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X-linked Emery-Dreifuss muscular dystrophy is caused by loss of emerin, a LEM-domain protein of the nuclear inner
membrane. To better understand emerin function, we used affinity chromatography to purify emerin-binding proteins
from nuclear extracts of HeLa cells. Complexes that included actin, aII-spectrin and additional proteins, bound
specifically to emerin. Actin polymerization assays in the presence or absence of gelsolin or capping protein showed
that emerin binds and stabilizes the pointed end of actin filaments, increasing the actin polymerization rate 4- to 12-
fold. We propose that emerin contributes to the formation of an actin-based cortical network at the nuclear inner
membrane, conceptually analogous to the actin cortical network at the plasma membrane. Thus, in addition to
disrupting transcription factors that bind emerin, loss of emerin may destabilize nuclear envelope architecture by
weakening a nuclear actin network.
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Introduction

Emery-Dreifuss muscular dystrophy (EDMD) is inherited
through mutations in either of two different genes: LMNA,
encoding A-type lamins, and STA, which encodes a nuclear
membrane protein named emerin (Nagano et al. 1996; Emery
2000; Bengtsson and Wilson 2004). Lamin filaments and
emerin interact at the nuclear inner membrane (Burke and
Stewart 2002; Holaska et al. 2002). Together, emerin and
lamin A form stable tertiary complexes with other binding
partners in vitro (Holaska et al. 2003), suggesting that emerin
and lamins together provide a structural foundation for
oligomeric protein complexes. Mutations in emerin cause the
X-linked recessive form of EDMD (Bione et al. 1995; Bonne et
al. 2003). Both emerin and lamin A are expressed in most
cells, but EDMD disease strikes specific tissues: skeletal
muscles, major tendons, and the cardiac conduction system.
To explain the tissue specificity of EDMD, it was proposed
that emerin might have tissue-specific binding partners such
as transcription factors and signaling molecules that regulate
gene expression (Wilson 2000; Bonne et al. 2003; Östlund and
Worman 2003). There is growing evidence to support ‘‘gene
expression’’ models for emerin, as discussed further below.
However, a second model, not mutually exclusive, proposes
that emerin helps maintain the structural integrity of the
nuclear envelope. According to structural models, loss of
emerin selectively disrupts tissues under high mechanical
stress, such as skeletal muscle and tendons (Bonne et al. 2003;
Östlund and Worman 2003). Although this model fails to
explain the cardiac conduction phenotype of EDMD, it is
consistent with structural defects (aberrant shape and nuclear
envelope herniations) seen in nuclei from EDMD patients
(Fidzianska and Hausmanowa-Petrusewicz 2003) and in a
subset of patients with other diseases linked to mutations in
LMNA (‘‘laminopathies’’; Holaska et al. 2002; Östlund and
Worman 2003). Whereas structural and mechanical roles are

expected for lamins, which form nuclear intermediate
filaments, mechanical roles for emerin have not been
investigated.
Emerin is detected in most human cells tested, except the

nonmyocytes of the heart (Manilal et al. 1996). In Caeno-
rhabditis elegans emerin is expressed ubiquitously (Lee et al.
2000; Gruenbaum et al. 2002). Emerin belongs to the LEM-
domain family of proteins, which are defined by an
approximately 40-residue folded domain known as the LEM
domain. In vertebrates, other family members include LAP2b
and MAN1 at the nuclear inner membrane (Dechat et al.
2000; Lin et al. 2000; Cohen et al. 2001), LAP2a in the nuclear
interior (Dechat et al. 2000), and at least three additional
uncharacterized LEM-domain proteins (Lee and Wilson
2004). A major shared function of all characterized LEM-
domain proteins is their binding (via the LEM domain) to a
small protein named barrier-to-autointegration factor (BAF;
reviewed by Segura-Totten and Wilson 2004). BAF is a highly
conserved chromatin protein essential for cell viability
(Zheng et al. 2000), with direct roles in higher order
chromatin structure and nuclear assembly (Haraguchi et al.
2001; Segura-Totten et al. 2002), and gene regulation (Wang
et al. 2002; Holaska et al. 2003).
Supporting gene regulation models for EDMD, emerin

binds directly to BAF and two other transcription repressors,
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germ cell-less (GCL; Holaska et al. 2003) and Btf (Haraguchi et
al. 2004) as well as an mRNA-splicing factor named YT521-B
(Wilkinson et al. 2003). Interestingly, GCL and LAP2b, a LEM-
domain protein closely related to emerin, comediate tran-
scription repression in vivo (Nili et al. 2001). On the other
hand, emerin also has a growing number of structural or
anchoring partners, including a spectrin-repeat (SR) mem-
brane protein named nesprin-1a (Mislow et al. 2002a, 2002b),
lamins A and C (Clements et al. 2000; Lee et al. 2001; Sakaki et
al. 2001), and lamin B (Dreger et al. 2002). Lamins form type-
V intermediate filaments that are critical for the integrity of
the nucleus and confer unique elasticity and incompressi-
bility properties to the nuclear envelope (Dahl et al. 2004).
Nuclear morphology and lamina architecture are disrupted
in a fraction of cells that express disease-causing missense
mutations in A-type lamins (Östlund and Worman 2003).
However, the line between gene expression and mechanical
models for disease has become blurred. For example, the
subnuclear localization of Rb, a transcription and cell-fate
regulator, depends on both LAP2a and lamin A, since Rb is
mislocalized in cells that either lack A-type lamins (Johnson et
al. 2004) or express disease-causing lamin-A mutations
(Markiewicz et al. 2002). A second putative anchoring partner
for emerin is nesprin-1a, an integral nuclear inner-mem-
brane protein with seven SR domains (Zhang et al. 2001;
Mislow et al. 2002b). Each SR domain consists of approx-
imately 100 residues and folds into a tightly packed triple a-
helical structure (Bennett and Baines 2001). Tandem SR
domains, as seen in nesprin-1a, form a rigid, elongated
tertiary structure (Djinovic-Carugo et al. 2002). More im-
portant, SR domains provide binding sites for other proteins,
the specificity of which is determined by exposed residues
(Bennett and Baines 2001). SR domains 1–7 (and particularly
domains 1–5) of nesprin-1a mediate high-affinity binding to
emerin (Mislow et al. 2002a). Interestingly, SR domains 5–7 of
nesprin-1a bind directly to lamin A in vitro, suggesting that
nesprin-1a, lamin A, and emerin might form stable tertiary
complexes. Such complexes have the potential to stabilize
lamin filaments at the nuclear envelope, in addition to
anchoring and spacing emerin.

Notably, both emerin and lamin A also bind G-actin in
vitro (Sasseville and Langelier 1998; Fairley et al. 1999). Actin
binds two regions in the lamin-A tail (Zastrow et al. 2004).
Both a- and b-actin bind emerin in vitro, and emerin
coimmunoprecipitates with actin from cell lysates (Fairley
et al. 1999; Lattanzi et al. 2003). The significance of these
findings was unclear, in part because nuclear actin has been
both documented and debated for over 35 y (Pederson and
Aebi 2002). However there is a growing consensus that
nuclear actin is no artifact (Pederson and Aebi 2002;
Bettinger et al. 2004). Both a- and b-actin have been shown,
definitively, to reside in the nucleus (Scheer et al. 1984;
Gonsior et al. 1999; Olave et al. 2002; Lattanzi et al. 2003) and
to form short filaments in the nucleus (Clark and Rosenbaum
1979). Actin and actin-related proteins (Arps) are required
for chromatin remodeling and transcription (Olave et al.
2002; Percipalle et al. 2003). Also interesting is that polymer-
ase II–dependent mRNA transcription requires a nuclear-
specific myosin I motor (nuclear myosin I; Nowak et al. 1997;
Pestic-Dragovich et al. 2000). Thus, actin probably has a
variety of roles in the nucleus.

To test the hypothesis that emerin forms multiprotein

complexes in vivo, we affinity-purified emerin-binding
proteins from nuclear extracts of HeLa cells. We identified
actin itself plus several actin-binding proteins as bona fide
emerin-associated proteins, and we further discovered that
emerin stimulates actin polymerization in vitro by binding
and stabilizing the pointed end of growing filaments. These
results suggest that emerin contributes to the formation of an
actin cortical network at the nuclear inner membrane.

Results

We used affinity chromatography to purify emerin-binding
complexes from HeLa nuclear extract; as the negative
control, beads were conjugated to bovine serum albumin
(BSA). Mass spectrometry (data not shown) and Western
blotting identified b-actin as a major emerin-binding protein
(Figure 1A). Six other proteins, including nuclear-enriched
aII-spectrin, were also identified and will be reported in full
elsewhere (J. M. H. and K. L. W., unpublished data). Consistent
with previous reports (Fairley et al. 1999; Lattanzi et al. 2003),
antibodies specific for emerin coprecipitated actin from
HeLa cell nuclear lysates, as shown by Western blotting with
immune serum (Figure 1B, Im). Only background levels of
actin were precipitated by preimmune sera (Figure 1B, PI).
These findings led us to hypothesize that emerin might bind
filamentous actin (F-actin).

Emerin Binds F-Actin with High Affinity
Emerin was first tested for binding to F-actin in a

cosedimentation assay. Actin filaments were incubated 30
min in the presence or absence of recombinant emerin (4 lM)
and then pelleted at 100,000g. Approximately 75% of input
emerin pelleted in the presence of F-actin, compared to 15%
in the absence of F-actin (Figure 1C), demonstrating that
emerin binds polymerized actin in vitro. The stoichiometry of
this interaction was one emerin molecule per approximately
300 actin monomers, demonstrating that emerin binds actin
filaments with an average length of 0.9 lm (data not shown).
Emerin binds F-actin with high affinity, as determined by
binding to an F-actin column (Kd¼ 480 nM, range¼ 300–500
nM, n¼ 8; Figure 1D). The F-actin columns were also used to
screen selected emerin mutants for binding to F-actin. Wild-
type emerin and EDMD disease-causing mutants S54F and
P183H, and alanine substitution mutant m196 (Ser196Ser197

to Ala196Ala197; Holaska et al. 2003), bound efficiently to an F-
actin column, whereas 12 other tested mutants, including
EDMD disease-causing mutant Q133H, showed no significant
binding to F-actin (Figure 1E). Similar results were seen in
coimmunoprecipitation assays using antibodies against actin
to immunoprecipitate F-actin in the presence of recombi-
nant wild-type or mutant emerin proteins (data not shown).
Fifteen additional emerin missense mutants, including LEM-
domain mutants, were tested in blot overlay assays; mutants
m11, m24, m30, m40, m207, m214, and m217 bound
detectably to actin, whereas no significant binding was
detected for mutants m45A, m45E, m61, m141, m145, m161,
and m206 (data not shown; see Holaska et al. 2003 for details
of mutations). Thus, three independent assays all showed that
emerin binds F-actin. Furthermore, based on the positions of
missense mutations that blocked binding to F-actin, this
recognition involved almost the entire nucleoplasmic domain
of emerin, with the notable exception of the LEM-domain
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(Figure 1F). The putative actin-binding domain in emerin
overlaps with both the lamin- and repressor-binding (GCL)
domains described previously (Holaska et al. 2003).

Emerin Regulates Actin Polymerization
The above results suggested that in vivo emerin might (a)

use actin filaments as anchors, (b) stabilize F-actin networks,
or (c) actively influence actin dynamics. To test these models,
we first used reactions containing 5% pyrene-labeled actin
(final actin concentration, 2 lM) to determine if emerin
influenced actin polymerization in vitro. Results were
graphed as the rate of emerin-induced polymerization (R)
divided by the control rate (cR; rate of actin polymerization
in the absence of emerin). At concentrations ranging from 0.1
to 4.4 lM, emerin increased the rate of pyrene–actin
polymerization 4-fold (mean ¼ 6.2 6 2.2, n ¼ 32; one
experiment is shown in Figure 2A). These experiments also
yielded an equilibrium affinity of 420 nM (Figure 2A),
consistent with our previous results (480 nM; see Figure 1D).
We next tested eight emerin mutants (1 lM) in the pyrene–

actin polymerization assay (Figure 2B). Five mutants (Q133H,
m151, m164, m192, and m198) that failed to bind actin in
vitro did not stimulate actin polymerization; instead, they
reduced the rate of actin polymerization slightly, by 5%–40%
(Figure 2B). Mutant 196, which had wild-type binding to F-
and G-actin in coimmunoprecipitation assays, stimulated
actin polymerization approximately 50% as well as wild-type
emerin (Figure 2B). The two disease-causing mutants with
apparently normal binding to F-actin, S54F and P183H,
enhanced the rate of actin polymerization at least as well as
wild-type emerin (Figure 2B). Critical concentration assays
were done to determine if emerin acted on the barbed or
pointed end of growing actin filaments. Pointed-end growth
was examined by capping filaments with gelsolin. Emerin had
no significant effect on the critical concentration of barbed-
end growth (Figure 2C, þ emr/no emr), but it increased the
critical concentration for pointed-end growth by 2.3- to 2.7-
fold (Figure 2C, þ gelsolin no emr/þ gelsolin þ emr). We
therefore hypothesized that emerin, like tropomodulin

Figure 1. Affinity Purification of Emerin-Associated Proteins

(A) Immunoblot of HeLa nuclear lysate proteins (L), or proteins
affinity-purified using either BSA beads or emerin beads (see
Materials and Methods), probed with antibody against actin.

(B) HeLa nuclear lysate proteins (L) were immunoprecipitated using
either immune (Im) or preimmune (PI) serum 2999 against emerin,
resolved by SDS-PAGE, and Western blotted using antibodies specific
for actin (upper panel) or emerin (lower panel), in succession.
(C) Cosedimentation assays using F-actin and purified, recombinant
wild-type emerin (residues 1–222). G-actin (2 lM) was polymerized
and then incubated in the absence or presence of 2 lM emerin.
Emerin was incubated alone in polymerization buffer as a negative
control. After 30 min samples were centrifuged 1 h at 100,000g,
resolved by SDS-PAGE, and stained with Coomassie blue. L, load
(100%); S, supernatant (100%); P, pellet (100%).
(D) F-actin column was used to determine the affinity of F-actin for
emerin. The Kd was 480 nM for the experiment shown; range was
300–500 nM, n ¼ 8.
(E) Binding of wild-type (WT) or mutant emerin protein to F-actin
beads. Recombinant emerin proteins were incubated with F-actin
beads, and bound emerins were eluted with SDS-PAGE sample buffer,
resolved by SDS-PAGE, blotted, and probed with antibodies against
emerin (‘‘bound’’; all emerin mutants are recognized by this antibody;
Lee et al. 2001; Holaska et al. 2003). The input amounts (10%) of each
emerin mutant (‘‘load’’) were visualized either by immunoblotting
(top row, top panel) or Coomassie staining (top row, bottom panel).
(F) Domains in emerin required for binding to BAF, lamin A,
transcription repressor GCL, or actin (Lee et al. 2001; Holaska et al.
2003; present study). Asterisks indicate EDMD disease-causing
mutations.
DOI: 10.1371/journal.pbio.0020231.g001
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(Fowler et al. 2003), might stabilize growing filaments by
capping the pointed end.

Emerin Binds F-Actin at the Pointed End
The vast majority of actin-binding proteins that influence

subunit addition do so by binding the barbed end (dos
Remedios et al. 2003). However, because emerin failed to
influence the critical concentration for barbed-end growth
(Figure 2C), we used gelsolin–actin seeds to test the
hypothesis that emerin binds the pointed end. Gelsolin binds
and caps the barbed end of actin filaments (Burtnick et al.
2001), thereby restricting subunit addition to the pointed end
only. We measured the extension of gelsolin–actin dimers (10
nM) in the presence of 2 lM actin plus 0 to 2 lM wild-type
emerin (Figure 3A). Emerin blocked actin polymerization in a
concentration-dependent manner, supporting our model
that emerin binds and caps the pointed end of actin
filaments. Based on this assay, the affinity (Kd) of emerin for
F-actin was 430 nM (range, 300–500 nM, n ¼ 12; Figure 3A).
Interestingly, the affinity determined by either direct binding
(see Figure 1D) or activity measurements (see Figures 2A and
3A) differed by a maximum of 2-fold. We conclude that
emerin binds F-actin with an affinity of 300–500 nM.
To independently confirm that emerin binds the pointed

end, we tested the effect of emerin on actin depolymerization
in two separate assays. First, gelsolin–actin seeds were
incubated with 2 lM actin and grown in the absence of
emerin. The resulting filaments were then diluted to 0.2 lM
actin in the presence of increasing concentrations of emerin
(0–2 lM), and assayed immediately. Preformed actin filaments
depolymerized rapidly in the absence of emerin (Figure 3B,
arrow), as expected. Supporting our model, depolymerization
was slowed up to 8-fold by emerin (Figure 3B). To
independently confirm that emerin blocked subunit addition
at the pointed end, preformed actin filaments were capped at
the barbed end with capping protein (CapZ), a high-affinity
barbed-end binding protein (Cooper and Schafer 2000), then
incubated in the presence or absence of emerin, and diluted
into 0.2 lM actin; emerin slowed the rate of depolymerization
by 10-fold (data not shown). Based on these three assays, we
conclude that emerin binds and protects the pointed end of
actin filaments in vitro, thereby stabilizing actin filaments.
Fluorescent actin polymerization assays were done to

demonstrate visually that emerin blocks pointed-end growth
of single actin filaments. Rhodamine–phalloidin-stabilized
actin filaments (red) were preformed from 2 lM actin, then
capped on the barbed end with capping protein, and diluted
2-fold into a final concentration of 1 lM emerin. Pointed-end
growth was then initiated by increasing actin to 3.2 lM in the
presence of 3.2 lM Alexa-488 phalloidin (green) for 2 min. In
the absence of emerin (Figure 3C, buffer or GST), actin

Figure 2. Emerin Stimulates Actin Polymerization

(A) Graph of a representative experiment (n ¼ 32) showing that
emerin increases the rate of actin polymerization 4-fold. R, rate of
polymerization in the presence of emerin; cR, control rate of
polymerization (actin alone). These data also yielded an equilibrium
binding affinity of emerin for actin of 420 nM.

(B) Representative graph (n¼ 17) in which each recombinant emerin
mutant protein (1.0 lM) was added to 2.0 lM G-actin, and polymer-
ization rates were calculated. R, rate of polymerization in the
presence of emerin; cR, control rate of polymerization (actin alone).
Stars indicate EDMD disease-causing mutations.
(C) Critical concentration assays were performed in the presence or
absence of 625 nM emerin. Actin was polymerized in the absence
(barbed-end growth) or presence of 5 nM gelsolin–actin seeds
(pointed-end growth) for 16 h at room temperature. Barbed-end
growth with (&) or without (&) emerin. Pointed-end growth with (8) orwithout (�) emerin. Actin monomers (D).
DOI: 10.1371/journal.pbio.0020231.g002
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Figure 3. Emerin Binds the Pointed End of Actin Filaments

(A) Gelsolin–actin seeds were incubated with increasing concentrations of wild-type emerin residues 1–222. Emerin significantly reduced the
rate of subunit addition at the pointed end, with an apparent Kd of 430 nM (range, 300–500 nM, n¼12). R, rate of polymerization in the presence
of emerin; cR, control rate of polymerization (actin alone).
(B) Emerin inhibits depolymerization of actin filaments (2 lM) preformed from gelsolin–actin seeds, with an apparent Kd of 380 nM (range, 350–
450 nM, n ¼ 6). R, rate of depolymerization in the presence of emerin; cR, control rate of depolymerization (actin alone).
(C) Rhodamine–phalloidin-stabilized actin filaments were formed from 2 lM actin, then capped at the barbed end by the addition of 100 nM
capping protein, and finally diluted 2-fold in the presence of buffer or 1 lM emerin, GST, or tropomodulin (Tmod). Samples were then
incubated with actin (3.2 lM) and Alexa-488 phalloidin (3.2 lM) for 2 min, diluted 1:500, placed on polylysine-coated coverslips, and viewed by
fluorescence microscopy. Bar is 1 lm and applies to all panels.
(D) Actin (2 lM) was incubated with gelsolin–actin seeds (500 nM) in the presence of rhodamine–phalloidin (2 lM). These red filaments were
diluted 10-fold and incubated with buffer alone or with 1 lM emerin or tropomodulin (Tmod) for 10 min, followed by incubation with actin (2
lM) and Alexa-488-labeled (green) phalloidin (2 lM) for 2 min. Samples were diluted 1:500, placed on polylysine-coated coverslips, and viewed
by fluorescence microscopy. Bar is 1 lm and applies to all panels.
(E–H) Alexa-488-labeled emerin (green) was incubated 30 min with actin filaments stabilized by Alexa-546 phalloidin (red) and centrifuged at
100,000g to recover filaments, which were diluted 1:500 for viewing.
DOI: 10.1371/journal.pbio.0020231.g003
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filaments containing both red and green segments are seen
(Figure 3C), demonstrating pointed-end growth. The average
lengths of the growing filament segments (green) as measured
for buffer and GST were 1.45 6 0.3 lm and 1.47 6 0.3 lm,
respectively (n ¼ 30). However, in the presence of either
emerin or tropomodulin, a pointed-end binding protein,
most red filaments lacked green segments (Figure 3C),
consistent with capped pointed ends. In the presence of
emerin or tropomodulin, the lengths of the green segments
were 0.05 6 0.09 lm (n ¼ 60) and 0.09 6 0.13 lm (n ¼ 50),
respectively. Single filament assays were also done using small
red filaments formed from gelsolin–actin seeds (Figure 3D).
Here, actin (2 lM) was incubated with gelsolin–actin seeds
(500 nM) and rhodamine–phalloidin (2 lM). The resulting red
filaments were diluted 10-fold and incubated with 1 lM
emerin for 10 min, then incubated 2 min with actin (2 lM)
and Alexa-488-labeled (green) phalloidin (2 lM). In the
absence of emerin, single filaments contained both short
red (gelsolin–actin seeds) and longer green (pointed-end
growth) segments (Figure 3D). The average length of these
growing filament segments was 2.1 6 0.6 lm (n ¼ 40).
However, when emerin was present, the preformed filaments
remained predominantly short and red, demonstrating that
emerin blocks pointed-end growth (Figure 3D). Similar
results were obtained in control reactions containing
tropomodulin, the pointed-end binding protein (Figure 3D,
Tmod). The average lengths of growing filaments incubated
with emerin or tropomodulin were 0.1 6 0.1 lm (n¼ 40) and
0.1 6 0.11 lm (n ¼ 40), respectively. These experiments also
show that emerin does not stimulate branching (Figure 3D).
To directly visualize emerin bound to actin filaments, green
(Alexa-488-labeled) emerin was incubated with red (Alexa-
546 phalloidin) actin filaments (Figure 3E–3H). Under these
conditions 85% of labeled emerin molecules were bound to
actin filaments; of these, 92% were localized at a filament end
(n ¼ 306). Interestingly, 10% of actin-associated emerin
proteins localized to ‘‘aster-like’’ structures (Figure 3G and
3H), presumably due to the aggregation of emerin proteins
on different actin filaments.

Discussion

This work shows for the first time that a nuclear membrane
protein, emerin, is a pointed-end F-actin-binding protein.
Similar to the activity of tropomodulin (Fowler 1997; Cooper
and Schafer 2000; Fowler et al. 2003), emerin caps the pointed
end, thereby stabilizing the growing filament. Only three
other pointed-end binding proteins have been reported: the
Arp2/3 complex (Mullins et al. 1998), tropomodulin, and
mSWI/SNF, a component of a nuclear complex that remodels
chromatin structure (Rando et al. 2002). The Arp2/3 complex
initiates filament branching at the cell surface (Mullins et al.
1998; Mullins and Pollard 1999). We have no evidence that
emerin initiates branching. Instead, emerin behaves most like
tropomodulin, which binds the pointed end of F-actin with
high affinity (Kd ¼ 110 nM) and stimulates actin polymer-
ization by stabilizing the actin filament (Fowler et al. 2003).
Our analysis of 15 emerin missense mutants suggested that

the actin-binding region in emerin overlaps with regions
required for binding to lamin A (Lee et al. 2001), tran-
scription factors GCL and YT521-B (Holaska et al. 2003;
Wilkinson et al. 2003), and nesprin-1a (J. M. H. and K. L. W.,
unpublished data). However this overlap does not necessarily
imply that actin competes with these other proteins. Indeed,
despite similar overlap, GCL and lamin A can form stable
ternary complexes with emerin in vitro (Holaska et al. 2003).
Further work is needed to determine if F-actin cobinds or
competes with lamin A, nesprin-1a, or other emerin-binding
proteins.

A Proposed Actin Network at the Nuclear Envelope
We propose that emerin stabilizes and promotes the

formation of a nuclear actin cortical network, analogous to
the actin cortical network at the plasma membrane (Figure
4). Another LEM-domain protein, LAP2b, also an integral
nuclear inner-membrane protein, was 20-fold less active than
emerin in actin polymerization assays (data not shown),
suggesting that LAP2b binds actin with an affinity 20-fold
lower than that of emerin. Other LEM-domain proteins have
not yet been tested for binding to actin. Whether emerin has

Figure 4. Model in Which Emerin Binding

to the Pointed End of F-Actin Stabilizes an

Actin Cortical Network at the Nuclear Inner

Membrane

Our model is based on the actin cortical
network at the cell surface of erythro-
cytes, except that lamin filaments also
anchor to emerin-based junctional com-
plexes. Spectrin heterodimers bind short
actin filaments at the erythrocyte mem-
brane; we therefore speculate that nu-
clear isoforms of aII-spectrin (J. M. H.
and K. L. W., unpublished data) act
similarly. Direct binding of emerin and
aII-spectrin has not yet been tested.
Nuclear isoforms of protein 4.1, which
are essential for nuclear assembly
(Krauss et al. 2002), have the potential
to cross-link short actin filaments and
spectrin filaments at the inner mem-
brane (IM). Further work is necessary to
test our model and identify other com-
ponents of this proposed nuclear actin
cortical network. OM, nuclear outer
membrane.
DOI: 10.1371/journal.pbio.0020231.g004
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specialized roles involving actin, or shares this function with
other nuclear membrane proteins, are both interesting
possibilities. An actin-based cortical network could help
anchor emerin and possibly other nuclear membrane
proteins and lamin filaments, contributing significantly to
the structural integrity of the nuclear envelope and
potentially reinforcing sites of chromatin attachment (Figure
4).

Since lamin A also binds G-actin in vitro (Sasseville and
Langelier 1998), we are currently testing the actin-binding
properties of lamin A. Because emerin forms stable com-
plexes with lamin A in vitro (Clements et al. 2000; Lee et al.
2001), and because the nuclear envelope localization of
emerin depends on lamins, we speculate that emerin might
interlink multiple filament networks (actin, spectrin, and
lamins) at the nuclear envelope. This model will be tested in
future experiments by determining whether lamin A and
actin compete for binding to emerin, or form trimeric
complexes. Such complexes could significantly reinforce the
mechanical properties of the nuclear envelope. Our nuclear
actin cortical network model is further supported by the
properties of the nesprin family of nuclear membrane
proteins, which includes nesprin-1a (see Introduction) and
NUANCE. Nesprin-1a binds directly to both emerin (Kd ¼ 4
nM) and lamin A (affinity undetermined; Mislow et al. 2002a).
NUANCE is a large (796 kd), alternatively spliced isoform of
nesprin that localizes to the nuclear envelope and nucleo-
plasm and binds F-actin (Zhen et al. 2002).

The organization of the membrane skeleton in erythrocytes
(red blood cells) includes integral membrane proteins (e.g.,
Band 3), anchoring proteins (ankyrin), spectrin filaments, and
‘‘junctional complexes’’ (short actin filaments, protein 4.1,
adducin, tropomodulin, and tropomyosin; Delaunay 2002).
Tropomodulin and tropomyosin stabilize the junctional
complex. Spectrin filaments (a/b-spectrin heterodimers)
attach to junctional complexes through direct binding to
protein 4.1, adducin, and actin. At the inner nuclear
membrane, our working model is that emerin stabilizes
junctional complexes (Figure 4), consisting of short actin
filaments, nuclear-specific aII-spectrin (McMahon et al. 1999),
and nuclear isoforms of protein 4.1 (Krauss et al. 2002). This
model is the first step toward understanding the structural
function of nuclear actin.

Materials and Methods

Antibodies and proteins. A pan-actin antibody (Sigma, St. Louis,
Missouri, United States; catalog #A-5060) was used at 1:1,000 for
immunoblotting. An antibody specific for b-actin (Sigma; catalog #A-
5316) was used at 1:10,000 for immunoblotting and 1:1,000 for
immunoprecipitation. Our rabbit polyclonal emerin antibody (serum
2999), described previously (Lee et al. 2001), was used at 1:20,000 for
immunoblotting and 1:2,000 for immunoprecipitation. Purified
chicken actin was a kind gift of Doug Robinson (Johns Hopkins
Medical School). Purified rabbit actin was purchased from Cytoskel-
eton. (Denver, Colorado, United States; catalog #AKL95 and
#AKL99). Alexa-488 actin (#A12373), Alexa-594 actin (#A34050),
Alexa-488 phalloidin (#A-12379), rhodamine–phalloidin (#R-415),
and Alexa-546 phalloidin (#A-22283) were purchased from Molecular
Probes (Eugene, Oregon, United States). Purified CapZ (capping
protein) was a kind gift from John Cooper (Washington University, St.
Louis). The full nucleoplasmic domain of wild-type emerin (residues
1–222) and corresponding mutants (detailed in Holaska et al. 2003)
were expressed in bacteria and purified as described (Lee et al. 2001;
Holaska et al. 2003). Emerin protein was labeled with Alexa-488
(Molecular Probes, catalog #A20000) per manufacturer’s instructions.

Affinity purification using emerin-conjugated beads. Wild-type
emerin residues 1–222 (comprising the entire nucleoplasmic domain
of emerin and lacking the transmembrane domain) or BSA (as a
negative control) were coupled to Affigel-15 beads (Bio-Rad,
Hercules, California, United States) per manufacturer’s instructions.
Nuclear extracts were prepared by hypotonic lysis (Offterdinger et al.
2002) from 1010 HeLa-S3 cells, obtained as frozen cell pellets from the
National Cell Culture Center. For each affinity purification, we
incubated 50 mg of nuclear lysate proteins with 2 ml of either emerin
beads (0.5 mg/ml) or BSA beads in binding buffer (50 mM HEPES, 250
mM NaCl, 0.1% Triton X-100) for 4 h at 4 8C. Beads were collected by
centrifugation at 500g, washed five times with binding buffer, and
eluted with SDS-PAGE sample buffer. Dr. Robert Cole at the Johns
Hopkins Mass Spectrometry Facility performed MALDI-TOF. Actin
and aII-spectrin were two of seven emerin-associated proteins
identified unambiguously in this work, which will be reported
separately (J. M. H. and K. L. W., unpublished data).

F-actin-binding assays. F-actin columns were assembled as
described (Forero and Wasserman 2000). Equal amounts of purified
recombinant wild-type and mutant emerin proteins (residues 1–222)
were incubated with each column in PBS containing 0.1% Triton X-
100 (PBST) for 1 h at 22 8C. After washing beads five times with PBST,
bound proteins were eluted and resolved by SDS-PAGE, and detected
either by Coomassie blue staining, or by immunoblotting with rabbit
serum 2999 against emerin.

Coimmunoprecipitation assays were performed as described (Lee
et al. 2001). Briefly, equal masses (5 lg) of actin and either wild-type
or mutant emerin were incubated 2 h, then incubated 4 h with
protein-A Sepharose-coupled antibodies against emerin or actin. The
beads were washed five times with buffer, and bound proteins were
eluted with SDS-sample buffer, resolved by SDS-PAGE, then blotted
and probed with antibodies specific for either actin or emerin.

To measure emerin binding to single actin filaments, actin was
polymerized by the addition of KMEI buffer (2 mM MgCl, 50 mM KCl,
10 mM imidazole [pH 7. 0], and 2 mM EGTA). After 30 min, the
indicated form of emerin (4 lM, recombinant wild-type or mutant
emerin residues 1–222, with or without conjugation to Alexa-488) was
added to the filaments and incubated 30 min; we lastly added Alexa-
546 phalloidin (final concentration, 0. 33 lM). These red F-actin
polymers were then pelleted at 100,000g for 60 min. For experiments
with unlabeled emerin, corresponding load, supernatant, and pellet
fractions were resolved by SDS-PAGE and stained with Coomassie
blue. For experiments with phalloidin-546-labeled F-actin, filaments
were viewed using a Zeiss Axiovert 200 fluorescent microscope (Zeiss,
Oberkochen, Germany) and images captured using a Quantix CCD
camera (Photometrics, Huntington Beach, California, United States)
attached to an Apple G4 computer using IPLab (version 3.6;
Scanalytics, Fairfax, Virginia, United States) software.

Actin polymerization and depolymerization assays. Actin polymer-
ization assays were performed per manufacturer’s instructions
(Cytoskeleton). Rabbit actin (2 lM; Cytoskeleton, catalog #AKL95)
plus pyrene–actin (0.1 lM; Cytoskeleton, catalog #AP05) were used in
all assays, unless otherwise stated. Actin polymerization was measured
in a fluorimeter (Fluoromax 2; SPEX, Edison, New Jersey, United
States), with excitation wavelength 365 nm and emission wavelength
407 nm, and plotted using DataMax-Std (version 2.2; SPEX, Edison,
New Jersey, United States). Graphs were refined using Cricketgraph
III (version 1.0, Computer Associates, Smithfield, Rhode Island,
United States) and Kaleidagraph (version 3.5.1, Synergy Software,
Reading, Pennsylvania, United States). Pyrene–actin was always
present at 5% of total actin. Increasing concentrations of recombi-
nant emerin were added just prior to initiating actin polymerization.
The actin depolymerization assays were performed exactly as
described (Mullins et al. 1998) with increasing amounts of recombi-
nant emerin protein. Briefly, F-actin was polymerized by adding 2 lM
G-actin to gelsolin–actin seeds (100 nM), then diluted 10-fold in the
absence or presence of increasing concentrations of recombinant
emerin (residues 1–222). Both gelsolin and actin were obtained from
Cytoskeleton (catalog #HPG5 and #AKL95, respectively). Gelsolin–
actin seeds were made exactly as described (Blanchoin et al. 2000).
Alternatively, 2 lM G-actin was polymerized in the absence of
gelsolin for 2 h. Polymerized filaments were then incubated with or
without 100 nM CapZ. Subsequent polymerization and depolymeri-
zation assays were assayed as described above.

Actin polymerization in the presence or absence of emerin was
monitored by fluorescent microscopy, as described (Blanchoin et al.
2000; Amann and Pollard 2001). Samples were diluted 1:500–1:1000,
viewed on a Nikon Eclipse E600W microscope (Nikon, Tokyo,
Japan), and images were captured with a Q-imaging Retiga Exi CCD
camera (Q Imaging, Burnaby, British Columbia, Canada) using IPLab
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(version 3.9.2) attached to an Apple G5 computer. Images were
converted to TIFF images and lengths of filaments were measured in
Photoshop version 7.0 (Adobe Systems, San Jose, California, United
States).
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