechst 33342 (Sigma-
Aldrich) or in the presence of 50µM verapamil (Sigma-Aldrich).
Finally, 2µg/ml propidium iodide was added for cell death
discrimination, and cells were stored on ice until analysis. Cells
were analyzed on a CyFlow Space (Sysmex/Partec) using a 16
mW 375 nm UV laser for excitation, emission was measured at
475 nm (BP 455/50) and at 665 nm (LP 665 nm). Signals were
slivered by a dichroic mirror of 610 nm to measure Hoechst
signal intensity in both channels. All cells with a low Hoechst
fluorescence and which were not visible in the verapamil control
were gated (R2) as SP cells. Data acquisition and processing
were done by using FloMax software (Quantum Analysis,
Münster, Germany).

Sphere Culture of Caco2 Cells
Sphere suspension cultures of Caco2 cells were performed
in a serum-free medium (RPMI, High Glucose,
GlutaMAXTMGibco R©), supplemented with B27 (Gibco R©),
20 ng/ml EGF (Sigma) and 20 ng/ml basic fibroblast growth
factor (bFGF, Immunotools) at a density of 1 x 103 cells/ml.
Sphere cultures were performed and analyzed by three
independent researchers (PP, CC, RR).

Irradiation
Irradiation was performed at room temperature with a linear
accelerator using a dose rate of 4.8Gy min−1 and a dose of
2Gy was applied. To measure the colony-forming ability after
irradiation, 1 x 103 cells were resuspended in 1ml culture
medium, plated into 3.5 cm Petri dishes with a 2.5mm grid
(Nunc, Langenselbold, Germany) and incubated for about 6 days
in a CO2 incubator at 37◦C. Cell colonies with more than 50
cells were counted using a microscope (Olympus, Hamburg,
Germany). The survival fraction was calculated as follows: plating
efficiency treated/plating efficiency control. Radiation resistance
was analyzed by two independent researchers (SKK, AvD).

Promoter Reporter Assay
The 1.9-kb human heparanase promoter region [HPSE (-
1791/+109)-LUC] was subcloned upstream of the LUC gene in
a pGL2 basic reporter plasmid (Promega, Madison, WI, USA)
(45, 46). 24 h after siRNA transfection, cells were replaced with
serum-free media for 6 h and co-transfected with a reporter
construct at 1 µg/well (6 well) using FuGENE 6 reagent
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(Promega) according to the standard protocol. Control cells
were transfected with basic pGL2 plasmid containing LUC
gene alone (without promoter). 46 h after transfection, luciferase
assay was done using the Luciferase Reporter Assay system.
(Promega-E1500). The relative light units were determined in
each sample with a luminometer and results were normalized
against beta-galactosidase activity measured by a colorimetric
assay. Data are presented as the means of quadruplicates ±

s.d., and all experiments were repeated at least three times with
similar results.

HPSE Activity Assay
HPSE activity of 1 × 106 cells was measured using a commercial
heparan sulfate degrading enzyme assay kit (Takara.Mirus.Bio,
Madison, WI) which is based on the measurement of HPSE-
induced degradation of biotinylated-HS (b-HS) fragments,
according to the manufacturer’s protocol.

Statistical Analysis
Unless indicated otherwise, data were analyzed using the
unpaired two-tailed Student’s t-test. A P < 0.05 was considered
statistically significant. All experiments were performed at least
three times on independent biological replicates.

RESULTS

Syndecan-1 Regulates Heparanase
Expression and Caco2 Cell Invasiveness
Based on the deregulated expression of Sdc-1 and HPSE in
colon cancer and the role of Sdc-1 as a signaling co-receptor, we
hypothesized that loss of Sdc-1 may regulate HPSE expression.
To test our hypothesis, we manipulated Sdc-1 levels via
siRNA knockdown in the human colon cancer cell line Caco2.
Sdc-1 knockdown (Figures 1A,B) resulted in a substantial
increase in HPSE mRNA expression (Figure 1C), HPSE
activity (Figure 1D) and HPSE promoter activity (Figure 1E).
Consistently, plasmid-based Sdc-1 overexpression was associated
with HPSE downregulation (Figures 1A,C). Conversely,
plasmid-based overexpression of HPSE induced a reduction
of Sdc-1 expression, whereas upregulation of an enzymatically
inactive form of HPSE had no effect (Figures 1F,G). At the
functional level, Sdc-1 knockdown resulted in increased
invasiveness of Caco2 cells through Matrigel (Figure 1H), which
could be blocked by the HPSE inhibitor SST0001 (Roneparstat),
a glycol-split heparin (40) (Figure 1H), suggesting a mechanistic
role for HPSE upregulation in Sdc-1 deficient cells in this
process. Sdc-1 depletion resulted in a downregulation of the
epithelial cell adhesion molecule E-cadherin and an upregulation
of the mesenchymal marker vimentin (Figure 1I), suggesting
a possible involvement of EMT in this process. Notably, the
Sdc-1-dependent upregulation of vimentin could be abolished
by the HPSE inhibitor SST0001, consistent with its inhibitory
effect in the invasion assay (Figures 1H,I). To analyze the
interdependence of Sdc-1 and HPSE expression, we tested the
impact of Sdc-1 depletion on expression of the transcription
factor Egr1, a known regulator of HPSE expression (21, 41).
qPCR and Western blot analysis revealed an upregulation

of Egr1 in Sdc-1-depleted cells (Figures 2A,B). Notably,
siRNA depletion of EGR1 abolished the upregulation of HPSE
mRNA expression (Figure 2C) and dampened HPSE promoter
activation (Figure 2D) in Sdc-1-depleted cells. Notably, the
increased activity of FAK in Sdc-1-depleted cells was abolished
by EGR1 siRNA knockdown (Figure 2E), whereas application
of a FAK inhibitor resulted in an inhibition of Sdc-1-dependent
EGR1 and HPSE expression (Figures 2F,G), indicating a
mechanistic involvement of this pathway.

Heparanase Regulates the Cancer Stem
Cell Phenotype of Caco2 Cells
Altered Sdc-1 expression has been linked to aberrant CSC
function, a phenotype linked to therapeutic resistance and
cancer recurrence (3, 47). To test a possible involvement
of the Sdc-1-HPSE axis in this phenotype, we analyzed
several readouts of stem cell activity in our cells. Sdc-
1 knockdown enhanced the CSC-associated side population
(SP) phenotype (Figure 3A). Notably, the HPSE inhibitor
SST0001 abolished this effect (Figure 3A) and inhibited the
formation of colonospheres in wild-type cells (Figure 3B). While
upregulation of both enzymatically active and inactive HPSE
forms massively increased the SP phenotype (Figures 3C,D),
upregulation of the stemness-associated transcription factors
Krüppel-like factor 4 (KLF4) and transcription factor 4 (TCF4)
was more pronounced in cells overexpressing native HPSE
(Figures 3E,F). Expression of NANOG was upregulated by both
forms of HPSE, whereas NOTCH1 expression was differentially
affected by the catalytically active and inactive forms of
HPSE (Figure 3E). Application of the Wnt-pathway inhibitor
IWP2 reduced the effect of HPSE expression on the side
population phenotype (Figure 3G). Overall, these data suggest
that HPSE regulates CSC properties by affecting multiple
stemness-associated signaling pathways. As CSC function has
been linked to therapeutic resistance (3), we finally tested the
influence of HPSE overexpression on resistance to irradiation
and chemotherapy. The Caco2 colony formation capacity
under control conditions was reduced by HPSE overexpression
compared to vector controls. However, upon radiation with a
therapeutically relevant dose of 2Gy, HPSE overexpressing cells
showed no significant decrease in colony formation capacity,
whereas colony formation was significantly decreased in control
cells (Figure 4A). Chemosensitivity assays revealed an increased
resistance of cells overexpressing enzymatically inactive HPSE to
paclitaxel and cisplatin, whereas upregulation of enzymatically
active HPSE has either no effect (cisplatin) or a mixed, dose-
dependent effect (paclitaxel) (Figures 4B,C). Taken together, our
data suggest that HPSE overexpression is associated with changes
in the resistance of colon cancer cells to chemo- and radio-
therapy, involving a differential role for the enzymatic activity
of HPSE.

DISCUSSION

The cell surface proteoglycan Sdc-1 acts as an ECM adhesion
receptor and co-receptor for numerous signaling pathways with
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FIGURE 2 | Syndecan-1 regulates HPSE expression in Caco2 cells in an Egr1 and focal adhesion kinase (FAK)-dependent manner. (A,B) Sdc1 siRNA knockdown

results in a substantial upregulation of the transcriptional regulator Egr1, as demonstrated by qPCR (A) and Western blotting (B). ***p < 0.001 vs. control. (C,D) Egr1

siRNA knockdown abolishes the Sdc1 siRNA-induced upregulation of HPSE as demonstrated by qPCR (C) and HPSE-promoter-based luciferase reporter assays (D).

(C) ***p < 0.001 vs. control, #p < 0.001 vs. si Sdc-1. (D) ***p < 0.001 vs. control, #p = 0.06 vs. si Sdc-1. (E) Egr1 siRNA depletion inhibits the activation of FAK

phosphorylation induced by Sdc-1 siRNA knockdown (Western blot). (F,G) The FAK inhibitor PF-562271 prevents the Sdc-1-knockdown-induced upregulation of

Egr1 (F) and HPSE (G) (qPCR). (E) ***p < 0.001 vs. control, (F) *p < 0.05 vs. all groups. All panels: N ≥ 3. Error bars = SEM.

relevance to tumor progression (23, 48). The Sdc-1 heparan
sulfate chains serve as substrates for HPSE, and this degradative
process modulates tumor angiogenesis, growth factor-dependent
tumor cell proliferation and metastatic behavior in a variety of

tumor entities (8). Notably, a decrease in Sdc-1 and increase
in HPSE expression has been observed in several cancers
particularly in colon cancer enhancing tumorigenesis, invasion,
andmetastasis (7–15). Themolecular mechanism underlying this
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FIGURE 3 | Heparanase regulates the cancer stem cell phenotype of Caco2 cells. (A) Sdc-1 siRNA knockdown and heparanase inhibition by SST0001 affect the

stem cell marker side population in opposite directions. **p < 0.01 vs. all groups. *p < 0.05 vs. untreated control. (B) The HPSE inhibitor SST0001 (10µg/ml) reduces

sphere formation as a readout of stem cell acivity. ***p < 0.001, *p < 0.05 vs. untreated control. (C,D) Overexpression of native and enzymatically inactive forms of

HPSE markedly increases the Caco2 side population. ***p < 0.001 vs. vector control. (C) Quantification of flow cytometric data. (D) representative flow cytometric

measurements. Verapamil = inhibitor control. (E,F) Overexpression of native and enzymatically inactive forms of HPSE differentially affect the expression of the stem

cell markers NANOG, KLF4, NOTCH1, NOTCH3, and TCF4. (E) qPCR, ***p < 0.001, **p < 0.01, *p < 0.05 vs. vector control, #p < 0.05 vs. HPSE. (F) Western-Blot.

(G) The Wnt pathway inhibitor IWP2 reduces the enhancing effect of HPSE overexpression on the side population phenotype. **p < 0.01, *p <0.05 vs. control, #p <

0.05 vs. untreated HPSE. All panels N ≥ 3. Error bars = SEM. (D,F) representative example of three independent experiments.
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FIGURE 4 | Enzymatically active and inactive forms of heparanase differentially

affect the resistance of Caco2 cells to chemotherapeutics and radiation

treatment. (A) Vector control and HPSE / mutant HPSE overexpressing Caco2

cells were subjected to irradiation with 2Gy and then to a colony formation

assay as a readout of cell survival. Compared to controls, HPSE

overexpressing cells showed reduced colony formation. Only control cells

showed a significant radiation-induced reduction in colony formation. (B)

Overexpression of enzymatically inactive HPSE increases Caco2 resistance to

Paclitaxel chemotherapy, whereas HPSE reduces resistance at low treatment

doses. MTT cell viability assay. (C) Overexpression of enzymatically inactive

HPSE increases Caco2 resistance to Cisplatin chemotherapy. MTT cell viability

assay. All panels N ≥ 3. Error bars = SEM, ***p < 0.001, **p < 0.01, *p <

0.05 vs. control. ap < 0.01 vs. HPSE, bp < 0.05 vs. HPSE. #p < 0.05 vs.

unirradiated control within the same treatment group.

regulation has not been resolved. Our results demonstrate that
(i) loss of Sdc-1 enhances transcriptional regulation of HPSE
and vice versa, (ii) increased Sdc-1-dependent HPSE expression
increases invasiveness and can be reversed by HPSE inhibition,
(iii) molecular cross-talk between EGR1 and activation of FAK
upon loss of Sdc-1 collectively drive HPSE expression, (iv) this
expression boosts colon CSC properties, and (v) these processes
are associated with alterations in the resistance of Caco2 cells to
radio- and chemotherapy in vitro.

Increased expression of EGR1, an early growth response
gene mediated by Sdc-1 downregulation, correlated with the
increase in HPSE expression. Mutagenesis and trans-activation
studies have previously shown that EGR1 binds to the HPSE
promoter and up-regulates HPSE transcription in colon cancer
cells (21). Our results further support that EGR1 directly
regulates HPSE transcription. Data in fibrosarcoma cells suggest
that the nuclear localization of Sdc-1 is a critical factor in
regulating EGR1 expression, as expression of Sdc-1 lacking its
nuclear localization signal resulted in upregulation of EGR1
(49). Therefore, the upregulation of EGR1 observed in Sdc-1-
depleted Caco2 cells in our study may have been due to the
reduction in nuclear, Sdc-1. Increased invasion of Sdc-1-depleted
cells may be due to the degradation of HS chains, which impairs
cell-cell contact and cell-matrix adhesion interactions. HPSE
controls cell barrier function attributed to its HS degradative
and Sdc-1 sheddase activity (8), suggesting that cleavage of
Sdc-1 at the cell membrane will favor proinvasive conditions.
Several pharmacodynamic studies have demonstrated that the
HPSE inhibitor SST0001, has anti-tumor activity in different
cancer models (40). Given that HPSE has multiple functions
in the tumor microenvironment it is conceivable that SST0001
decreases the invasion of Sdc-1 depleted cells through HPSE-
mediated signaling events (50, 51), or via direct inhibition of
its basement-membrane degrading properties. Due to the loss of
heparan sulfate, epithelial cells lose their cell polarity and gain
migratory and invasive properties via the process of epithelial
to mesenchymal transition (EMT). Indeed, in our experimental
system, Sdc-1-depletion resulted in a downreguation of the
antimetastatic epithelial cell adhesion molecule E-cadherin,
and an upregulation of the mesenchymal marker vimentin.
Although the underlying molecular processes remain poorly
understood, it was reported that Sdc-1 depletion enhances
formation of lamellipodia associated with an increase in invasive
capabilities (42). It is well-documented that HSPG bind several
EMT-inducing factors, such as FGF, hepatocyte growth factor
and transforming growth factor-β. Therefore, enhanced HPSE
expression may liberate these bound factors and thereby further
enhancing EMT-like conditions (52). Moreover, we could
show that HPSE inhibition could revert the upregulation of
mesenchymal vimentin observed in Sdc-1-depleted cells. Also, a
shift of Sdc-1 from epithelial to stromal cells might attenuate the
antimetastatic effect of Sdc-1 at the cancer cell surface where loss
of its expression can promote EMT (53).

A mountain of evidence shows that EMT-like conditions
promote proliferation, metastasis, chemo-, immune- and
radiotherapy resistance, all of which are relevant to cancer stem
cell properties (26–28, 54). In breast cancer, enhanced activation
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of integrins caused by Sdc-1 downregulation results in increased
FAK activation (33). We, therefore, hypothesized that FAK
might be involved in HPSE regulation. Indeed, blocking FAK
autophosphorylation decreased HPSE expression in the absence
of Sdc-1 (Figure 2G). It was previously reported that a putative
HPSE receptor activates the phosphoinositide 3-kinase-protein
kinase B (AKT) pathway (51), but it is not clear whether
phosphorylated FAK activates this receptor. However, PF562271
effectively abolished heparanase-induced AKT activation (51),
consistent with our results, where FAK inhibitor attenuated
HPSE expression. It was reported that integrin/epidermal growth
factor receptor cross-talk dependent adhesion signals regulate
EGR1 expression (55). It is conceivable that upon Sdc-1 loss, the
beta1 integrin complex on the plasma membrane may trigger
the expression of EGR1 through adhesion-dependent signals,
which would further lead to the activation of FAK. Overall,
these data demonstrate that upon Sdc-1 loss, an EGR1/pFAK
cross-talk is required for expression of HPSE through a
novel regulatory signaling cascade, opening new strategies for
therapeutic intervention.

Previous data from our group have indicated a role for Sdc-
1 in CSC function (3, 31, 47), including an impact on the side
population. Here, we demonstrate that basal sphere formation
of our Caco2 model cell line and the Sdc-1 knockdown-induced
increase in the SP can be blocked by HPSE inhibition, whereas
upregulation of HPSE results in a substantial increase of this
surrogate stem cell marker, independent of HPSE enzymatic
activity. These results ascribe, for the first time, a role for
HPSE in regulating CSC properties, and an impact of the
HPSE inhibitor SST0001 on SP levels. As SST0001 profoundly
decreased invasion of Sdc-1 depleted cells, it is conceivable that
genes involved in cell invasion may also further regulate SP
and/or that SST0001 is directly acting on genes associated with
stemness. The significant increase in the SP as a result of HPSE
overexpression provides further evidence for the multifunctional
roles of HPSE in the tumor microenvironment. At the mRNA
level, we saw a high increase in the expression of NANOG and
KLF4 in cells expressing either native or mutant HPSE. Indeed
there are indications for cell adhesion-dependent functions of
enzymatically inactive HPSE (56, 57). The increase in NOTCH1
and NOTCH3 in mutant HPSE expressing cells could explain
the increase in the SP seen in dominant negative clones (47, 58).
During progression of the primary tumor, HPSE, by promoting
autocrine and paracrine signaling functions, appears to initiate
non-stem cell epithelial cells to develop into tumor-initiating
cells via the re-expression of stem cell markers, including
pluripotency-associated transcription factors (9). A range of
signals were shown to regulate the tumor-initiating stem cell
capacities of colon cancer, including the Wnt pathway (59). We
observed a high expression of TCF4 in HPSE-overexpressing
clones. Our results furthermore showed a decrease in the SP upon
incubation with IWAP2 that inhibits the palmitylation of Wnt
proteins and thereby blocks Wnt secretion and activity (60).

CSCs have been implicated in resistance to irradiation and
chemotherapy due to increased expression of MDR proteins and
highly efficient DNA repair mechanisms (3, 7). Irradiated HPSE
overexpressing cells showed partial radioresistance compared

to untreated controls. In addition, we observed increased
chemoresistance in cells expressing mutant HPSE. The mutant
inactive form of heparanase is involved in adhesion-dependent
signaling which in turn may promote chemoresistance of cancer
cells by increasing the side population (8, 57). It is also important
to consider that the SP is controlled by several additional factors
including, genetic alterations, the ECMnichemicroenvironment,
micro RNA’s, stem cells and their quiescent vs. active state (61).
Altogether, the nature of drug resistance of tumor-initiating cells
is multifactorial, with various signaling pathways and complex
mechanisms that could fine-tune chemosensitivity.

To summarize, we have shown for the first time the
involvement of HPSE in colon cancer stem cell properties and
observed an increase in cell invasiveness linked to the regulatory
interplay of Sdc-1 and HPSE. Moreover, we identified relevant
signaling pathways (FAK, Wnt, Notch) and transcription factors
(Egr1, TCF4), as constituents of this regulatory circuit, which
paves the way for a more efficient combinatorial targeting of
colon cancer in the context of therapeutic resistance.
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