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Abstract: Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths world-
wide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on ex-
perimental pIC50 values reported for a structurally diverse dataset. A robust model with only five
descriptors is found, with values of R2 = 0.897, Q2

LOO = 0.854, and Q2
ext = 0.876 and complying

with all the parameters established in the validation Tropsha’s test. The analysis of the applicability
domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dy-
namic analysis are performed on the three most relevant biological targets for SARS-CoV-2: main
protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank
database is executed, predicting the pIC50 value of 6664 drugs, which are IN the AD of the model
(coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC50 values > 6.6
are identified, and based on a pharmacophore modelling analysis, four compounds of this set can
be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological
activity of the compounds was related to the frontier molecular orbitals shapes.

Keywords: SARS-CoV-2; QSAR; docking analysis; DrugBank; molecular dynamics

1. Introduction

At the end of December 2019, China reported to the WHO several cases of human
respiratory disease in Wuhan, Hubei Province. A novel, highly pathogenic coronavirus
strain (CoV) was linked to this fatal pneumonia called COVID-19 [1–3]. By January 30,
The Public Health Emergency of International Concern (PHEIC) was announced for this
new CoV outbreak [2]. The disease expanded dramatically worldwide, being recognized
by the WHO as a pandemic in mid-March [1,2,4]. This virus, related to the severe acute
respiratory syndrome (SARS) that appeared in 2002 and the Middle East respiratory
syndrome-related coronavirus (MERS) of 2012, was named SARS-CoV-2 [1,5].

Biochemically, CoVs are enveloped, positive-sense, single-stranded RNA viruses
classified as α, β, γ, and δ [1–3,6]. CoV infects humans as well as other animals such as bats,
camels, pigs, and pangolins [7]. It was discovered in the 1960s and was thought to cause
only a mild disease [5], but SARS-CoV-2 is the third emergence of a coronavirus in less than
20 years with important mortality rates. In this sense, SARS, MERS, and SARS-CoV-2 have
death rates of 9.6%, 35.5% and 6.76%, respectively [8,9]. Early COVID-19 symptoms include
fatigue, dry cough, muscle soreness, shortness of breath, and fever [10]. In severe cases
of infections with SARS-CoV-2, patients require endotracheal intubation and mechanical
ventilation, as they develop acute respiratory distress syndrome, pulmonary oedema,
and severe pneumonia, causing death from sepsis shock, respiratory, or multiple organ
failures [8,11].
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SARS-CoV-2 spread has not stopped, being in more than 215 countries, infecting more
than 25 million people, and causing more than 1.8 million fatalities, up to December
2020 [1,12–16].

The fast spread of the virus has caused unwarranted fatalities, and the collapse of
health-care systems and the economy worldwide [15,17]. Currently, there is no effective
treatment available for CoV infections, including COVID-19 [14]. Therefore, efforts to
create new therapies, such as antiviral medication or vaccines, are vital to reduce mortality,
reactivate the economy, and return to a normal lifestyle [4,8,12,17].

It is well known that a drug discovery and development process takes a long time
and has high costs. Therefore, a different approach is needed to find a solution in the short
term [4,15]. Having the RNA genome sequence is an important starting point to develop
an effective treatment [17]. Testing existing broad-spectrum antiviral agents through
experimental as well as theoretical and machine learning methods is one of the most used
approaches [1,18–20]. Additionally, studying drugs that were developed for a different
purpose (drug repurposing) to treat COVID-19 has emerged as a successful strategy due to
reduced cost, clinical risk, and time [12,13,15,20].

Antiviral drugs can either target the virus directly through the inhibition of essential
enzymes or indirectly by host cell modulation [7,15]. CoVs present two main proteases,
the papain-like protease (PLpro) and the 3-chymotrypsin-like protease, also called main pro-
tease (Mpro), which are the ones in charge of cleaving the 800 kDa polypeptide produced
from genome transcription [1,2,4,15]. Mpro and PLpro produce many non-structural pro-
teins (NSPs), including Helicase and RNA-dependent RNA polymerase (RdRp) [1,2,7,17].
These proteases are essential for viral replication and transcription, which make them
very interesting targets for an effective drug discovery approach [1,7]. Another inter-
esting target for its importance in the RNA genome replication and protein synthesis is
RdRp [17]. These three enzymes are highly conserved between SARS-CoV-2 and SARS-CoV.
RdRp even presents a conserved active site between different RNA viruses, including the
hepatitis virus [5,6,14,21].

Currently, several drugs have been under clinical trials against COVID-19. The Soli-
darity Trial of the WHO announced, at the end of 2020, that treatments with hydroxychloro-
quine, remdesivir, interferon and lopinavir/ritonavir showed no effect in patients’ recovery,
hospital stay, artificial ventilation, and mortality [22,23]. Furthermore, clinical trials per-
formed using baloxavir, marboxil and favipiravir did not show improvements during
SARS-CoV-2 infection [24]. Therefore, efficient treatment has not been found yet.

In the literature, several studies have been carried out trying to find effective ways
to fight COVID-19. These include in vitro studies with old drugs (ivermectin) [25],
nanotechnology-based strategies [16], antimicrobial peptides such as Lactoferrin [26],
target RdRp with a series of nucleotide analogues [14,27], transcriptomic and proteomic
approaches [13], fragment molecular orbital based interaction analyses [4], the screening
of medicinal plants’ active compounds [2] and Food and Drug Administration (FDA)
approved drugs [21] against Mpro, molecular mechanics/Poisson−Boltzmann surface
area/weighted solvent-accessible surface area analysis [20], S-protein—ACE2 interface
docking through homology modelling [11,18], etc. From these studies, many chemical
compounds, including antiviral agents, vitamins, and antibiotics, have emerged as
possible drugs to treat COVID-19. Still, a robust computational model based on experi-
mental data has not been published yet. In this sense, this work presents a predictive
Quantitative Structure-Activity Relationships (QSAR) model, based on the recently
reported experimental pIC50 values for a series of molecules selected from the FDA
approved database [28]. Furthermore, an exhaustive docking analysis was done, tak-
ing into account three possible targets, considered relevant in COVID-19 treatment:
SARS-CoV-2 Mpro, PLpro, and RdRp. Finally, a screening of the DrugBank 5.1.7 [29]
database was carried out to find other possible drugs against SARS-CoV-2.
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2. Results and Discussion
2.1. Data Set

The dataset reported by Jeon et al. [28] was used as the initial input in the present
study. This dataset lists experimental IC50 values of different drugs, being the largest and
most diverse dataset reported, so far, for the treatment of COVID-19 using experimental
techniques. The molecules tested in this dataset were extracted from the FDA approved
drugs, suggesting a safe alternative as potent antiviral candidates against SARS-CoV-2.
Initially, the 2D structures of these compounds were extracted from the PubChem web-
page (https://pubchem.ncbi.nlm.nih.gov/ (accessed on 18 February 2021)) and optimized
at the Universal Force Field (UFF) level of theory to obtain the 3D structures. In the
Supplementary Materials (SM1 and SM2), 2D structures (.sdf) for all the datasets are avail-
able. Figure 1 shows the four most potent candidates: niclosamide, salinomycin, digitoxin,
and digoxin, with pIC50 > 6.4. The most active compound is digoxin, which is used in
the treatment of some heart diseases, such as atrial fibrillation, atrial flutter, and heart
failure [30]. Digoxin is categorized as a positive inotropic and negative chronotropic
drug, which implies that it increases the force of the heartbeat but decreases the heart
rate. Digitoxin is a digoxin analogous compound with the only difference being an OH
group, present in digoxin, but missing in digitoxin (Figure 1). Digitoxin is also a cardiac
glycoside, which is commonly used instead of digoxin, mainly in patients with erratic
kidney function, as digitoxin has hepatic elimination, whereas digoxin proceeds through
renal excretion [31]. Salinomycin is often employed as a useful anti-bacterial and antibiotic
agent [32], being administrated for the treatment of coccidiosis [33]. Niclosamide is re-
ported as an anthelminthic and antineoplastic drug, used against tapeworm infections [34].
Based on safe alternatives, niclosamide was suggested as the best candidate to be a drug
for the treatment of COVID-19.
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For the QSAR analysis, pIC50 = −log(IC50,M) experimental values were employed as
the response variable, and three different modelling processes were performed (Figure 2a).
In the first one, 2D molecular descriptors were obtained by employing QuBiLS-MAS
indexes; called “2D modelling” from now on. The second simulation was performed
using the 3D optimized structures to produce 3D molecular descriptors employing the
QuBiLS-MIDAS indexes; this is further cited as “3D modelling”. The third modelling
process was a combination of 2D and 3D descriptors—“2D-3D modelling”.
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2.2. Dataset Splitting (Training/Test)

After selecting the attributes, a rational separation of the dataset into training (35 com-
pounds) and test set (9 compounds) was performed, employing a K-means cluster analysis,
taking into account the separation of the dataset in nine clusters, and selecting ~20% of
each cluster as a test set (Figure 3).

The Euclidean distances were employed as the similarity metric in different instances.
The applicability domain (AD) of the training set was evaluated by employing the four
different methods implemented in AMBIT discovery [35], i.e., principal component analysis
(PCA) range, Euclidean distance, citi-block distance, and probability density. The consensus
approach was applied as implemented in Ambit discovery, i.e., if a molecule is labelled as
out by two or more methods, then the molecule is considered as OUT. Only one molecule
of the test set (ebastine) was found to be OUT the AD for the four employed methods,
resulting in 90% coverage.
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2.3. QSAR Modelling

In the first stage of model construction, it is mandatory to evaluate the co-linearity
between the variables, which is normally achieved by obtaining the correlation matrix for
the models. In this study, all models containing some attributes between 4 and 7 were
selected, reaching 13 models. From these models, the most robust for the 2D, 3D, and 2D-3D
modellings were chosen (M1, M5 and M13, respectively). Pearson’s correlation coefficients
between an attribute and the rest are shown graphically in Figure S1 (SM3). As it can
be observed, the bar graph for each descriptor shows the minimum (on the left) and the
maximum (on the right) value for the Pearson’s coefficients correlation of the descriptor
with the others. Therefore, the most negative value is −0.45, and the most positive value is
0.60, showing no co-linearity between the attributes in the three models.

Regarding the molecular attributes, the names are related to the mathematical ap-
proaches employed for the calculation of these topographic indexes, which are weighed
by different physicochemical properties, denoted by the lowercase letters at the end of
each descriptor. The physicochemical properties involved in model M1, M5, and M13 are
electronegativity (e), softness (s), hardness (h), Van der Waals volume (v), charges (c), po-
larizability (p), polar surface area (PSA), refractivity index (r), and AlogP (a). Hardness (h)
and softness (s) give information about the donor-acceptor properties of a molecule [36].
The PSA is related to the hydrophilic interaction and the formation of hydrogen bonds [37].
The electronegativity (e) is related to the existence of heteroatoms, involving electrostatic
protein-ligand interactions [38–40]. The polarizability and the refractive index are associ-
ated with short-range interaction between the drug and the active site of the protein [41].
The AlogP is the partition coefficient octanol/water, which provides information about the
solubility of the molecule in polar and non-polar systems.

Model M13, with only five descriptors, was selected as the most robust. It was
constructed by employing multiple linear regression techniques, and the standardized coef-
ficients by multiplying each standardized variable involved in the mathematical represen-
tation of each case, as shown in Equation (1). Models 1–12 are given in the Supplementary
Material (Table S1, SM3). In Figure 4, a graphical representation of experimental data vs.
predictions of model M13 is presented. It can be seen that there is a good fitting between
calculated and experimental pIC50 values in either the training or test sets (Equation (1)).

pIC50 = 4.5482 + 0.4998A2D-3D − 0.3296B2D-3D + 0.3120C2D-3D − 0.8384D2D-3D + 0.8265E2D-3D (1)
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Table 1 shows all the statistical parameters used for M13 validation. The coefficient of
determination (R2) close to one, Fisher coefficient (F) values greater than 30 and small resid-
ual standard deviation (s) values suggest a good fitting. The values of the cross-validation
coefficients for the leave-one-out (Q2LOO) and the external validation (Q2ext) are bigger
than 0.8, indicating that these models are robust enough for the prediction of pIC50. The Y-
scrambling analysis shows that there is no correlation by chance, as demonstrated by the
small values obtained for a(R2) and a(Q2). The Organization for Economic Cooperation
and Development (OECD) principles [42] establish Tropsha’s test as an exhaustive valida-
tion procedure determining if a model is robust for the predictability of a given response
variable. In this sense, Tropsha’s test was applied to the three models. PASS values for all
the models prove the good performance in the predictability of the external test set as well
as in the leave-one-out cross-validation.

Table 1. Statistical parameters for model M13 obtained by the 2D-3D modeling and Tropsha’s test results.

N◦ of Attributes R2 Q2
LOO Q2

LMO Q2
boot Q2

ext

5 0.897 0.854 0.834 0.829 0.876

a(R2) a(Q2) Kx Kxy F s

0.104 −0.328 0.259 0.287 50.61 0.160

Tropsha’s Test

Leave-One-Out Validation External Validation

Criterion Result Assessment Result Assessment

R2 > 0.6 0.897 PASS 0.897 PASS

R2
Val * > 0.5 0.854 PASS 0.876 PASS

(R2
Val − R0

2)/R2
Val < 0.1 0.001 PASS 0.002 PASS

(R2
Val − R0

′2)/R2Val < 0.1 0.021 PASS 0.020 PASS

abs(R0
2 − R0

′2) < 0.1 0.018 PASS 0.016 PASS

0.85 < k < 1.15 1.001 PASS 1.017 PASS

0.85 < k′ < 1.15 0.998 PASS 0.982 PASS

* The label “Val” refers to the leave-one-out (LOO) or external (EXT) validation.
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2.4. DrugBank 5.1.7 Screening

The screening procedure is depicted in Figure 2b. Model M13 was employed for
the screening of four important datasets reported in DrugBank: approved, experimental,
nutraceutical, and withdrawn. Then, the datasets were cleaned by removing inorganic,
organometallic, salts, and mixture compounds, obtaining 2265 molecules in the approved
dataset, 5858 in the experimental, 102 in the nutraceutical, and 228 in the withdrawn
drugs dataset (Table 2). After that, the AD of these datasets was evaluated into the
model M13 training set, finding that 79% of the drugs are IN the AD. This good coverage
demonstrates the robustness of the model and the reliability of the prediction, fact related to
the molecular diversity found in the training dataset. The pIC50 values of these compounds
were estimated and are presented in the Supplementary Material (SM4). The intervals of
the predicted pIC50 values for each dataset are presented in Table 2.

Table 2. Datasets extracted from the DrugBank 5.1.7 (https://www.drugbank.ca/ (accessed on 18
February 2021)) and used for the prospective screening.

Database N◦ Total of
Molecules

N◦ Molecules
IN Coverage (%) pIC50 Range (Only

Molecules IN)

Approved 2265 1882 83 3.68–7.10
Experimental 5858 4519 77 3.58–7.51
Nutraceutical 102 55 54 3.99–5.85
Withdrawn 228 208 91 4.24–7.15

From the total dataset evaluated in this screening, it is possible to identify other
possible potent antiviral candidates, which could be used for the treatment of COVID-19.
In this respect, 57 compounds were found to have predicted pIC50 values > 6.6. The two
best compounds (DB08476 and DB07287) present much higher pIC50 values (7.5) compared
to the other ones (≤7.1). These compounds, 3-amino-azacyclotridecan-2-one (DB08476) and
2-(2,4-dichlorophenoxy)-5-(pyridin-2-ylmethyl)phenol (DB07287), are experimental drugs
belonging to the macrolactam and diphenylethers classes, respectively [29]. Interestingly,
these types of compounds are used as antibiotic drugs [43–46].

Regarding the 57 compounds with pIC50 values > 6.6, miconazole (DB01110) is an
azole class antifungal used to treat pityriasis Versicolor, ringworm, and infections caused
by Candida sp. [47,48]. Nitenpyram (DB11438) is a nicotinic acetylcholine receptor inhibitor.
It is used to treat Ctenocephalides spp. in dogs and cats and is rapidly eliminated in
urine. Furthermore, nitenpyram is also considered a second-generation pesticide of the
neonicotinoid family [49]. Metildigoxin (DB13401) is a semi-synthetic cardiac glycoside
prodrug prescribed to treat arrhythmia and heart failure [50]. After oral administration,
it is completely absorbed and rapidly transformed into digoxin [51]. Chemically, it is
closely related to digoxin, changing a hydroxyl group in the latter for a methoxy one on
the terminal monosaccharide [52]. Furthermore, 2′,4′-Dinitrophenyl-2deoxy-2-Fluro-B-D-
Cellobioside (DB04086) is an experimental drug belonging to the class of o-glycosyl organic
compounds [53].

Interestingly, some of the commonly used drugs to treat respiratory problems, bron-
chitis, asthma, and allergic rhinitis were also identified as possible good candidates against
SARS-CoV-2. These include dirithromycin (DB00954), a macrolide glycopeptide antibi-
otic used to treat upper and lower respiratory infections [54–56], monensin (DB11430),
flunisolide (DB00180), fluticasone propionate (DB00588), and tixocortol (DB09091). In ad-
dition, some antibiotics, widely used in many infections, were identified as potent SARS-
CoV-2 inhibitors, such as amikacin, streptomycin, lincomycin, and spiramycin. The latter
is used for the treatment of toxoplasmosis in pregnant women.

Recently, a drug database against SARS-CoV-2 called DockCov2 was published [57].
The results of the experimental pIC50 obtained from the Jeon et al. [28] database were
compared to DockCov2 scores for RdRp, Mpro, and the highest score obtained for each
compound independently of the target (Table S2, SM3). From the 44 molecules, only 27

https://www.drugbank.ca/
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were present in the DockCov2 database. The results showed a poor correlation (R2 < 0.11)
between experimental and DockCoV2 values, failing to predict the affinity of the Jeon
et al. [28] database.

The strength that makes M13 a robust pIC50 prediction model is the use of experimen-
tal data and that a biological target does not need to be identified. The methods reported,
such as the ones using a double (Autodock Vina and MM-GBSA) scoring approach [58]
and virtual screening [59], rely only on in silico methodology, with the flaws these methods
have including the requirement of a specific biological target.

This screening was complemented with pharmacophore modelling. For the model
construction, the four most active compounds extracted from the Jeon et al. [28] database
were used (digoxin, digitoxin, salinomycin, and niclosamide). The results obtained from the
Pharmagist web server (https://bioinfo3d.cs.tau.ac.il/PharmaGist/ (accessed on 18 Febru-
ary 2021)) show that the pharmacophore is composed of three hydrogen bond acceptors
(HBA) and one hydrophobic (HPH) interaction (Figure 5). The four features and a com-
bination of three features were scanned against the experimental database and tabulated
in Table 3.

Molecules 2021, 26, x FOR PEER REVIEW 9 of 30 
 

 

between experimental and DockCoV2 values, failing to predict the affinity of the Jeon et 
al. [28] database. 

The strength that makes M13 a robust pIC50 prediction model is the use of experi-
mental data and that a biological target does not need to be identified. The methods re-
ported, such as the ones using a double (Autodock Vina and MM-GBSA) scoring ap-
proach [58] and virtual screening [59], rely only on in silico methodology, with the flaws 
these methods have including the requirement of a specific biological target. 

This screening was complemented with pharmacophore modelling. For the model 
construction, the four most active compounds extracted from the Jeon et al. [28] database 
were used (digoxin, digitoxin, salinomycin, and niclosamide). The results obtained from 
the Pharmagist web server (https://bioinfo3d.cs.tau.ac.il/PharmaGist/ (accessed on 18 
February 2021)) show that the pharmacophore is composed of three hydrogen bond ac-
ceptors (HBA) and one hydrophobic (HPH) interaction (Figure 5). The four features and a 
combination of three features were scanned against the experimental database and tab-
ulated in Table 3. 

 
Figure 5. (a). Pharmacophore result for the four most active structures. Pharmacophore overlaid to 
digoxin (b). and salinomycin (c). Hydrogen Bond acceptors are presented in yellow and hydro-
phobic interactions in green. 

Table 3. DrugBank screening using different pharmacophore models. 

Model Features Number of Hits 
Model 1 HBA1, HBA2, HBA3, HPH4 1 
Model 2 HBA2, HBA3, HPH4 11 
Model 3 HBA1, HBA3, HPH4 16 
Model 4 HBA1, HBA2, HPH4 48 
Model 5 HBA1, HBA2, HBA3 45 

Looking at the number of hits obtained, models 4 and 5 (Table 3) were chosen as the 
best ones and used for DrugBank screening. Model 4 is composed of two HBAs and one 
HPH interaction. The distance between the two HBAs is 2.8 Å, while the distance from 
HBA1/HBA2 to HPH4 is 12.0 Å and 13.6 Å, respectively. For model 5, the pharmaco-
phore is formed by three HBAs with a distance of 2.8 Å between HBA1 and HBA2, 6.0 Å 
between HBA1 and HBA3, and 7.6 Å between HBA2 and HBA3. Model 4 and model 5 
were tested against the Jeon et al. [28] database (Table S3, SM3), where 15 compounds 

Figure 5. (a) Pharmacophore result for the four most active structures. Pharmacophore overlaid to
digoxin (b) and salinomycin (c) Hydrogen Bond acceptors are presented in yellow and hydrophobic
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Table 3. DrugBank screening using different pharmacophore models.

Model Features Number of Hits

Model 1 HBA1, HBA2, HBA3, HPH4 1
Model 2 HBA2, HBA3, HPH4 11
Model 3 HBA1, HBA3, HPH4 16
Model 4 HBA1, HBA2, HPH4 48
Model 5 HBA1, HBA2, HBA3 45

Looking at the number of hits obtained, models 4 and 5 (Table 3) were chosen as the
best ones and used for DrugBank screening. Model 4 is composed of two HBAs and one
HPH interaction. The distance between the two HBAs is 2.8 Å, while the distance from
HBA1/HBA2 to HPH4 is 12.0 Å and 13.6 Å, respectively. For model 5, the pharmacophore
is formed by three HBAs with a distance of 2.8 Å between HBA1 and HBA2, 6.0 Å between
HBA1 and HBA3, and 7.6 Å between HBA2 and HBA3. Model 4 and model 5 were tested

https://bioinfo3d.cs.tau.ac.il/PharmaGist/
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against the Jeon et al. [28] database (Table S3, SM3), where 15 compounds matched model 4
with RMSD values lower than 0.54. In model 5, 14 compounds matched the pharmacophore
with RMSD values lower than 0.32. This is not surprising as QSAR model M13 is based on
experimental data and is not based on a single biological target.

DrugBank screening produced 48 hits for model 4 and 45 hits for model 5. As the same
compound can produce several hits by changing its pose, the lists were cleaned, leaving the
pose for each compound with the lowest RMSD. Then, the pIC50 value of each hit was
predicted and filtered (pIC50 > 6.6). Six compounds were obtained for model 4 and seven
for model 5 (Table S4, SM3). Three compounds, DB01980, DB03259, and DB02438, fit both
models. DB03259 was compared to the pharmacophore model 4, finding a distance between
both HBAs of 3.1 Å, between HBA1 and HPH4 of 5.6 Å, and between HBA2 and HPH4
of 7.1 Å (Figure S2a, SM3). The same was performed with DB02438 and pharmacophore
model 5, finding a better fit to the model with a difference in the HBA1–HBA2 distance of
0.0 Å, HBA1–HBA3 of 0.5 Å, and HBA2–HBA3 of 0.1 Å (Figure S2b, SM3).

2.5. Docking Study

As described in the methodology section, molecules taken from the Jeon et al. [28]
database were docked against Mpro, PLpro, RdRp, and tabulated in Table S5. Furthermore,
the two molecules with the biggest predicted pIC50 value, plus the best two compounds ob-
tained from the pharmacophore model 4 and the best two from the pharmacophore model
5, were also considered, and their results are presented in Table S6 (six compounds total).
The calculation area was reduced to the active site spotted experimentally. When know-
ing the active site, reducing the calculation area to it is an efficient approach, as all the
computational cost is used in finding the right pose, rather than looking for the active
site in the entire enzyme. Ligands extracted from the experimental structure were also
docked as a validation procedure, finding that, for Mpro and PLpro, the docked structure
superimposed the experimental one. For RdRp, experimental and docked structures are
in different places because its Cryo-EM structure was elucidated when remdesivir was
already incorporated to the RNA strand and outside the active site.

Docking scores range from−4.7 to−9.2 kcal/mol in Mpro, from−4.7 to−8.5 kcal/mol
in PLpro, and from −4.5 to −9.4 kcal/mol in RdRp, showing that all molecules in the
dataset might be able to fit in any of the three enzymes active sites inhibiting them, and af-
fecting the SARS-CoV-2 life cycle. Interestingly, the highest docking scores were found for
digoxin, which is the molecule with the biggest pIC50 (6.72). Digitoxin and Salinomycin,
which present the second and third highest pIC50 values, also present higher docking
scores, being −7.8 and −8.0 kcal/mol for MP, −8.9 and −7.2 kcal/mol for PL, and −9.3
and −8.6 kcal/mol for RdRp, respectively. Docking affinity scores were compared with
experimental pIC50 values, finding a poor correlation with r2 values below 0.17. It is
well-known that docking scores are not good for predicting binding affinities [60,61].
Most docking scoring functions depend on the size of the ligand, as large molecules will
have more functional groups and make more interactions with the active site. Still, docking
scores are very useful to separate which molecules can bind to a biological target and which
ones are less likely or definitely will not fit in an enzymatic pocket. Furthermore, docking
is key to study the different interactions and see how changes in the molecule can affect
how it fits the active site. A deep analysis of the different poses and interactions with the
enzyme allows us to filter the best candidates. In this sense, seven drugs were chosen
from the dataset—four from the top of the list and three from the bottom. The dataset was
ordered from highest to lowest pIC50 values, and digoxin, hexachlorophene, bazedoxifene,
dronedarone, thioridazine, chloroquine, and remdesivir were selected. Moreover, the six
molecules chosen from the DrugBank screening were also considered. Table 4 shows
the different interactions resulting from the docking calculation of these thirteen drugs
against Mpro.
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Table 4. Interactions of different drugs with Mpro.

Drug Interactions

Digoxin Thr24, Thr25, Thr26, Thr45, Met49, Leu141, Asn142, Gly143, Cys145,
His164, Met165, Glu166, Pro168, Gln189, Thr190

Hexachlorophene Met49, Cys145, His164, Met165, Glu166

Bazedoxifene Thr25, Thr26, Leu27, His41, Met49, Tyr54, Asn142, Gly143, Cys145,
His164, Met165, Gln166, Asp187, Arg188, Gln189,

Dronedarone Thr25, Thr26, Met49, Phe140, Leu141, Asn142, Gly143, Cys145,
His163, Met165, Glu166, Pro168, Gln189, Thr190, Ala191

Thioridazine His41, Asn142, Met49, Tyr54, Leu141, His164, Met165, Glu166,
Asp187, Arg188, Gln189, Thr190

Chloroquine His41, Met49, Tyr54, Cys145, His164, Met165, Glu166, Asp187,
Arg188, Gln189, Thr190, Gln192

Remdesivir
His41, Thr25, Thr26, Leu27, Met49, Phe140, Leu141, Asn142, Gly143,

Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188,
Gln189

DB03259 His41, Asn142, Gly143, Ser144, His163, Cys145, His164, Met165,
Gln189

DB01980 His41, Asn142, Cys145, His164, Met165, Glu166, Arg188, Gln189

DB02438 Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164,
Met165, Glu166

DB02213 His41, Leu141, Asn142, Gly143, Cys145, His164, Met165, Glu166,
Asp187, Arg188, Gln189

DB08476 His41, Cys145, His164, Met165, Glu166, Asp187, Arg188, Gln189

DB07287 His41, Met49, Tyr54, His164, Met165, Glu166, Pro168, Asp187,
Gln189, Thr190, Ala191

Hydrogen bonds in bold.

From the Jeon et al. [28] database, the result shows that remdesivir is the drug that
interacts with more residues (18). Digoxin, bazedoxifene, and dronedarone interact with
15 residues, while thioridazine and chloroquine interact with 12. Hexachlorophene is the
drug interacting with fewer residues (five). From those interactions, remdesivir forms four
hydrogen bonds (HBs), digoxin and dronedarone form two HBs, and hexachlorophene
and dronedarone form one HB. From the molecules taken from the screening, DB07287
and DB02213 are the ones interacting with more residues (11); DB02438 interacts with 10,
DB03259 interacts with 9, while DB01980 and DB08476 interact with 8 residues. DB02438
is the one presenting the most HBs with eight, followed by DB03259 and DB02213 with
three and DB01980 and DB08476 with one. DB07287 does not form any HBs. In addition,
the molecular docking analysis of the known Mpro inhibitor (N3) was performed and the
result shows that it interacts with 21 residues, 8 of them being HBs (Figure 6).

The active site of Mpro is a long pocket with a narrow chamber in the middle of it.
During the interaction with inhibitor N3, the backbone of its peptide-like structure fits
along with the active site where the side chain of a Leu residue fits in the side chamber,
making the interaction stronger (Figure 6). Comparing with the studied drugs, digoxin fits
in the entire pocket, but it is not able to enter the chamber due to the lack of side chains.
Hexachlorophene’s most stable pose fits in the middle of the pocket, but it does not
enter the side chamber either. Bazedoxifene fits in the pocket, but due to the size of
the molecule, it only interacts with one end of the pocket and it is not able to reach
the chamber. Dronedarone interacts with half of the pocket but it is unable to enter the
chamber, the same as chloroquine. Thioridazine fits in half of the active pocket, entering
the side chamber, although it is not able to make any HBs, which may explain its low
affinity. Remdesivir can occupy almost all the active site, including the chamber. From the
DrugBank screening, DB01980 and DB02438 fit in the pocket but are not able to enter the
side chamber, while DB03259, DB02213, DB08476, and DB07287 do manage to fit in the
side chamber. Although some of these drugs can enter and have a good fit in the active
site of Mpro, the lack of hydrogen bonding and the fewer interactions, compared to the N3
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inhibitor, may be a drawback in achieving good binding energies that can compete with
natural substrates inhibiting the enzyme.
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For Mpro, Asn142 and Gly143 seem to be critical residues for binding as N3, Digoxin,
DB02438, and DB02213 interact with them (Figure S3 and Figure 6b). Furthermore, interac-
tions of DB02438 and DB02213 with Asn142, Gly143, and Glu166 match pharmacophore
model 5, where HBA1 interacts with Asn142, HBA2 with Glu166, and HBA3 with Gly143.
In DB02438, a distance of 6.6 Å and 3.4 Å was found for HBA1–HBA3 and HBA1–HBA2,
respectively. For DB02213, HBA1–HBA3 presents a distance of 5.1 Å, while HBA1–HBA2
presents a distance of 2.9 Å.

Next, PLpro was studied and the interactions were found for each drug with the active
site presented in Table 5.

Table 5. Interactions of different drugs with PLpro.

Drug Interactions

Digoxin Asp108, Asn109, Gly160, Glu161, Leu162, Gly163, Asp164, Pro248,
Tyr264, Tyr268, Tyr273, Thr301

Hexachlorophene Leu162, Asp164, Gly163, Pro248, Tyr264, Tyr268, Gln269, Gly271,
Tyr273

Bazedoxifene Leu162, Gly163, Asp164, Pro247, Pro248, Tyr264, Asn267, Tyr268,
Gln269, Tyr273

Dronedarone Leu162, Gly163, Asp164, Arg166, Met208, Ser245, Ala246, Pro248,
Gly266, Tyr264, Tyr268, Tyr273, Thr301, Asp302
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Table 5. Cont.

Drug Interactions

Thioridazine Leu162, Gly163, Asp164, Pro247, Pro248, Tyr264, Gly266, Asn267,
Tyr268, Tyr273, Thr301

Chloroquine Leu162, Gly163, Asp164, Pro248, Tyr264, Tyr268, Gln269, Tyr273,
Thr301

Remdesivir Leu162, Gly163, Asp164, Arg166, Glu167, Met208, Pro248, Tyr264,
Tyr268, Gly271, Tyr273

DB03259 Gly163, Asp164, Arg166, Pro248, Tyr264, Tyr268, Tyr273, Thr301

DB01980 Asp164, Arg166, Pro247, Pro248, Tyr264, Tyr268, Tyr273, Thr301,
Asp302

DB02438 Asp164, Arg166, Pro247, Pro248, Tyr264, Tyr273, Thr301, Asp302

DB02213 Leu162, Gly163, Asp164, Glu167, Pro248, Tyr264, Tyr268, Tyr273,
Thr301

DB08476 Asp164, Met208, Pro247, Pro248, Tyr264, Tyr268, Tyr273, Thr301

DB07287 Leu162, Gly163, Asp164, Arg166, Tyr264, Tyr268, Tyr273, Thr301,
Asp302

Hydrogen bonds in bold.

Plpro has a long pocket, similar to Mpro, although it is more superficial and does
not have any chambers. The main characteristic of the Plpro active site is that it closes,
forming a tunnel-like structure at one end, allowing only long, thin structures to pass
through it. Analyzing the poses resulting from the docking calculation, none of the drugs
can pass through this tunnel. In the case of digoxin, the longest structure, it goes above
this tunnel (Figure 7). The other molecules interact and fit only with the bigger end of
the active site of PLpro. Looking at the interactions, dronedarone interacts with more
residues (14), followed by digoxin (12), thioridazine (11), remdesivir (11), bazedoxifene
(10), hexachlorophene (9), chloroquine (9), DB01980 (9), DB02213 (9), DB07287 (9), DB03259
(8), DB02438 (8), and DB08476 (8). From those, DB02438 forms five HBs; digoxin and
DB02213 form four HBs; hexachlorophene and remdesivir form three HBs; bazedoxifene
and DB03259 form two HBs; and dronedarone, DB01980, DB08476, and DB07287 form one
HB. Thioridazine and chloroquine do not form any HBs. Comparing these results with the
interaction between PLpro and experimentally found VIR250, this inhibitor presents 18
interactions, from which 6 are HBs. It seems that being able to go through the tunnel-like
structure of the active site is key to have a binding affinity good enough to compete with
natural peptides.
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Finally, the interaction of different drugs with RdRp was evaluated, and the results
are shown in Table 6.

Table 6. Interactions of different drugs with RdRp.

Drug Interactions

Digoxin
Lys500, Ser501, Asn543, Arg555, Val557, Ala558, Gly559, Val560,
Thr565, Arg569, Ser682, Gly683, Asp684, Ala685, Thr687, Ala688,
Asn691, Ser759, Thr868

Hexachlorophene Ser501, Thr565, Gly559, Val560, Arg 569, Gly683,

Bazedoxifene Asn496, Asn497, Lys500, Ser501, Val560, Ser561, Ile562, Thr565,
Arg569, Gln573, Leu576, Lys577, Gly683, Tyr689

Dronedarone Asn496, Asn497, Ser501, Val560, Thr565, Arg569, Gln573, Leu576,
Lys577, Gly683, Asp684, Ala685, Thr687 Ala688, Tyr689

Thioridazine Lys500, Ser501, Ala512, Asn543, Val557, Ala558, Gly559, Ile562,
Thr565, Arg569, Gly683, Asp684, Ala685

Chloroquine Asn496, Asn497, Ser501, Ala502, Val560, Ser561, Ile562, Thr565,
Agr569, Gly683, Ala685,

Remdesivir Asn497, Val495, Asn496, Lys500, Ser501, Val560, Thr565, Arg569,
Gln573, Leu576, Lys577, Gly683, Ala685

DB03259 Val410, Gln444, Ala547, Ile548, Ser549, Arg553, Ala554, Arg555

DB01980 Thr565, Arg569, Gln573, Leu576, Lys577, Ala685, Tyr689

DB02438 Lys500, Ser501, Gly559, Val560, Ser561, Ile562, Thr565, Arg569

DB02213 Val410, Phe440, Phe441, Gln444, Lys545, Ile548, Ser549, Lys551,
Arg553, Ala554, Arg555

DB08476 Asp452, Arg553, Arg555, Thr556, Asp623, Arg624, Thr680, Ser682,
Asn691

DB07287 Lys500, Ser501, Ala512, Thr565, Arg569, Gln573, Leu576, Lys577,
Gly683, Ala685, Tyr689

Hydrogen bonds in bold.

The main function of RdRp is to catalyze the replication of RNA, using nucleotides and
an RNA template. Therefore, nucleotide analogues are considered good RdRp inhibitors.
The active site of RdRp is very accessible, allowing for RNA synthesis (Figure 8a). Analyz-
ing the thirteen drugs, all of them fit perfectly in the active site (Figure 8b). Digoxin was
found to form 19 interactions with the active site, followed by dronedarone (15); baze-
doxifene (14); remdesivir (13); thioridazine (13); chloroquine, DB02213, and DB07287 (11);
DB08476 (9); DB03259 and DB02438 (8); DB01980 (7); and hexachlorophene (6). Seven HBs
were found in digoxin interaction; four HBs in remdesivir, DB02438, and DB02213; two HBs
in dronedarone and bazedoxifene; and one HB in hexachlorophene, DB03259, and DB01980.
The results of digoxin agree with experimental data, as it is the one with the most inter-
actions and HBs being able to bind tightly to the active site, competing with the natural
substrate. Furthermore, digoxin matches pharmacophore model 5, where HBA1 interacts
with Arg555, HB2 with Ser682, and HBA3 with Thr687 (Figure S4, SM3). In this sense,
there is an HBA1–HBA2 distance of 2.8 Å, HBA1–HBA3 of 7.9 Å, and HBA2–HBA3 of 8.0 Å.
These results suggest that the inhibition of SARS-CoV-2 can precede by one of these three
targets, with RdRp being the most likely action mechanism for the most active compound
of the series (digoxin).
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2.6. Molecular Dynamics Simulation

The results obtained from the docking analysis were further studied using molecular
dynamics techniques. The quality of the simulations was assessed, observing no weird
behavior on the system by graphing the box size, density, potential energy, pressure,
temperature, and volume of the system against the simulation time. Furthermore, the target-
ligand complex shows a stable behavior with RMSD values lower than 0.4 nm throughout
the simulation in all the models.

For Mpro, digoxin, chloroquine, dronedarone, and remdesivir were compared.
The RMSD for the complex and the ligand is shown in Figure S5a. For the com-
plex, the RMSD in all cases remained stable, with a value around 0.2 nm, while for
the ligand, remdesivir presents more fluctuations throughout the simulation, fol-
lowed by dronedarone. Coulomb interaction energies are more negative for digoxin,
while Lennard-Jones present the lowest values in dronedarone. This means that there
might be a tighter interaction between digoxin and dronedarone with the active site
(Figure S5b, SM3). This can be further corroborated by analyzing the HBs. For digoxin,
on average, there are five HBs between the drug and the enzyme. In some parts of the
simulation, HBs increase up to seven, while the lowest HB found was one. On the other
hand, chloroquine is the model forming the fewest HBs with an average of one HB,
two HBs being the highest and zero being the lowest (Figure S5c). Finally, the lifetimes
of the main HBs extracted from their occupancy during the simulation were estimated
and plotted in Figure S6 (SM3).

The results show that there is a relation between the occupancy and the lifetime.
Lifetime values range from 0.37 ps to 0.91 ps, and occupancies between 2% and 48%.
Dronedarone interaction with Thr25 produces the highest HB lifetime, also having the
highest occupancy (48%).

The structure resulting from the docking calculation was compared with the final
structure of the MD simulation. For digoxin, the structure after the simulation fits better in
the pocket, with a methyl group pointing into the side chamber (Figure S7a). Chloroquine,
on the other side, due to the lack of HB and strong interaction, moves out of the pocket,
with only the quinolone ring having some interaction with the active site (Figure S7b).

The results of the MD simulation of PLpro showed that digoxin and chloroquine leave
the active site at the end of the simulation. This may be attributed to the fact that none
of the molecules entered the tunnel-like structure, so a strong interaction could not be
achieved for these molecules. The behavior of bazedoxifene was studied in more detail
because it is the molecule with the highest pIC50 that after the simulation time stays in the
active site of the enzyme. Figure S8 shows the RMSD, Coulomb, Lennard-Jones energy,
and HBs.

The results show that Coulomb energy is just below zero, which indicates that although
the molecule stayed in the active site, the interaction is not very strong. Again, this agrees
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with the HBs, where in almost all the simulations there is only one. Tyr273 is the residue
making the strongest HB, with a lifetime of 0.60 ps and an occupancy of 8%. The increase
in the RMSD of the ligand in the last 4 ns of simulation means more fluctuation in the
drug, which may be caused by the loss of interactions with the active site. The results of
the starting and the final point of the MD simulation were analyzed to see how the ligand
changed throughout the simulation (Figure 9). The first important change is the loss of
the HB between the drug and Gly163. Still, the HB with Tyr273 is kept along with the
simulation, which is the main reason for the molecule not to leave the active site. The side
chain of bazedoxifene is very flexible, and because it cannot form strong bonds with the
active site, it lost interaction with Lau162 and Gln269 going outside the active site.
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Figure 9. Docking (red) and MD (green) result from the interaction of bazedoxifene with PLpro.

For the MD simulation against RdRp, again digoxin, chloroquine, dronedarone,
and remedesivir were studied. Special attention is put on remdesivir as it is a known
ligand for this polymerase. The results for the interaction of the three drugs with RdRp
showed that all of them stayed in the active site. Analyzing remdesivir in detail, the RMSD
plot shows an average value of 0.5 nm, rising from 0.2 to 0.7 nm in the first 10 ns and stabi-
lizing at around 0.3 nm after that. This result was compared with digoxin and dronedarone,
whose RMSD values are constant throughout the simulation with a RMSD around 0.5 nm
(Figure 10). This agrees with the HBs (between three and four) formed in almost the
whole simulation.

For chloroquine, RMSD values almost double compared to digoxin and remdesivir,
with values around 1 nm. Coulomb and Lennard-Jones energies for digoxin are lower in all
the simulations compared to chloroquine and remdesivir. This suggests that digoxin forms
a tighter interaction with RdRp. Dronedarone presents a low Lennard-Jones interaction en-
ergy (comparable to digoxin), although its Coulomb energy is higher (~5 kcal/mol). As the
simulation proceeds, the energy in remdesivir presents a greater fluctuation, which agrees
with the RMSD plot. Analyzing remdesivir more in detail, it can be seen that in the first
10 ns, the molecule moves around 0.2 nm away from the active site. As remdesivir is
moving out, HBs are less likely to be formed, and that is why between 2 and 10 ns the aver-
age HBs is two. Interestingly, although the remdesivir molecule is outside the active site,
it matches with the entrance of the RNA strand (Figure 11a pale cyan structure). After this
time, remdesivir is stabilized in the active site (Figure 11a, cyan structure). This might
suggest that remdesivir, as a nucleotide analogue, interacts with other sites of the molecule
waiting like any other nucleotide to enter the active and be incorporated to the RNA during
the replication process. On the other hand, digoxin tight interactions make the molecule
pose similar at the beginning and the end of the MD simulation (Figure 11b). Chloroquine
interaction is weaker, as determined by the one HB that is formed in most of the simulation.
Therefore, it can be seen that chloroquine moves about 10 Å inside the active site during
the simulation (Figure 11d). The mechanism of digoxin may be different from remdesivir.
While remdesivir substitutes a nucleotide in the RNA sequence, making further RNA
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transcription fail, digoxin tightly binds itself to the active site, preventing the RNA strand
being replicated. Figure 11c shows how digoxin is in the same place as an RNA strand
would be when interacting with RdRp. For chloroquine, there is an interaction between
this drug and the active site, although the movement throughout the simulation may
indicate that this is not strong enough to inhibit RNA replication. Occupancies and HB
lifetimes support the aforementioned, as digoxin presents the highest lifetimes (0.95 ps)
and the highest occupancy (81%), while chloroquine presents the lowest occupancy (2%)
(Figure 12).

Based on the highest occupancy and HB lifetimes, two key residues were chosen for
the interaction of RdRp with each of the four ligands. Then, the distances between the
ligand and those key residues were measured during the simulation time and plotted in
Figure 13.
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chloroquine.
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Figure 13. Distance between chloroquine (a) digoxin (b) dronedarone (c) and remdesivir (d) with key residues of RdRp.

For the four ligands, digoxin (Figure 13b) is the one forming tighter interactions with
both key residues, agreeing with its high pIC50 value. The average length found for digoxin
with ASP684 was 1.88 Å, while for ASN543 it was 2.20 Å. The distance between ASP684 and
the ligand takes around 2.5 ns to become stabilized, where a value of 4.34 Å is the highest
one found. After stabilization, 2.97 Å is the longest distance between the ligand and this
residue. Throughout the simulation, the distance between digoxin and ASN543 does not go
above 3.18 Å, meaning that the HBs formed are very tight and stable. Analyzing RdRp’s nat-
ural substrate remdesivir, strong interactions are also formed in both residues as expected.
The average distance found was 2.44 Å for ASN496 and 1.97 Å for ARG569. The HB formed
between remdesivir and ARG569 is stable throughout all the simulation, while ASN496
(Figure 13d) stabilized after 10 ns. For chloroquine and dronedarone, both ligands formed
interactions with GLN573 and TYR689. The average distance estimated for GLN573 was
4.85 Å for chloroquine and 5.08 Å for dronedarone. A shorter average distance was found
for the interaction with TYR689 (3.35 Å for chloroquine and 4.10 Å for dronedarone). These
interactions are not so strong, as seen by the greater fluctuation observed in the graph vs.
the digoxin and remdesivir ones. This fact supports the lower pIC50 values found for both
molecules. Although the distance is stabilized after 20 ns of simulation, values above the
HB cutoff distance of 3.6 Å can be found in this portion of the simulation.

2.7. Total Binding Energy Calculations

A final step in a protein-ligand complex interaction study is to calculate the free
binding energy and its van der Waals, electrostatic, and solvent-accessible surface area
(SASA) contributions. MMPBSA calculations were performed on the same molecules
chosen for the MD simulations. The binding energy for the PLpro, complexed with
chloroquine, dronedarone, and digoxin, was not computed because those drugs did not
stay in the active site of the enzyme during the MD simulation, as discussed above. For all
the other complexes, binding energy and their contributions are given in Table 7.
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Table 7. Energy contributions to the total binding energy of the protein-ligand interaction in the three evaluated targets.

Protein Compound
van der
Waals

(kcal/mol)

Electrostatics
(kcal/mol)

SASA
(kcal/mol)

Total
Binding
Energy

(kcal/mol)

pIC50 experimental
pIC50

predicted

MPro

Chloroquine −26.89 −1.71 −3.10 −17.55 5.14 5.15
Digoxin −43.41 −15.82 −5.47 −16.64 6.72 6.68

Dronedarone −11.21 −1.30 −1.28 −4.92 5.41 5.46
Remdesivir −14.17 −3.05 −1.81 −2.77 4.94 4.87

N3 −44.96 −8.74 −5.67 −15.99 – –
PLpro Bazedoxifene −16.72 −1.43 −1.89 −10.96 5.46 5.57

RdRp

Chloroquine −24.21 −1.49 −3.37 −17.70 5.14 5.15
Digoxin −46.28 −18.53 −6.06 −23.79 6.72 6.68

Dronedarone −41.18 −1.88 −5.82 −20.97 5.41 5.46
Remdesivir −35.98 −16.80 −4.85 −15.79 4.94 4.87

Table 7 shows that all binding energies are negative, which suggests a favourable
interaction between the different ligands and the targets. Total binding energies go from
−2.77 kcal/mol to−17.55 kcal/mol in Mpro, and from−15.79 kcal/mol to−23.79 kcal/mol
in RdRp. For bazedoxifene, a total binding energy value of −10.96 kcal/mol was found
for PLpro, suggesting that the mechanism of this drug may be mediated by the inhibition
of this protease. Dronedarone differences in its binding energy suggest a more likely
polymerase mechanism than a protease one. A total energy difference of 0.15 kcal/mol
was found for the interaction of chloroquine with Mpro and RdRp, which may indicate
that this drug can act as a protease or polymerase inhibitor. For digoxin, it presents a
7.15 kcal/mol better total binding energy for RdRp than for Mpro. Still, its binding energy
to Mpro is the second-highest, which may suggest an RdRp inhibition, but also a possible
Mpro mechanism. Comparing the binding energy of Mpro known substrate N3, it is
observed that chloroquine and digoxin have a stronger affinity. For RdRp, all the molecules
present better binding energies than the known substrate remdesivir. Binding energies
were compared to experimental pIC50 values, finding a very good correlation in the RdRp
model with an R2 of 0.843. Furthermore, experimental and predicted pIC50 values for the
four compounds studied for Mpro and RdRp were compared, and an R2 higher than 0.99
was found.

2.8. Frontier Orbital Analysis

In the last twenty years, the frontier orbitals began to play a pivotal role in the
medicinal chemistry field; the studies of highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) have allowed the understanding of several
biological activities, such as antimicrobial [62–65], anticancer [66–73], antifungal [74–76],
and cytotoxicity [77–80]. More recently, the shape of frontier orbitals has been used to
differentiate between active and inactive compounds against a specific disease [81,82].

In this line, the shape and energy of HOMO and LUMO orbitals have been calculated
with the aim of finding any hint that allows us to discriminate between the more active
and the least active compounds against COVID-19. In this sense, more and less active
compounds from the data in Table S3 were selected to carry out the frontier orbital analysis.
According to Figure 14, compounds with the least activity (Figure 14a) have both HOMO
and LUMO scattered under almost the entire molecular regions, whereas dihydrogambomic
acid (Figure 14b) and remdisivir (Figure 14c) present their frontier orbital located in the
same molecular region. On the other hand, the most active compounds have the frontier
orbitals located in a specific, but different, molecular region (Figure 14d–g). Therefore,
these results suggest that the acceptor-donor characteristic of these compounds plays a
fundamental role in the inhibition of SARS-CoV-2. The results contrast with some reported
before, where the antiviral compound showed frontier orbital located in the same region
of the molecule, as explained above for remdesivir [83,84]. It is important to remark that
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for compounds with pIC50 values in the 5–6 interval, a clear tendency concerning the
molecular orbital shapes is not observed; furthermore, they are not shown herein.
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In order to verify if the aforementioned pattern is met for the most prominent com-
pounds with a potential anti-COVID-19 activity from the screening, the molecular orbitals
for the six compounds chosen for the docking were computed, and the results are presented
in Figure 15. According to this, all compounds met this characteristic except for DB08476
and DB02213. For DB08476, the HOMO and LUMO are in the same region of the molecule.
In this case, that makes sense because all the functional groups that will be responsible
for the main interactions are located in the same region. For DB02213, while the HOMO
occupied one molecular region as seen for other active molecules, the LUMO is present in
the central region of the molecule sharing some regions with the HOMO. Still, our results
suggest that the structural requirement for COVID 19-active compounds may lie not only
in the molecular descriptors described in M13, but also in the frontier molecular shape.
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3. Materials and Methods
3.1. Datasets Preparation

The dataset used in this study is composed of 44 compounds extracted from the
FDA-approved drugs in Joan et al.’s study, which were experimentally tested as possible
antiviral candidates in the treatment of COVID-19 [28]. This dataset is diverse in structure
and adequate for the construction of a QSAR model. The 2D structures of all compounds
were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/ (accessed on 18
February 2021)). Three-dimensional structures were optimized at the Universal Force
Field (UFF) level of theory using the RDKit (https://www.rdkit.org/ (accessed on 18
February 2021)), implemented in the QuBiLS-MAS software [85]. The dependent variable
used in this study is the experimental value of the half-maximal inhibitory concentration
[pIC50 = −log (IC50, M)]. A rational division of the dataset into training (80%) and test
sets (20%) was performed by employing a K-means clustering analysis, which has been
demonstrated to be more acceptable for an appropriate assessment of the predictability
of the models [86]. The clustering analysis was performed on the standardized variables,
the Euclidean distance as a similarity metric, and 500 iterations. Then, around 20% of the
molecules of each cluster were selected as a test set.

In addition, the drugs included in the recent version of the DrugBank database [29]
(Version 5.1.7) were downloaded from the webpage (https://www.drugbank.ca/ (accessed

https://pubchem.ncbi.nlm.nih.gov/
https://www.rdkit.org/
https://www.drugbank.ca/
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on 18 February 2021)) and used in the present study for a virtual screening prospective
analysis by taking into account the datasets labelled as Approved (2636 compounds), Ex-
perimental (6127 compounds), Nutraceutical (118 compounds), and Withdrawn (245 com-
pounds). All these datasets were cleaned by the removal of inorganic, organometallic,
and mixture compounds, while salts were neutralized. The AD was evaluated in these com-
pounds and the ones classified as IN were considered for the prediction of the pIC50 value.

3.2. Descriptors Calculations and Modelling Process

Two types of descriptors were calculated, topographical 2D and 3D. For the calculation
of the 2D descriptors, QuBiLS-MAS software [85] was employed, while for the estima-
tion of the 3D descriptors, QuBiLS-MIDAS software [87] was used. Then, 945 2D and
114 3D descriptors were calculated and used for the modelling process. These types of
topographical descriptors have demonstrated to be adequate for QSAR model construction
in different applications, such as toxicology [88], hepatotoxicity [89], antimalarial [90],
and others [91–93].

Modelling considering only 2D descriptors, only 3D descriptors, and the combination
2D-3D descriptors was built. In a first stage, a supervised attribute selection using the
Genetic Algorithms was applied to determine small subsets of attributes, which contain
the major information content about the pIC50, taking into account the ratio molecules:
descriptors 5:1 [94]. This analysis was performed using MATLAB version R2014b (Math-
works Inc. software, Natick, MA, USA) [95]. The selected subsets were used for the model
construction, employing the multiple linear regression approach.

3.3. Domain of Applicability

The analysis of the AD (applicability domain) of the model is an important way
to measure how reliable the prediction of the pIC50 value is. The applicability domain
of a model consists of the evaluation of the theoretical spatial region, as defined by the
descriptors involved in a model. Although there is not a method universally considered
the best for determining the AD [96], there are some recognized methods for this analysis,
such as the one based on the principal component analysis (PCA) range, the Euclidean
distance, citi-block distance, and probability density, which are implemented in AMBIT
discovery and used in the present study [35]. The PCA method is based on the analysis
of the range of each descriptor, and if at least one of the descriptors of a new molecule is
not in the range, then it is considered as OUT of the AD. In the Euclidean and City block
methods, distances are determined as a cut-off value of the corresponding distance from
the centroid to determine if the compound is OUT or IN. In the probability density method,
a standard distribution is constructed using parametric methods, being able to identify
interior empty regions in the dataset distribution. The consensus approach was applied to
take a decision by taking into account that if a molecule is catalogued as OUT by two or
more AD methods, then it can be finally considered OUT [89].

3.4. Model Performance

The model performance was evaluated by the traditional statistical analysis parameters:

i. The collinearity between the descriptors was evaluated by taking into account a
Pearson’s correlation coefficient of <0.7.

ii. The coefficient of determination (R2) is used as a global evaluator of the model.
iii. The predictability of the model is determined by the leave one out cross-validation

coefficient (Q2
LOO), the external validation coefficient (Q2

ext), and the bootstrapping
coefficient (Q2

boot).
iv. The robustness of the model is evaluated in terms of the Y-scrambling analysis

(a(R2) and a(Q2)), based on a random perturbation of the Y values.
v. Additionally, the linear fitting of the model was evaluated in terms of the Fisher

coefficient value (F) and the residual standard deviation (s).
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vi. Tropsha’s test analysis is performed for the leave-one-out and external valida-
tion analysis, as suggested by the Organization for Economic Cooperation and
Development (OECD) principles [42].

3.5. Pharmacophore Modelling

A ligand-based pharmacophore modelling was performed using the four most active
compounds extracted from the Jeon et al. [28] database and PharmaGist web server [97,98].
The molecular and electronic features derived from the calculation were used to build
pharmacophore models. Then, each model was screened against the previously cleaned
approved, experimental, nutraceutical, and withdrawn DrugBank databases using Phar-
mit [99]. Finally, the molecules that fit the pharmacophore were compared to their predicted
pIC50 values.

3.6. Molecular Docking

For the docking studies, 3 enzymes were chosen as biological targets based on their
importance in COVID-19, as described in a recent publication [3]. The targets chosen were
SARS-CoV-2 Mpro, PLpro, and RdRp, which are key for the virus life cycle. Ligands were
obtained from the DrugBank database [29], based on the Jeon et al. dataset [28], and the
DrugBank screening, while the enzymes were taken from the Protein Data Bank [100].
For Mpro, the X-ray crystal structure of the enzyme in complex with an inhibitor N3 [101]
was chosen (PDB: 6LU7). For PLpro, the crystal structure of the enzyme in complex with
a peptide inhibitor VIR250 (PDB: 6WUU) was selected. Finally, for RdRp, the electron
microscopy structure of the nsp12-nsp7-nsp8 complex bound to the template primer
RNA and the triphosphate form of Remdesivir (PDB: 7BV2) was used. To prepare the
structure, Pymol [102] was employed to eliminate water molecules, dimers, natural ligands,
and other molecules such as ions. Then, Autodock Tools [103] was used to eliminate non-
polar hydrogen atoms, to identify rotating bonds, and to transform to the correct format
(.PDBQT). Calculations were performed using autodock-VINA [104]. For the calculation
parameters, spacing was set to 1 A; default exhaustiveness and full flexibility of the ligands
were chosen. The grid box for each enzyme is presented in the supplementary information
(SM3, Table S7). Docking assessment was performed as a validation procedure using the
docking accuracy strategy. The results were analyzed using Pymol [102], Ligplus+ [105],
and Discovery studio visualizer [106].

3.7. Molecular Dynamic Simulations

Further classical molecular dynamic (MD) simulations were performed based on
experimental pIC50. This type of calculation allows us to study the relative stability of the
ligand of interest in the active site of the enzyme, gaining insights on different parameters
such as hydrogen bond formation. For the calculation, the already cleaned enzyme plus
the ligand obtained from the docking calculations were used. The system was solvated
using the three-point water model (TIP3), in a cube shape. Sodium or chlorine atoms
were used as appropriate to neutralize the charge of the system. Enzyme topology was
built using Gromacs 2019 [107], and ligand topology with CHARMM General Force Field
(CGenFF) [108]. Calculations were performed with Gromacs 2019 [107] using the Chem-
istry at Harvard Macromolecular Mechanics (CHARMM) forcefield. First, the system was
relaxed and then equilibrated using a constant number of particles, pressure, and tempera-
ture (NVT) for 100 ps at 300 K, using Berendsen thermostat temperature coupling [109]
before starting the dynamic. For the simulation parameters, thermostat coupling was set
to 300 K, pressure coupling at 1 Barr and the simulation ran for 40 ns (40,000 steps of 1ps
each) [58].

3.8. Free Energy Calculations

Binding free energy calculations were performed using the Molecular Mechanics
Poisson–Boltzmann Surface Area (MM-PBSA) approach with the g_mmpbsa tool [110].
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Binding free energy is obtained according to Equation (1), taking into account the vacuum
Molecular Mechanics (MM) potential energy for non-bonded and bonded interactions
(EMM), plus the polar (Gpolar) and non-polar (Gnonpolar) solvation energy (Equation (2)).

GX = EMM + Gpolar + Gnonpolar (2)

X = protein, ligand, complex.
MM forcefield parameters are used to calculate EMM. Gpolar is obtained by solving the

Poisson–Boltzmann equation, while Gnonpolar is based on the Solvent Accessible Surface
Area (SASA) model. The three parameters were extracted between 5 and 40 ns of the MD
simulation trajectory by taking snapshots every 2 ns.

3.9. Frontier Orbital Analysis

The main purpose of this section was to investigate whether or not the frontier orbitals
shapes could allow qualitatively distinguishing structures with high vs. low anti-COVID-
19 activity. For this purpose, the selected structures were optimized at the DFT theory level
with the WB97XD/6-311G(d,p) [82,93,111,112] method, implemented in Gaussian 16 [113]
for Linux. Following optimization, the .chks files were retrieved and used to generate the
frontier molecular orbitals with a 0.02 au isosurface.

4. Conclusions

For the QSAR analysis, 2D structures of the compounds were used as downloaded
from the PubChem website, and 3D structures were satisfactorily optimized at the UFF
level of theory. A robust model for pIC50 prediction with only five attributes was obtained
with good statistical parameters (R2 = 0.897, Q2

LOO = 0.854 and Q2
ext = 0.876, among oth-

ers). The model has been demonstrated to be robust enough for the prediction of biological
activity with a wide applicability domain, making it possible to predict pIC50 values for
more than 4000 compounds extracted from the Drugbank database. Based on their pIC50
values, it was possible to identify 57 possible potent drugs, which can be used for the
treatment of COVID-19. From these, six compounds, i.e., Para-iodo-D-phenylalanine hy-
droxamic acid (DB01980), 2′,6′-Dichloro-Biphenyl-2,6-Diol (DB03259), 3-O-Methylfructose
(DB02438), Metanitrophenyl-Alpha-D-Galactoside (DB02213), 3-amino-azacyclotridecan-
2-one (DB08476), and 2-(2,4-dichlorophenoxy)-5-(pyridin-2-ylmethyl)phenol (DB07287),
were found as potential candidates due to their activity (pIC50 > 6.6) and are suggested for
further experimental studies. Interestingly, several antifungal and antibiotic compounds
such as miconazole, amikacin, streptomycin, lincomycin, and spiramycin were found to be
potent SARS-CoV-2 inhibitors, the same as monensin, flunisolide, fluticasone propionate,
and tixocortol, which are used to treat bronchitis, asthma, and allergic rhinitis. From the
docking analysis, the affinity scores found for the interaction of the studied drugs with
the three enzymes were all negative, with values from −4.5 to −9.4 kcal/mol, suggesting,
at first sight, that all the molecules could inhibit the biological targets. Further analysis
showed that the Mpro binding pocket has a side chamber where a Leu residue of inhibitor
N3 enters. Several of the studied compounds manage to fit in this chamber, although none
of them can obtain the same number of interactions and HBs as N3. On PLpro, a tunnel-
like structure on the active site where none of the studied molecules entered made drug
interaction with the active site not very strong. The best results were obtained for RdRp,
where digoxin has 19 interactions, including 7 HBs. The molecular dynamic simulation
for the selected compounds contributed substantially to the understanding of the protein-
ligand interaction for the three considered targets. MD simulation showed that in Mpro,
digoxin accommodates better in the pocket with a methyl group pointing to the chamber.
For PLpro, digoxin and chloroquine failed to stay in the active site after the simulation.
Again, RdRp-drug complexes were found to be the better option after the MD simulation.
Good fit with the active site and an overlay when adding the experimental RNA structure
suggest RdRp as a plausible mechanism of several studied drugs. MMPBSA calculation
showed that all values are negative, meaning that there is a favourable interaction be-
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tween the studied drugs and the chosen targets. For RdRp, digoxin was found to have
the highest affinity, matching experimental pIC50 values. The frontier molecular orbitals
analysis suggests that it is possible to separate the compounds based on the molecular
orbital shapes.

Supplementary Materials: The following are available online, Figure S1. Pearson’s coefficient range
for each descriptor concerning the other descriptors; Figure S2. a. Pharmacophore model 4 fitting
DB03259. b. Pharmacophore model 5 fitting DB02438; Figure S3. 2D representation of the interaction
of Digoxin (a), DB02438 (b), and DB02213 (c) with the active site of Mpro; Figure S4. 2D representation
of the interaction of Digoxin with the active site of RdRp; Figure S5. MD results for Mpro. a. RMSD
of the protein-ligand complex (red) and the ligand (black). b. Coulomb (blue) and Lennard-Jones
(green) interaction energy. c. the number of hydrogen bonds; Figure S6. Occupancy (yellow line) and
HB lifetimes (Bars) for the MD results of Mpro. Chloroquine in blue, digoxin in red, dronedarone in
purple, and remdesivir in green; Figure S7. Interaction of MPro (pale cyan) with a. Docking (yellow)
and MD (green) results for Digoxin. b. Docking (pink) and MD (orange) result for Chloroquine;
Figure S8. MD results for PLpro interaction with bazedoxifene. a. RMSD of the protein-ligand
complex (red) and the ligand (black). b. Coulomb (blue) and Lennard-Jones (green) interaction
energy. c. the number of hydrogen bonds; Table S1. Models obtained for the 2D, 3D, and combined
modeling; Table S2. DockCov2 scores of compounds in the Jeon et al. database; Table S3. Jeon
et al. database screening using pharmacophore models 4 and 5; Table S4. Best compounds for the
DrugBank screening using pharmacophore models 4 and 5; Table S5. Docking results of the Dataset
against Mpro, PLpro, and RdRp, ordered from largest to lowest pIC50; Table S6. Docking results
of the Best Molecules of the DrugBank screening, ordered from largest to loweest predicted pIC50;
Table S7. Gris box used for the docking study.

Author Contributions: Conceptualization, J.R.M.; Methodology, J.R.M., S.A.C. and E.A.M.; Software,
J.R.M., S.A.C. and E.A.M.; Validation, J.R.M., S.A.C. and E.A.M.; Formal analysis, J.R.M., S.A.C. and
E.A.M.; Investigation, J.R.M., S.A.C. and E.A.M.; Resources, J.R.M., and E.A.M.; Data curation, J.R.M.,
S.A.C. and E.A.M.; Writing—original draft preparation, J.R.M., S.A.C. and E.A.M.; Writing—review
and editing, J.R.M., S.A.C. and E.A.M.; Visualization, J.R.M., S.A.C. and E.A.M.; Supervision, J.R.M.
and E.A.M.; Project administration, J.R.M., S.A.C. and E.A.M.; Funding acquisition, J.R.M. and E.A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC was funded by Universidad del
Norte, Barranquilla-Colombia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors have used the high-performance computing (HPC) system.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Zhu, Y.; Li, J.; Pang, Z. Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development.

Asian J. Pharm. Sci. 2020, 16, 4–23. [CrossRef] [PubMed]
2. Tahir ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug

discovery from medicinal plants. J. Pharm. Anal. 2020, 10, 313–319. [CrossRef]
3. Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.;

et al. COVID-19: Drug Targets and Potential Treatments. J. Med. Chem. 2020, 6, 1998–2016. [CrossRef] [PubMed]
4. Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment Molecular

Orbital Based Interaction Analyses on COVID-19 Main Protease—Inhibitor N3 Complex (PDB ID: 6LU7). J. Chem. Inf. Model.
2020, 60, 3593–3602. [CrossRef] [PubMed]

5. Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A Review of Its Discovery
and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672–683.
[CrossRef]

http://doi.org/10.1016/j.ajps.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32837565
http://doi.org/10.1016/j.jpha.2020.03.009
http://doi.org/10.1021/acs.jmedchem.0c00606
http://www.ncbi.nlm.nih.gov/pubmed/32511912
http://doi.org/10.1021/acs.jcim.0c00283
http://www.ncbi.nlm.nih.gov/pubmed/32539372
http://doi.org/10.1021/acscentsci.0c00489


Molecules 2021, 26, 1100 26 of 30

6. Xiu, S.; Dick, A.; Ju, H.; Mirzaie, S.; Abdi, F.; Cocklin, S.; Zhan, P.; Liu, X. Inhibitors of SARS-CoV-2 Entry: Current and Future
Opportunities. J. Med. Chem. 2020, 63, 12256–12274. [CrossRef]

7. Ahidjo, B.A.; Loe, M.W.C.; Ng, Y.L.; Mok, C.K.; Chu, J.J.H. Current Perspective of Antiviral Strategies against COVID-19. ACS
Infect. Dis. 2020, 6, 1624–1634. [CrossRef]

8. Korkmaz, B.; Lesner, A.; Marchand-Adam, S.; Moss, C.; Jenne, D.E. Lung Protection by Cathepsin C Inhibition: A New Hope for
COVID-19 and ARDS? J. Med. Chem. 2020, 63, 13258–13265. [CrossRef]

9. Lu, L.; Zhong, W.; Bian, Z.; Li, Z.; Zhang, K.; Liang, B.; Zhong, Y.; Hu, M.; Lin, L.; Liu, J.; et al. A comparison of mortality-related
risk factors of COVID-19, SARS, and MERS: A systematic review and meta-analysis: Mortality-related risk factors of COVID-19,
SARS, and MERS. J. Infect. 2020, 81, e18–e25. [CrossRef]

10. Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z.; et al. Current and Perspective Diagnostic
Techniques for COVID-19. ACS Infect. Dis. 2020, 6, 1998–2016. [CrossRef]

11. Barros, R.O.; Junior, F.L.; Pereira, W.S.; Oliveira, N.M.; Ramos, R.M. Interaction of Drug Candidates with Various SARS-CoV-2
Receptors: An in Silico Study to Combat COVID-19. J. Proteome Res. 2020, 19, 4567–4575. [CrossRef]

12. Gao, K.; Nguyen, D.D.; Chen, J.; Wang, R.; Wei, G.W. Repositioning of 8565 Existing Drugs for COVID-19. J. Phys. Chem. Lett.
2020, 11, 5373–5382. [CrossRef] [PubMed]

13. Zeng, X.; Song, X.; Ma, T.; Pan, X.; Zhou, Y.; Hou, Y.; Zhang, Z.; Li, K.; Karypis, G.; Cheng, F. Repurpose Open Data to Discover
Therapeutics for COVID-19 Using Deep Learning. J. Proteome Res. 2020, 19, 4624–4636. [CrossRef] [PubMed]

14. Chien, M.; Anderson, T.K.; Jockusch, S.; Tao, C.; Li, X.; Kumar, S.; Russo, J.J.; Kirchdoerfer, R.N.; Ju, J. Nucleotide Analogues as
Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J. Proteome Res. 2020, 19, 4690–4697. [CrossRef]

15. Saul, S.; Einav, S. Old drugs for a new virus: Repurposed approaches for combating COVID-19. ACS Infect. Dis. 2020, 6, 2304–2318.
[CrossRef]

16. Weiss, C.; Carriere, M.; Fusco, L.; Fusco, L.; Capua, I.; Regla-Nava, J.A.; Pasquali, M.; Pasquali, M.; Pasquali, M.; Scott, J.A.;
et al. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano 2020, 14, 6383–6406. [CrossRef]
[PubMed]

17. Ghosh, A.K.; Brindisi, M.; Shahabi, D.; Chapman, M.E.; Mesecar, A.D. Drug Development and Medicinal Chemistry Efforts
toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem 2020, 15, 907–932. [CrossRef] [PubMed]

18. Batra, R.; Chan, H.; Kamath, G.; Ramprasad, R.; Cherukara, M.J.; Sankaranarayanan, S.K. Screening of Therapeutic Agents for
COVID-19 Using Machine Learning and Ensemble Docking Studies. J. Phys. Chem. Lett. 2020, 11, 7058–7065. [CrossRef]

19. Asai, A.; Konno, M.; Ozaki, M.; Otsuka, C.; Vecchione, A.; Arai, T.; Kitagawa, T.; Ofusa, K.; Yabumoto, M.; Hirotsu, T.; et al.
COVID-19 drug discovery using intensive approaches. Int. J. Mol. Sci. 2020, 21, 2839. [CrossRef]

20. Wang, J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug
Repurposing Study. J. Chem. Inf. Model. 2020, 60, 3277–3286. [CrossRef]

21. Kandeel, M.; Al-Nazawi, M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life
Sci. 2020, 251, 117627. [CrossRef] [PubMed]

22. ISRCTN83971151 Public Health Emergency SOLIDARITY Trial of Treatments for COVID-19 Infection in Hospitalized Patients.
2020. Available online: http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISRCTN83971151 (accessed on 17 August 2020).

23. WHO. Solidarity Trial Consortium Repurposed Antiviral Drugs for Covid-19—Interim WHO Solidarity Trial Results. N. Engl.
J. Med. 2020, 1–15. [CrossRef]

24. Lou, Y.; Liu, L.; Yao, H.; Hu, X.; Su, J.; Xu, K.; Luo, R.; Yang, X.; He, L.; Lu, X.; et al. Clinical Outcomes and Plasma Concentrations
of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: An Exploratory Randomized, Controlled Trial. Eur. J. Pharm. Sci.
2021, 157, 105631. [CrossRef] [PubMed]

25. Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of
SARS-CoV-2 in vitro. Antivir. Res. 2020, 178, 104787. [CrossRef] [PubMed]

26. Elnagdy, S.; AlKhazindar, M. The Potential of Antimicrobial Peptides as an Antiviral Therapy against COVID-19. ACS Pharmacol.
Transl. Sci. 2020, 3, 780–782. [CrossRef]

27. Yan, V.C.; Muller, F.L. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Med.
Chem. Lett. 2020, 11, 1361–1366. [CrossRef] [PubMed]

28. Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of antiviral drug candidates against
SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020, 64, e00819-20. [CrossRef] [PubMed]

29. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank
5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef]

30. Information, N.C. For B. Digoxin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Digoxin (accessed on 17
August 2020).

31. Johansson, S.; Lindholm, P.; Gullbo, J.; Larsson, R.; Bohlin, L.; Claeson, P. Cytotoxicity of digitoxin and related cardiac glycosides
in human tumor cells. Anticancer. Drugs 2001, 12, 475–483. [CrossRef]

32. Resham, K.; Patel, P.N.; Thummuri, D.; Guntuku, L.; Shah, V.; Bambal, R.B.; Naidu, V.G.M. Preclinical drug metabolism and
pharmacokinetics of salinomycin, a potential candidate for targeting human cancer stem cells. Chem. Biol. Interact. 2015, 240,
146–152. [CrossRef]

http://doi.org/10.1021/acs.jmedchem.0c00502
http://doi.org/10.1021/acsinfecdis.0c00236
http://doi.org/10.1021/acs.jmedchem.0c00776
http://doi.org/10.1016/j.jinf.2020.07.002
http://doi.org/10.1021/acsinfecdis.0c00365
http://doi.org/10.1021/acs.jproteome.0c00327
http://doi.org/10.1021/acs.jpclett.0c01579
http://www.ncbi.nlm.nih.gov/pubmed/32543196
http://doi.org/10.1021/acs.jproteome.0c00316
http://www.ncbi.nlm.nih.gov/pubmed/32654489
http://doi.org/10.1021/acs.jproteome.0c00392
http://doi.org/10.1021/acsinfecdis.0c00343
http://doi.org/10.1021/acsnano.0c03697
http://www.ncbi.nlm.nih.gov/pubmed/32519842
http://doi.org/10.1002/cmdc.202000223
http://www.ncbi.nlm.nih.gov/pubmed/32324951
http://doi.org/10.1021/acs.jpclett.0c02278
http://doi.org/10.3390/ijms21082839
http://doi.org/10.1021/acs.jcim.0c00179
http://doi.org/10.1016/j.lfs.2020.117627
http://www.ncbi.nlm.nih.gov/pubmed/32251634
http://www.who.int/trialsearch/Trial2.aspx?TrialID=ISRCTN83971151
http://doi.org/10.1056/NEJMoa2023184
http://doi.org/10.1016/j.ejps.2020.105631
http://www.ncbi.nlm.nih.gov/pubmed/33115675
http://doi.org/10.1016/j.antiviral.2020.104787
http://www.ncbi.nlm.nih.gov/pubmed/32251768
http://doi.org/10.1021/acsptsci.0c00059
http://doi.org/10.1021/acsmedchemlett.0c00316
http://www.ncbi.nlm.nih.gov/pubmed/32665809
http://doi.org/10.1128/AAC.00819-20
http://www.ncbi.nlm.nih.gov/pubmed/32366720
http://doi.org/10.1093/nar/gkx1037
https://pubchem.ncbi.nlm.nih.gov/compound/Digoxin
http://doi.org/10.1097/00001813-200106000-00009
http://doi.org/10.1016/j.cbi.2015.08.007


Molecules 2021, 26, 1100 27 of 30

33. National Center for Biotechnology Coccidiostats. Available online: https://www.ncbi.nlm.nih.gov/mesh/68003049 (accessed on
17 August 2020).

34. Drugbank Niclosamide. Available online: https://www.drugbank.ca/drugs/DB06803 (accessed on 17 August 2020).
35. Jaworska, J.; Nikolova-Jeliazkova, N. How can structural similarity analysis help in category formation? SAR QSAR Environ. Res.

2007, 18, 195–207. [CrossRef]
36. Torrent-Sucarrat, M.; De Proft, F.; Ayers, P.W.; Geerlings, P. On the applicability of local softness and hardness. Phys. Chem.

Chem. Phys. 2010, 12, 1072–1080. [CrossRef]
37. Vandewaterbeemd, H.; Kansy, M. Hydrogen-bonding capacity and brain penetration. CHIMIA Int. J. Chem. 1992, 46, 299–303.
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