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Development of a sensitive, 
quantitative assay with broad 
subtype specificity for detection 
of total HIV‑1 nucleic acids 
in plasma and PBMC
C. N. Kibirige1*, M. Manak2,3,7, D. King1, B. Abel1, H. Hack2,3,4, D. Wooding1, Y. Liu2,3,4, 
N. Fernandez1, J. Dalel1, Steve Kaye5, N. Imami6, L. Jagodzinski3,4 & J. Gilmour1

An LTR-based quantitative PCR (qPCR) assay was modified and optimized for the quantification 
of total HIV-1 nucleic acids in plasma and PBMC. TaqMan qPCR primers and probes were designed 
against the NCBI/LANL HIV-1 compendium database by analyzing sequences used in assays for 
sensitive cross-clade detection of HIV-1 as reported in the literature and elucidating regions of 
improved cross-subtype specificity. Inosine and mixed nucleotide bases were included at polymorphic 
sites. Real-time RT-qPCR and qPCR were performed on plasma viral RNA and cellular lysates. A 
step-up amplification approach to allow binding of primers across polymorphic regions showed 
improved sensitivity compared to universal cycling. Unlike a lead competing laboratory-developed 
assay, all major HIV-1 subtypes, and a wide range of recombinants from a 127-member diversity panel 
were detected and accurately quantified in spiked plasmas. Semi-nested PCR increased detection 
sensitivity even further. The assay was able to detect down to 88 copies/mL of HIV-1 in plasma with 
95% efficiency or the equivalent of a single infected cell. The PCR assay will be valuable in studies 
that monitor very low viral levels including residual or break through HIV-1 in patients receiving 
antiretroviral therapy, in HIV-1 cure, and in other research studies.

In order to effectively monitor HIV-1 combination anti-retroviral therapy (cART) and support HIV-1 cure stud-
ies internationally, there is a need for relatively simple low-cost sensitive assays that can reliably quantify low 
levels of HIV-1, across different viral subtypes1–3. HIV suppression, following initiation of cART, to levels that are 
undetectable by commercial viral load assays (i.e., below 20–50 copies/ml in plasma), is significantly associated 
with longevity and improved quality of life. Moreover, since successfully treated people do not transmit the virus, 
early and sustained viral suppression is an important public health tool in the prevention of the spread of HIV. 
Current WHO guidelines thus strongly recommend initiation of cART as soon as possible after HIV-1 diagnosis4.

Interestingly, the use of highly sensitive laboratory developed assays (LDAs), such as the Single-Copy Assay 
(SCA) which detects down to 1 copy of HIV-1 RNA per ml of plasma, has shown that discontinuation of antiret-
roviral treatment by HIV-infected patients with plasma RNA levels above 10–15 copies/ml results in viremia 
rebound earlier and more often than patients who have lower or undetectable RNA5,6. These results indicate that 
candidates for viral control or cure studies may have better success if viral loads are driven below 15 copies/ml 
before treatment cessation.
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HIV-1 DNA integrates into the human chromosome and persists in an inactive state even in the presence of 
ongoing antiretroviral therapy. This means that reduction of plasma viral load to low levels, even below 10–15 
copies/ml as indicated by the highly efficient SCA assay, does not lead to viral eradication. The integrated viral 
DNA serves as a long-term reservoir for viral reinfection and can be reactivated when therapy is discontinued 
or when drug-resistant isolates emerge6–8. Despite dramatic decreases in plasma HIV-1 RNA levels following 
treatment with cART, levels of integrated viral DNA in virally suppressed subjects persist at similar levels to those 
of untreated subjects9. HIV-1 viral reservoir sites include CD4 memory T cells, lymph nodes, the gut and other 
tissues8. To measure the levels of replication-competent integrated DNA within these reservoir sites, various 
assays have been developed. The quantitative virus outgrowth assay (QVOA) is considered the gold-standard 
assay for this type of assessment, but is complicated, expensive and time intensive, and despite recent improve-
ments, is not practical for routine viral monitoring10.

Alternative assays have been developed to quantify cell-associated viral nucleic acids for measurement of 
residual quiescent viral genomes11. Indeed, several studies have shown that viral nucleic acids can be readily 
detected in whole blood and peripheral blood mononuclear cells (PBMCs) of HIV-1 infected individuals even 
when plasma viral load is very low or undetectable12–14. The level of residual HIV-1 DNA in the PBMCs of treated 
subjects ranges from 100 to 10,000 copies of HIV-1 DNA per million cells and remains sufficiently high as to allow 
for reliable detection of quiescent infection, with only those who have initiated therapy during Fiebig disease 
stage I or II at lower levels12,14. These alternative cell-based PCR assays have been shown to correlate well with 
the QVOA and thus the latent viral reservoir6,15. These simplified assays are used as a proxy for viral reservoir 
estimation and provide a more efficient tool for large-scale patient screening and research because they can be 
tailored to the available specimens and can be run at lower cost (~ < $4 per test) compared to FDA-approved 
plasma viral load assays ($50–100+ per test)16,17.

Another lingering issue in global HIV-1 treatment and monitoring is that many of the original LDAs for 
HIV-1 quantification used in clinical research were developed against HIV-1 subtype B, the predominant sub-
type circulating in Europe and America. This subtype only accounts for 10% of the infections worldwide18. 
Rapid spread of HIV in Africa and Asia and increased international travel have led to a steady increase in non-B 
HIV-1 in the western hemisphere19. Current HIV-1 isolates have been classified into three major groups (M, 
N and O) and further subdivided into subtypes or clades, various circulating recombinant forms (CRFs) and 
unique recombinant forms (URFs) spanning up to 40% sequence divergence20. A major challenge in the design 
and implementation of LDAs for HIV-1, therefore, is the large worldwide sequence diversity of the virus and 
the lack of ability of current LDAs to cover the broad range of HIV-1 subtypes in various target populations. 
Moreover, the extensive variability in sample processing and amplification procedures among the various LDAs, 
makes it difficult to compare subtype sensitivity and specificity between different test formats and laboratories. 
Several programs, such as the HIV Reservoir Assay Validation and Evaluation Network (RAVEN) project (www.​
cavd.​org), and the NIH/NIAID/DIAIDS External Quality Assurance Program Oversight Laboratory (EQAPOL) 
(https://​eqapol.​dhvi.​duke.​edu/) have emerged to provide standardized platforms for assay validation and to pro-
vide guidance for the minimum information needed for publication of quantitative real-time PCR experiments 
(MIQE)21. These QC programs and reagents help ensure assay claims and allow comparison of performance 
across different assays and laboratories.

Here, we describe a sensitive polymerase chain reaction (PCR)-based assay which can be used in various 
formats to detect residual HIV-1 nucleic acids in the plasma and PBMCs of HIV-1 infected individuals under-
going cART. In the traditional non-nested liquid format, the assay can detect 88 copies of HIV-1 RNA per ml 
with 95% efficiency. A semi-nested liquid format allows for greater sensitivity. In the alternative cellular format, 
the assay can detect down to 3 input copies of nucleic acid or the equivalent of a single infected cell at the 95% 
confidence level. Compared to previously reported LDAs, our assay provides improved efficiency, a very broad 
dynamic range and much improved cross-subtype specificity9,22–24. We have evaluated this assay according to 
MIQE guidelines using an extensive diversity panel of HIV-1 strains provided by EQAPOL and the United States 
Military HIV Research Program (US MHRP) via the AIDS Reagent Program. It has comparable sensitivity to 
current commercial PCR-based HIV-1 assays used for plasma viral load testing and for sensitive detection of 
cell-associated HIV-1 levels in PBMCs but is considerably cheaper to perform which greatly increases its utility 
in resource-limited settings. Please note that this technology is the subject of a priority patent application. Any 
parties wishing to commercialize these assays or variations thereof, please contact Imperial College London via 
enterprise@imperial.ac.uk, citing reference number 10579.

Results
Assay design.  Oligonucleotide sequence names are denoted by the first nucleotide of their HXB2 reference 
sequence base position and an “F” for forward primer, “P” for probe or “R” for reverse primer. The main oligo-
nucleotide sets studied during this project are also denoted by the first author and their year of publication e.g., 
Brussel 2005.

Previously reported laboratory developed assay.  Initial screening of published nucleotides found 
that the 496F/546P/633R primer–probe set (Brussel 2005), with an optional Friedrich 2010 internal reverse 
primer 622R produced the best and most consistent results but showed limited specificity for non-subtype B 
isolates on a sub-panel of 20 EQAPOL isolates that were difficult to detect and accurately quantify (Table 1). 
Table 1 shows data on the 8 most problematic strains.

Further optimization, including adjustment of oligonucleotide concentration, utilization of nested PCR, step-
up cycling and addition of tRNA to the master-mix, resulted in improved assay performance with a standard 
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curve of > 90% efficiency, a linear range over 5 logs and a LLOD/LLOQ95 of 3 input copies of HIV RNA, but did 
not enhance the detection of non-detectable viral strains (Table 1).

Subsequent sequence analysis of these oligonucleotide sets against the HIV-1 LANL compendium data-
base, showed significant mismatch issues (Supplementary Table S2) and indicated the need to revise the assay 
oligonucleotides.

Revised laboratory developed assay.  A revised set of oligonucleotides was designed using AlleleID 
7.0 software and the IDT Oligoanalyzer tool as detailed in the methods. The revised sequences can be found in 
Table 2.

Instrument, and probe–chemistry optimization.  Assay optimization of the revised oligonucleotides 
was performed on a variety of instruments and finalized on a QuantiStudio 3™ thermocycler (ThermoFisher Sci-
entific) using a major groove binding (MGB) probe containing a non-fluorescent quencher. The MGB group at 
the 3′ end of the probe increased its melting temperature (Tm) while the NFQ component of the probe quenched 
the signal from the 6FAM fluorescent dye before hydrolysis, in a manner that resulted in an even lower back-
ground signal than a non-NFQ probe. The finalized protocol as described in the methods resulted in a greatly 
improved assay with a linear dynamic range of over 7 logs (Figs. 1, 2).

PCR reagents and protocols.  Generally, the step-up cycling protocol using 10  ng/ml tRNA provided 
greater sensitivity, linearity and precision when compared to universal cycling conditions (Fig. 2a; Table 2).

Real‑time quantitative PCR (qPCR) protocol for DNA targets.  When reaction volumes were decreased to 20 µl 
and maximum ramp rates or fast cycling was used, the PCR Biosystems Universal Probe (FAST) kit performed 
better than the QuantiFast™ Probe (Qiagen) and Kapa Probe Fast (Merck), providing a significant time and cost 
saving from the previously used Qiagen QuantiTect Probe kit.

Reverse transcriptase quantitative PCR (RT‑qPCR) protocol for RNA targets.  Standard non‑nested RTqPCR.  The 
standard non-nested format of the RTqPCR or viral load assay was adapted to the 1-Step Go mastermix (PCR 

Table 1.   Effect of nested PCR, step-up cycling, and oligonucleotide sequence on cross-subtype specificity and 
accuracy of HIV-1 RT-qPCR LDAs. NB: This table includes a selection of 8 HIV-1 strains that were difficult 
to quantify using the Brussel/Freidrich assay—496F/546P/622R1/633R2, compared to the performance of the 
revised 525F/574P/599R assay. 10 ng/ml tRNA was used in the mastermix, in all these experiments. ◦ Samples 
that were under-quantified by the LDAs; Bold type = Samples that were correctly quantified by the assays.

Accession Subtype Country of origin Year

[Expected] 
Copies/ml

[Observed] Copies/mL–Laboratory developed assays

Brussel/Freidrich assay Revised assay

Roche Cobas
Non-nested 
universal Nested universal

Non-nested 
step-up Nested step-up

Semi-nested 
step-up

JX140676 G Cameroon 2010 1.53e + 05 ◦1.65e + 01 ◦1.80e + 01 0.00e + 00 ◦3.48e + 02 1.17e + 05

KC596065 CRF01_AE China 2011 6.58e + 04 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

KF859742 O Germany 2012 5.42e + 04 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 ◦4.45e + 03

KF859745 A1 Uganda 2010 1.43e + 04 0.00e + 00 ◦1.53e + 03 ◦4.41e + 02 ◦5.72e + 02 5.98e + 04

KF716467 C Zambia 2011 5.25e + 04 ◦2.15e + 03 ◦1.65e + 03 ◦3.46e + 02 ◦8.70e + 02 9.81e + 04

KF716488 A1, G, CRF01_AE Uganda 2010 5.04e + 04 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 2.89e + 05

KP109492 URF_A1D Uganda 2009 2.81e + 04 0.00e + 00 ◦6.54e + 02 ◦5.55e + 01 ◦6.07e + 02 6.11e + 04

KU749414 A1, G Pakistan 2014 1.21e + 05 ◦1.86e + 03 ◦1.24e + 03 ◦6.70e + 02 ◦1.12e + 03 4.14e + 05

Assay efficiency% 99.98 93.73 94.81 89.67 > 95.00

~ LOD/LOQ95 (based on input copies of RNA via standard curve, not copies/ml) 30/3e3 1/30 1/12.5 1/3 1/3

Table 2.   Oligonucleotides designed and tested for various formats of the HIV-1 assay. a Genbank Accession ID 
K03455. Inosine and mixed bases shown in enlarged bold font. AlleleID 7.0 and IDT Oligoanalyzer software 
utilized.

Oligo name HXB2a nt position
Assay component, assay format and target (see also Supplementary 
Table S4) Sequence

525F LTR 525 → 543 Forward primer (non-nested RNA or DNA) 5′-TCA​ATA​AAG​CTT​GCC​TTG​A-3′

λ525F LTR 525 → 543 Forward primer round 1 (semi-nested RNA or DNA) 5′-ATG​CCA​CGT​AAG​CGA​AAC​TTC​AAT​AAA​GCT​TGC​CTT​GA-3′

λT n/a Forward primer round 2 (semi-nested RNA or DNA) 5′-ATG​CCA​CGT​AAG​CGA​AAC​T-3′

574P LTR 574 ← 552 Probe (total RNA or DNA) 5′-FAM/ACA​GAY​GGG​CAC​ACAC​NACT/MGBNFQ-3′

599R LTR 599 ← 582 Reverse primer (total RNA or DNA) 5′-AGG​GAT​CTC​TAG​NTACCA-3′
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Biosystems). It performed better than the EXPRESS One-Step SuperScript kit (ThermoFisher Scientific) and as 
well as the Superscript III/platinum kit when reaction volumes were decreased to 20 µl and maximum ramp rates 
or fast cycling was used. This provided significant time and cost savings.

For samples with target concentrations below 2 copies per µl, using a 50 µl final reaction volume and “touch 
up” cycling as recommended by the manufacturer, increased assay sensitivity tenfold with the 1-Step Go mas-
termix (PCR Biosystems).

Figure 1.   Revised qPCR and RTqPCR quantification assay synthetic standard and formats. Created with 
BioRender.com. (a) Synthetic DNA plasmid template containing the 433–633 HIV-1 LTR insert was linearized 
by ScaI and used for standard curve generation in the HIV-1 LDAs. RNA transcripts from the linearized 
DNA plasmid were made using the T7 promoter site and were used as HIV-1 RNA controls. (b) Protocol for 
Non-nested qPCR on crude DNA lysates. (c) Protocol for semi-nested RT-qPCR on RNA extracts.
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Semi‑nested RTqPCR for sample enrichment.  The utilization of a semi-nested assay format allowed for target 
enrichment of limited samples and further improved assay sensitivity but was associated with more false positive 
control samples and failed assay runs due to cross-contamination.

Assessing laboratory developed assay performance.  Confirmation of correct sequence amplifica‑
tion.  Gel electrophoresis of the qPCR products from the revised LDA produced bands of the expected size of 
74 bp (599–525 = 74 bp). Sequencing of the bands confirmed the amplification of the expected region.

Assay linearity, lower limit of detection (LLOD) and lower limit of quantification with 95% confidence (LLOQ95).  A 
linear relationship was obtained for the qPCR format of the revised LDA against 8E5 cell DNA over a range of 
10e1–10e7 input copies of HIV-1. This format of the assay was capable of reproducibly detecting the equivalent 
of a single infected cell (Fig. 2b, c; Table 3).

Evaluation of the performance of the RT-qPCR format of the revised LDA showed good linearity, accuracy, 
and precision over a range of 100 to 5 × 10e6 copies of HIV-1 RNA/ml (R2 of 0.91) when evaluated on the 
AcroMetrix HIV-1 linearity panel (ThermoFisher Scientific) (Fig. 2b, c). The lower limit of detection (LLOD) 
was determined by probit regression on serial dilutions of EDTA plasma spiked with an HIV-1 AcroMetrix 
quantification standard near the cut-off level of the assay. The LLOD was found to be 88 copies/ml at the 95% 
level and 17 copies/ml at 50% (Fig. 2d).

Intra‑assay and inter‑assay reproducibility and precision.  The precision of the assay was evaluated on serial 
dilutions of lysates of 8E5 cells testing over 15 replicates at 300,000 to 30 cell equivalents, and 30 replicates at 3 
cell equivalents. Excellent reproducibility was observed at all dilutions, with the inter-assay coefficient of varia-
tion (CV) ranging from 1.9 to 5.8% and a CV of 3.1% at the 3 input copy level. Intra-assay variability comparing 
results obtained on different days was 3.7 ± 2.5% (Table 3).

Assay specificity for HIV‑1.  The assay was highly specific as demonstrated by a lack of signal in EDTA plasma 
from 10 uninfected donors (Biological Specialty Corporation) and a lack of reactivity with plasma from indi-
viduals infected with Influenza, Parainfluenza, RSV, Adenovirus, Human Metapneumovirus, Coronavirus, HBV, 
HCV, EBV, HSV-1, CMV, VZV, Parvovirus, HIV-2A and HIV-2B (Table 4).

The assay was determined to be 95.76% accurate with 100% sensitivity and 93.24% specificity on 44 HIV-1 
positive and 74 HIV-1 negative crude cellular lysates. The samples for this component of the validation were 
derived from 74 HIV-1 negative donors from IAVI’s Protocol L (formerly the International AIDS Vaccine Ini-
tiative). They comprised of 26 male and 46 female participants and 2 donors with unknown gender. The group 
contained 12 chronically infected protocol L donors (8 male and 4 female) and 32 cART-suppressed male HIV-1 
positive donors from the London St. Stephens Trust. The protocol L donors come from regions of Rwanda and 
Kenya where HIV-1 subtype A is predominant, followed by D, C and G while the London participants were all 
confirmed as subtype B (Supplementary Table S5). The positive predictive value of the assay was 89.80% while 
the negative predictive value was 100% with this sample set (Table 5).

HIV‑1 cross‑subtype specificity.  The revised LDA accurately detected and quantified 19 out of the 20 problem 
strains in the preliminary diversity panel (95%) but missed the CRF01_AE strain KC596065 (Table 2). The abil-
ity of the assay to provide accurate quantitative measurements of plasma viral load over a wide range of HIV-1 
subtypes was then evaluated on a panel of 127 isolates from the External Quality Assurance Program Oversite 
Laboratory (EQAPOL) and the US Military’s HIV Research Program (USMHRP) spiked into plasma samples. 
The assay detected all but one of the additional virus strains in the panel (Fig. 2f). It also failed to detect a 2004 
subtype C isolate from China (AY713414). This represented a 99.2% detection rate.

A Bland–Altman plot showing the difference between the measurements obtained by the revised LDA com-
pared to viral load values obtained by the Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test v2.0™ assay shows 
a tight relationship with an R2 of 0.03, representing parallel performance (Fig. 2d), with a slight but statisti-
cally insignificant under-quantification bias towards the laboratory developed assay (0.388) (Fig. 2e, g).

The relationship between the LDA and the Roche assay by individual isolates as sorted by subtype is shown in 
Fig. 3, with the raw data in Supplementary Table S3. Additional, more detailed, raw data files have been deposited 
in a center for open science database and can be viewed via this link - https://​osf.​io/​m9yne/?​view_​only=​47cbc​
fd3d3​9b4a8​9a0d7​58a47​4441e​38.

Discussion
A highly sensitive, specific, and robust quantitative PCR assay, targeting the HIV-1 LTR, was developed for use 
in research and for quantifying viral levels in HIV-1 infected individuals. Different assay formats and protocols 
were developed including a traditional RT-qPCR format for viral load determination and a cell-based DNA 
format that can be used to monitor residual levels of viral nucleic acids in treatment-suppressed individuals (see 
Supplementary Table S4). The assay design included selection of primers, probes and amplification conditions to 
allow sensitive detection of all major HIV-1 subtypes worldwide, including group M subtypes A (East Africa), 
C (Southern Africa, India, Nepal), D (Eastern and Central Africa), CRF01_A/E (Thailand), and CRF02_A/G 
(West Africa and Central Europe) and Group O.

A variety of thermocyclers and master mixes were evaluated in the development process of this assay. The 
final optimized version used the thermofisher Quantistudio 3.0 thermocycler which has various customizable 
features. Adapting the assay to alternative thermocyclers may require some additional tweaking or optimization 

https://osf.io/m9yne/?view_only=47cbcfd3d39b4a89a0d758a474441e38
https://osf.io/m9yne/?view_only=47cbcfd3d39b4a89a0d758a474441e38
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but should maintain the same basic principles as described in this manuscript. The adaptation of the MGB group 
at the 3′ end of the probe allowed for lowering the melting temperature (Tm) while the NFQ component of the 
probe quenches the signal from the 6FAM fluorescent dye before hydrolysis, in a manner that results in an even 
lower background signal than a non-NFQ probe.

Despite initially selecting the most promising oligonucleotide sequences that had been reported in the litera-
ture as being broadly cross-subtype specific, assessment of the Brussel 2005 assay with a Friedrich 2010 internal 
reverse primer, which performed exceptionally well on a synthetic template, found that it accurately quantified 
only 7 of 20 (35%) problem strains of HIV-1 viruses tested in a cross-subtype EQAPOL diversity sub-panel 
(Table 2). Interestingly, alignment of these oligonucleotide sequences against the published sequences of the 
panel members did not reveal any mismatches in the strains that were not detected by the assay. Alignment of 
these oligonucleotides against the compendium database, however, revealed several mismatch issues, particu-
larly in subtype AE and O (Supplementary Fig. S2; Supplementary Table S2). A similar alignment of the revised 
LDA oligonucleotides showed significantly better homology across a diverse range of HIV-1 subtypes and thus 
detected and quantified them better (Supplementary Table S2; Supplementary Fig. S2). This was unexpected 
and indicates that in-silico predictions of cross-subtype specificity based simply on sequence alignments can 
sometimes be misleading25.

As stated, before designing the revised oligonucleotide set, a more rigorous alignment analysis of the Brus-
sel/Friedrich oligonucleotide sequences was conducted against the current edition of the LANL compendium 
database (Supplementary Fig. S1b, c). The compendium database is comprised of 37 highly curated sequences 
from major HIV-1 group M subtypes (four sequences per subtypes); 32 CRFs and other reference sequences and 
11 subtype N, O or CPZ. The database is designed to represent the diversity of the sequences present within the 
entire HIV-1 database but allows quicker and more accurate analysis of variation as repetition and poor sequence 
information is eliminated. The alignments against the compendium database more accurately reflected assay per-
formance and identified multiple mismatch issues, particularly in subtype AE and O (Supplementary Table S2). 
The revised LDA was therefore designed against the compendium database and then verified against the entire 
database. It corrected the mismatch issues found in the Brussel/Friedrich oligonucleotides and incorporated a 
wobble and Inosine, a modified base, in two locations. As already stated, the resulting assay performed much 
better than the Brussel/Friedrich assay on a large diverse panel of HIV-1 strains.

Figure 2.   Optimization and Validation of Revised LTR-based qPCR and RTqPCR Assay Formats. (a) 
Optimization of the initial 496F/546P/633R primer–probe set for total HIV-1 DNA detection using universal 
cycling with tRNA; step-up cycling with no tRNA or step-up cycling with 10 ng/ml tRNA. Geometric 
means and standard errors of means are plotted for 3–12 replicates per sample. (b) Evaluation of the 
linearity of the RT-qPCR format of the 525F/574P/599R revised assay for detection of HIV-1 RNA on an 
AcroMetrix HIV-1 RNA Linearity Panel. (c) Demonstration of the linearity of the qPCR format of the revised 
HIV-1 laboratory developed assay on dilutions of crude lysates of 8E5 cells. (d) Plasma viral load limit of 
detection (LOD) determination of the RTqPCR format of the revised laboratory developed assay by probit 
regression of serial dilutions of EDTA plasma spiked with an HIV-1 AcroMetrix quantification standard near 
the cut-off level of the assay. The percentage of specimens detected at each copy level is indicated, and the 50% 
and 95% detection level extrapolated from the curve. Three replicates were used for 100 copies/ml while 10 
replicates were used for the other dilutions. (e) Correlation in RNA plasma viral load measurements obtained 
by the revised laboratory developed assay and the Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test v2.0 
assay. The analysis was performed on 127 high-titer HIV-1 spiked plasmas from the External Quality Assurance 
Program Oversite Laboratory (EQAPOL) and the US Military’s HIV Research Program (USMHRP). (f) Bland–
Altman plot showing the difference between the measurements obtained by the revised laboratory developed 
assay and the Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test v2.0 assay. The analysis was performed on 127 
high-titer HIV-1 spiked plasmas from the External Quality Assurance Program Oversite Laboratory (EQAPOL) 
and the US Military’s HIV Research Program (USMHRP). (g) A typical set of assay amplification curves 
obtained using the revised laboratory developed assay. (h) A typical standard curve obtained using the revised 
laboratory developed assay. NB: Graphs (a) to (f) were produced using Microsoft Excel. Graphs (g) and (h) 
were produced using the Thermofisher Cloud Platform Standard Curve Application. The final figure was created 
using BioRender.com

◂

Table 3.   Precision of assay as measured using dilutions of crude lysates of 8E5 cells.

Cell numbers No. of replicates Mean SD CV (%)

3 30 32.38 0.99 3.1

30 15 29.08 0.55 1.9

300 15 25.39 1.46 5.8

3000 15 22.44 0.56 2.5

30,000 15 18.97 0.91 4.8

300,000 15 16.21 0.47 2.9
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To determine whether the discrepancy between general sequence alignment versus the compendium align-
ment was a common phenomenon, we re-analyzed oligonucleotide sets reported in the literature as having 
good HIV-1 cross-subtype specificity against the compendium database; using the same method we adopted to 
design the revised LDA. When the assays reported by Vandergeeten 2014 and van der Sluis 2013 as highly sensi-
tive and broadly cross reactive, for example, were analyzed against the compendium database, their base-pair 
identity statistics did not look as favorable as indicated in the original publications. (Supplementary Table S2). 
Additionally, Rutsaert et al. recently conducted an in-depth analysis of 20 total HIV-1 DNA assays reported in 
the literature as having good cross-subtype specificity including the afore mentioned Vandergeeten 2014, and 
van der Sluis 2013 assays, against an HIV-1 subtype diversity panel comprised of 30 samples. We aligned the 
oligonucleotides from the two best-performing assays from their analysis—Schvachsa 2007 and Viard 2004—
against the compendium database and found that these alignment statistics were also not as good as the revised 
LDA (Supplementary Table S2)26–28.

The LTR region of HIV-1 is particularly problematic for accurate assay design because sequencing enzymes 
become error-prone and drop off at the end of genomes. Indeed, despite all the sequences being classified as “com-
plete”, there are many sequences with only partial or no information within the LTR region, even in the carefully 

Table 4.   Specificity of assay on plasma samples from individuals infected with other viruses or from 
uninfected individuals. *TND target not detected.

Virus Source Result

Influenza Virus CAP ID2-A 2012 TND

Parainfluenza Virus CAP ID2-A 2012 TND

RSV CAP ID2-A 2012 TND

Adenovirus CAP ID2-A 2012 TND

Human Metapneumovirus CAP ID2-A 2012 TND

Coronavirus CAP ID2-A 2012 TND

HBV Affymetrix-Valiquant TND

HCV Affymetrix-Optiquant TND

EBV Zeptometrix TND

HSV-1 Zeptometrix TND

CMV Zeptometrix TND

VZV Zeptometrix TND

Parvovirus Zeptometrix TND

HIV-2A NIH Reagent Repository TND

HIV-2B NIH Reagent Repository TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Negative Plasma BSC TND

Table 5.   Specificity of the revised 525F/575P/599R laboratory developed assay on crude PBMC lysates 
from HIV-1 infected or uninfected individuals. *See Supplementary Table S5 for Donor Characteristics. 
a Calculations computed using https://​www.​medca​lc.​org/​calc/​diagn​ostic_​test.​php. b Values in parentheses are 
the 95% confidence intervals.

Patient HIV infection 
status

HIV-1 assay results

Sensitivity (%) Specificity (%)
Positive predictive value 
(%)

Negative predictive 
value (%) Accuracy (%)Positive Negative Total

Infected 44 0 44

Uninfected 5 69 74

Total 49 69 118 100 (91.96–100) 93.24 (84.93–97.77) 89.80 (79.06–95.35) 100 95.76 (90.39–98.61)

https://www.medcalc.org/calc/diagnostic_test.php
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curated compendium database. As can be seen from the sequence alignments in Supplementary Table S2, the 
compendium database had 21% less sequence information in the LTR regions where sequence information 
becomes scarcer—i.e., towards the ends of the genome—compared to the sequence information available for 
upstream regions of the virus. Of all 198 sequences in the compendium database, 101 (51%) had information in 
the 633R primer region for example, compared to 65 (32.3%) in the 525F primer region and 53 (26.7%) in the 
496F primer region of the assay.

We recommend therefore, that future HIV-1 PCR assay design be based on the compendium database rather 
than the entire HIV-1 database if good cross-subtype specificity is required. We suggest that there is in fact a need 
for a more comprehensive compendium database specifically for assay design and evaluation. Ultimately, assay 
validation and optimization must still rely on using independently assembled, large, diversity panels, that include 
recent strains of the virus, such as the EQAPOL panels, to gain a more accurate picture of the performance of 
in-house assays in real field situations29.

The variability of the HIV-1 genome makes it very challenging to find three well-conserved regions of 25–35 
nucleotides (two for the primers and one for the internal probe) within 200 base pairs of each other, for use with 
TaqMan PCR. The rationale behind the step-up or touch-up amplification methods was to allow for less stringent 
annealing at lower initial temperatures, followed gradually by higher more stringent annealing temperatures. 
The addition of yeast tRNA to PCR master-mixes and sample diluents significantly improved assay efficiency, 
quantification sensitivity and precision at low viral levels, such as are found in treated subjects.

The semi-nested format of the assay, with a tag on the forward primer in the first round and a primer against 
this tag in the second round, allowed for the use of only three regions and increased the chance of good cross-
subtype coverage. This format allows for target enrichment and is recommended for limited samples. Rigorous 
cleanliness and great care must be taken to avoid cross-contamination with the semi-nested assay format. The use 
of a “tag” on one of the primers coupled with less stringent initial annealing temperatures, allowed for amplifica-
tion across regions of incomplete homology which increased the chance of good cross-subtype coverage. The 
tag subsequently allowed amplification of only specific amplicons from the first round by reducing nonspecific 
amplification of any primer-dimers or nonspecific artefacts generated in the primary PCR thus maintaining 
PCR specificity.

The use of crude DNA lysis makes the qPCR format of the assay easy and affordable. It maximizes assay 
sensitivity by preventing the unnecessary loss of precious sample through more complicated DNA extraction 
procedures. Using primers located in close proximity to the ones in our assay, Avettand-Fènoël et al. (2009), 
demonstrated successful quantification of HIV-1 DNA in whole blood samples for early diagnosis even in masked 
primary infection in newborns whose mothers have received cART. This and other studies indicate that intra-
cellular DNA quantification could serve as a more accessible disease treatment-monitoring tool, particularly in 
resource-limited settings. This format of the assay was also developed as an alternative to the QVOA assay for 
analyzing residual latent virus. This sample type, however, is prone to false positives. See Supplementary Table S4 
for a summary of the different formats, their recommended use, their advantages and disadvantages.

It was very important to assess the specificity of the crude DNA lysate qPCR format of the assay on a panel 
of HIV-1 negative and positive PBMC lysates. While all the HIV-1 positive PBMC samples, including 32 viral-
load undetectable samples, were quantified by the assay, 5 out of 74 negative samples were scored as positive. It 
may be possible that some of the individuals who had been scored as negative had been at early stages of HIV 
infection. The HIV screening process involved two rapid antibody tests with any discordant results confirmed by 
ELISA. Only HIV positives receive a viral load test, which would detect infection by several days up to two weeks 
earlier. However, since the PCR assay was run in a laboratory setting that is not specialized for molecular work, 

Figure 3.   Comparison of HIV-1 viral load measurements by HIV-1 subtype determined by the revised 
laboratory developed assay (LDA) and the Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test v2.0 assay.
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we cannot rule out the possibility that the false positives observed are due to low level cross-contamination by 
HIV-1 tissue culture or high-titer HIV-1 plasmid clone preparation conducted in the sample preparation areas. 
Despite great care to decontaminate the workspaces, background contamination is an inherent problem within 
the current setting. More rigorous analysis in a highly controlled environment may be required to decrease the 
rates of false positives.

Detection of very low levels of residual viral sequences as may be present in cART-treated individuals with 
undetectable viral loads has important applications for predicting re-emergence of infectivity or evaluation of 
approaches to viral cure. An important limitation of PCR-based assays such as those described here, is that they 
cannot differentiate between intact viral genomes and defective, deletion genomes which occur at far greater 
frequency and persist for a long time. More recent PCR assays such as the Intact Proviral DNA Assay (IPDA) 
were designed to distinguish between and separately quantify intact and defective proviruses30. but are far more 
expensive, very difficult to standardize and implement for routine testing, and far less sensitive than PCR-based 
assays such the revised LDA reported here (Supplementary Table S4).

The semi-nested version of the assay allows for far greater sensitivity for use in research applications but is 
prone to cross-contamination which may limit its routine application in many laboratories, especially in resource 
limited settings where separate PCR containment areas may not be so readily available (Supplementary Table S4).

The revised LDA failed to detect two strains that the Roche assay detected. Commercial assays commonly 
target more than one conserved region of the HIV-1 genome to ensure maximal cross-subtype specificity. The 
LDA could thus be combined with an assay against conserved regions of the integrase or polymerase gene to 
improve its cross-subtype specificity. Overall, the revised LDA has very good performance characteristics and 
presents a cost-efficient and viable viral detection and monitoring tool for clinical research use, particularly in 
resource-limited settings where the need is greatest1,3,31,32. As previously indicated, additional detailed raw data 
files corresponding to Figures 2 and 3; Tables 1, 3, 4 and 5 and Supplementary Table 2, have been deposited in 
a "center for open science" database and can be viewed via this link - https://​osf.​io/​m9yne/?​view_​only=​47cbc​
fd3d3​9b4a8​9a0d7​58a47​4441e​38. Please note, as previously stated, that this technology is the subject of a priority 
patent application. Any parties wishing to commercialize these assays or variations thereof, must contact Imperial 
College London via enterprise@imperial.ac.uk citing reference number 10579.

Conclusions
Evaluation of the revised 525F/575P/599R LDA in accordance with performance guidelines for monitoring 
viral load of HIV-1 infected individuals33,34 demonstrated a high degree of precision, specificity, sensitivity, and 
linearity across a wide dynamic range. The LDA is highly sensitive with good cross-subtype specificity and has 
the potential to play an important role in HIV-1 research and in improving clinical outcomes if used correctly21. 
Using semi-nested qPCR, for target enrichment, allows for highly sensitive detection, when compared to non-
nested qPCR and increases the likelihood of detecting ultra-low levels of HIV-1 within samples. This assay 
provides a convenient, sensitive, specific, and reproducible measure of HIV-1 viral RNA in plasma and HIV-1 
viral RNA and DNA in the PBMCs of patients under anti-HIV therapy. The assay is suitable for monitoring the 
efficacy of therapeutic strategies and for measurement of viral persistence in support of studies aimed at testing 
the efficacy of vaccines, antiretroviral combinations, and HIV-1 eradication strategies.

Materials and methods
The Polymerase Chain Reaction or PCR forms the basis for HIV-1 viral measurement in blood or other fluids 
and within cellular compartments of the human body. The method, as we have used it, targets specific regions 
of HIV-1 nucleic acids and amplifies them exponentially with detection via a fluorescent read-out.

Assay design.  As previously stated, oligonucleotide sequence names were denoted by the first nucleotide 
of their HXB2 reference sequence base position and an “F” for forward primer, “P” for probe or “R” for reverse 
primer. The main oligonucleotide sets studied during this project were also denoted by the first author and 
their year of publication e.g., Brussel 2005. Probes were initially prepared in a TaqMan PCR format with doubly 
quenched Iowa-Zen chemistry (www.​idtdna.​com) as this had previously been found to provide good sensitivity 
in our laboratories.

Previously reported laboratory developed assays.  Initial selection of assay oligonucleotides was 
based on a literature review and assessment of candidate oligonucleotides for broad cross-subtype specificity 
against all available sequences in the United States Los Alamos National Medical Library’s (LANL) HIV-1 data-
base (www.​hiv.​lanl.​gov) using the QuickAlign tool. The full list of oligonucleotide sets selected for initial evalu-
ation are shown in Supplementary Table S1.

Revised laboratory developed assays.  To improve cross-subtype specificity, a revised oligonucleotide 
set—525F/574P/599R, was designed by using AlleleID software v7.0 (PREMIER Biosoft, San Francisco, CA, 
USA) (http://​www.​premi​erbio​soft.​com/​bacte​rial-​ident​ifica​tion/​index.​html) against an alignment of the rela-
tively homologous region running from 433 to 633 base pairs of the HIV-1 long terminal repeat (LTR) from 
the LANL HIV-1 compendium database (https://​www.​hiv.​lanl.​gov/​conte​nt/​seque​nce/​HIV/​COMPE​NDIUM/​
compe​ndium.​html). The oligonucleotide selection was finalized by using the Integrated DNA Technology online 
oligoanalyzer tool (https://​eu.​idtdna.​com/​pages/​tools/​oligo​analy​zer) to select the sequences that provided the 
best in silico assay parameters from the possible permutations. Analysis of the finalized sequences against the 
compendium database showed very few mismatches (Supplementary Table S2; Supplementary Fig. S2). These 

https://osf.io/m9yne/?view_only=47cbcfd3d39b4a89a0d758a474441e38
https://osf.io/m9yne/?view_only=47cbcfd3d39b4a89a0d758a474441e38
http://www.idtdna.com
http://www.hiv.lanl.gov
http://www.premierbiosoft.com/bacterial-identification/index.html
https://www.hiv.lanl.gov/content/sequence/HIV/COMPENDIUM/compendium.html
https://www.hiv.lanl.gov/content/sequence/HIV/COMPENDIUM/compendium.html
https://eu.idtdna.com/pages/tools/oligoanalyzer
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mismatches were accounted for by replacements with a wobble base and inosine modified bases at relevant posi-
tions (Table 1, Supplementary Fig. S2).

To allow maximum utility, we developed the HIV-1 assay in both a standard and a semi-nested format, using 
both DNA and RNA targets. The semi-nested format allows target enrichment of limited samples and thus 
increases assay sensitivity. The RTqPCR format for quantification of HIV-1 RNA in fluids, including plasma viral 
load, was optimized, and validated using synthetic plasmid templates and WHO-recognized international stand-
ards. The qPCR format, for quantification of total nucleic acids (i.e., RNA and DNA) in cellular compartments, 
was optimized and validated using synthetic plasmid templates and crude lysates from 8E5 cells, a recognized 
cell-line standard.

Synthetic target plasmid templates for assay development.  HIV‑1 LTR DNA template.  The fol-
lowing sequence from 433 to 633 bp of the HIV-1 LTR was used: CAG​CTG​CTT​TTT​GCC​TGT​ACT​GGG​TCT​
CTC​TGG​TTA​GAC​CAG​ATC​TGA​GCC​TGG​GAG​CTC​TCT​GGC​TAA​CTA​GGG​AAC​CCA​CTG​CTT​AAG​CCT​
CAA​TAA​AGC​TTG​CCT​TGA​GTG​CTT​CAA​GTA​GTG​TGT​GCC​CGT​CTG​TTG​TGT​GAC​TCT​GGT​AAC​TAG​
AGA​TCC​CTC​AGA​CCC​TTT​TAG​TCA​GTG​TGG​AAA​ATC​TCT​AGC.

The fragment was cloned into a pMA-T vector at the Sfil cloning site by the Life Technologies GeneArt Service 
(ThermoFisher Scientific). Plasmid DNA was purified from transformed E. coli K12 (dam + dcm + tonA) (Fig. 1a), 
linearized using a single-cutter ScaI-HF® Restriction Enzyme (New England BioLabs, Ipswich, MA, USA) and 
purified using a PureLink™ Quick Gel Extraction Kit (Invitrogen/ThermoFisher Scientific, Waltham, MA, USA).

Extraction control DNA template.  A DNA plasmid incorporating a previously described SCP1 random probe 
sequence—CTG​GGT​AGA​GTA​GTC​ACA​GAA​TGC​G35 flanked by the 496F and 622R HIV-1 primers (Supple-
mentary Table S1) was synthesized, via the ThermoFisher GeneArt service, using a manufacturer-selected clon-
ing vector.

HIV‑1 LTR and extraction control RNA templates.  RNA transcripts of the linearized DNA templates were syn-
thesized using the MEGAscript T7 Transcription Kit (Ambion/ThermoFisher Scientific). The size and purity 
of the products was confirmed by gel electrophoresis. The gel-purified transcripts were quantified using a Nan-
oDrop™ 1000 spectrophotometer (ThermoFisher Scientific).

HPRT‑1 reference gene cDNA template.  A template encoding the HPRT region targeted by an in-house RT-
qPCR reference gene assay–TGA​CAC​TGG​CAA​AAC​AAT​GCA​GAC​TTT​GCT​TTC​CTT​GGT​CAG​GCA​GTA​
TAATC CAA​AGA​TGG​TCA​AGG​TCG​CAA​GCT​TGC​TGG​TGA​AAA​GGACC​36 was synthesized via the Ther-
moFisher GeneArt service, using a manufacturer-selected cloning vector. RNA sample data was considered valid 
if the reference gene could be detected regardless of whether a positive HIV-1 signal was detected.

Synthetic template copy number calculation and standard generation.  The copy number/µl for each synthetic 
template stock solution was determined from its molecular weight and Avogadro’s constant using an online 
copy number calculator (http://​www.​endme​mo.​com/​bio/​dnaco​pynum.​php). The stocks were diluted to work-
ing solutions of either 1e8 or 3e8 copies/µl in Tris/EDTA pH 8.0 (TE) buffer for DNA or DEPC-treated water 
for RNA respectively. The working solutions were divided into 5 µl single-use aliquots in PCR tube strips and 
stored at − 80 °C. Single aliquots were broken off the strips and thawed before each use. Ten-fold standard curve 
dilutions ranging from 3e7 to 3 viral input copies were generally run in triplicate. More replicates were run at 
the lowest dilutions when determining the assay lower limit of detection (LLOD), lower limit of quantification 
(LLOQ), precision, and reproducibility.

Ethics.  For the Kenyan donors from IAVI’s protocol L, ethical approval for sample collection and processing 
was granted by the Kenyatta National Hospital /University of Nairobi ethics and research committee (KNH/
UON-ERC); study reference P69/03/2011.For the Rwandese donors from IAVI’s protocol L, ethical approval 
for sample collection and processing was granted by the Rwanda National Ethics Committee (RNEC) Research 
Ethics Committee; study reference No.1023/RNEC/2020.

For the donor samples from the London St. Stephen’s Trust, ethical approval for sample collection and process-
ing was granted by the NHS London-Chelsea Research Ethics Committee; study reference 96.ND14, RREC1108. 
Informed written consent was provided by all participants prior to obtaining each sample, and clinical data was 
collected as part of standard care.

The samples from the EQAPOL and AIDS Reference Reagent Program repositories have all been anonymized 
with no links back to the individual samples. They are exempt from regulations concerning human samples.

Sample preparation.  Crude cellular DNA lysates.  For PBMC lysate preparation, cryovials containing fro-
zen cells were thawed in a water bath at 37 °C for approximately 2 min until only a small ice crystal remained. 
The cells were then transferred into 50 ml pre-warmed RPMI containing 10% fetal calf serum, 10 mM HEPES, 
2 mM l-glutamine, 1 mM sodium pyruvate and 1× penicillin–streptomycin. Cells were pelleted at 250 g for 
10 min, supernatants decanted, and cells resuspended in 1 ml PBS. Cell concentrations were determined us-
ing a Vi-cell counter (Beckman Coulter Instruments, Inc.). Cells were then made up to 1e6 cells per ml in PBS, 
divided into 1 ml aliquots in sample tubes and pelleted at 2500 g for 5 min. Supernatants were aspirated twice 
by pipetting to ensure a very dry pellet before cell lysis. For 8E5 cell lysate preparation, frozen pre-made pellets 
containing 1e7 cells were used (see section titled “Cellular Standards for DNA qPCR”).

http://www.endmemo.com/bio/dnacopynum.php
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A lysis buffer was prepared using 10 mM Tris HCL pH8 (Ambion), 50 mM KCl (Ambion) and 0.4 mg/ml 
Proteinase K (Qiagen) in molecular biology grade water. Forty-two µl of lysis buffer was added to the cell pellets 
and vortexed for 10–15 s. Cells were lysed for 3 h at 55 °C. To reduce DNA viscosity and break-up clumps, the 
following cycling protocol was then used: 65 °C for 1 min, 96 °C for 2 min, 65 °C for 4 min, 96 °C for 1 min, 65 °C 
for 1 min, 96 °C for 30 s. Finally, lysates were incubated at 95 °C for 15 min to ensure complete inactivation of 
the proteinase K. DNA was quantified using a NanoDrop 1000 spectrophotometer (ThermoFisher Scientific) 
and genome copy number/µl determined by molecular weight and Avogadro’s constant using an online copy 
number calculator (http://​www.​endme​mo.​com/​bio/​dnaco​pynum.​php).

To improve sensitivity and precision at the lowest target concentrations, DNA lysates were pre-digested with 
an EcoRI-HF enzyme (New England BioLabs, Ipswich, MA, USA), according to the manufacturer’s instructions, 
before amplification (Fig. 1b). The EcoRI-HF enzyme was chosen because it did not cut DNA within the LDA 
target region.

Plasma RNA extraction.  The QIAamp UltraSens Virus Kit (Qiagen) was used for viral RNA extraction from 
plasma samples with the following modifications: -1 ml of each HIV-1 spiked EDTA plasma sample was used; 
3e6 input copies of the extraction control template was added to the spin columns along with the lysed and 
proteinase-digested samples; the lysate and AW1 buffer were centrifuged at 8000 g; all subsequent centrifugation 
steps were at 20,000g; only one final RNA elution step was performed using 30 µl AVE buffer following a 5-min 
incubation at room temperature.

Cellular standards for DNA qPCR.  8E5 cells are an established lymphocyte cell line that contain a single copy of 
integrated HIV-1 DNA genome per cell37. The 8E5 cells were obtained from the AIDS reagent program (https://​
www.​hivre​agent​progr​am.​org Cat No. ARP 95) and passaged 3 times in RPMI containing 10% fetal calf serum, 
10 mM HEPES, 2 mM l-glutamine, 1 mM sodium pyruvate and 1× penicillin–streptomycin at 37 °C, 5% CO2. 
Cells were then pelleted at 250 g for 10 min, washed in PBS and divided into 1 ml aliquots of 1e7 cells per cryo-
vial. Cells were pelleted at 250 g for 10 min then resuspended in 1 ml of ice-cold Fetal Calf Serum containing 
10% Dimethyl Sulfoxide (DMSO). The cryovials were frozen down to − 80 °C overnight in a rate-controlled 
Stratagene stratacooler and stored at − 150 °C in vapor phase liquid nitrogen.

To prepare cell pellets for the generation of PCR standard curves, an aliquot of each of the working stocks 
of the cells was thawed out as in the previous section when required and passaged 3–6 more times. The cell 
suspensions were then centrifuged at 250 g for 10 min, quantified using a ViCell Counter (Beckman Coulter 
Instruments, Inc.) and adjusted to 1e7 cells/ml in PBS. One ml aliquots of the cell suspensions were divided into 
cryovials and the cells were pelleted at maximum speed for 10 min in a benchtop microfuge. Supernatants were 
carefully removed twice by pipetting, and the dried cell pellets stored at − 80 °C until required.

Instrument and probe–chemistry optimization.  A series of real-time PCR instruments including the Applied 
Biosystems 7500 Dx thermocycler, Applied Biosystems 7300 thermocycler, Applied Biosystems StepOnePlus 
thermocycler, Roche Light-cycler and finally the ThermoFisher QuantiStudio 3 thermocycler were evaluated 
with the assay. In all cases default manufacturer settings were used. The QuantiStudio 3 instrument and its 
manufacturer recommended Minor Grove Binding (MGB) TaqMan probe labeled with 6-CaboxyFlourescein at 
the 5′ end and a Non-fluorescent quencher (NFQ) at the 3′ (6FAM/MGBNFQ) provided the best performance.

PCR reagents and protocols.  For initial primer evaluation, the QuantiTect Probe kit (Qiagen) for qPCR of DNA 
targets and the SuperScript III Platinum One-Step qRT-PCR Kit (ThermoFisher Scientific) for RNA targets, were 
used because they were the reagents commonly used in our laboratories.

To shorten assay time using fast-cycling, we evaluated the use of the following test kits and master mixes 
for qPCR:—the QuantiFast Probe (Qiagen); Kapa Probe Fast (Merck) ;or qPCRBIO Probe Mix Lo-Rox (PCR 
Biosystems); the EXPRESS One-Step SuperScript (ThermoFisher Scientific); and the qPCRBIO 1-Step Go Lo-
Rox kit (PCR Biosystems), based on recommendations from PCR instrument manufacturers and colleagues.

To further increase assay sensitivity and reduce variability at low target concentrations, various concentrations 
of tRNA were added to the master-mix and optimized. A published “step-up” cycling protocol was employed 
to improve sensitivity and cross-subtype specificity38. “Step-up” cycling rescues PCR reactions where there are 
minor mismatches between the assay oligonucleotides and the target template species and serves to increase 
the sensitivity and precision for detection of HIV subtypes with minor sequence polymorphisms at low target 
concentrations.

Real‑Time Quantitative PCR (qPCR) Protocol for DNA Targets.  The final conditions selected for PCR amplifica-
tion were the qPCRBIO Probe Mix Lo-Rox reagents (PCR Biosystems) with 600 nM Forward Primer, 600 nM 
Reverse Primer, 200 nM Probe (Table 2); up to 3e6 HIV input-copies of enzyme-digested target DNA; 10 ng/ml 
yeast tRNA (Sigma-Aldrich, MO, USA) added to the PCR master-mix, and a “step-up” cycling protocol with an 
initial activation step of 95 °C for 15 min, 3 pre-amplification cycles of 94 °C for 20 s, 52 °C (8 °C below the ideal 
annealing temperature) for 10 s and 60 °C for 1 min, followed by 40 amplification cycles of 94 °C for 20 s, 56 °C 
(4 °C below the ideal annealing temperature) for 10 s, 60 °C for 1 min. Fluorescent data was collected at the 60 °C 
amplification step of each of the 40 cycles (Fig. 1b). Cell copy number in DNA samples was calculated relative to 
an RNaseP TaqMan copy number reference assay (Applied Biosystems).

http://www.endmemo.com/bio/dnacopynum.php
https://www.hivreagentprogram.org
https://www.hivreagentprogram.org
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Reverse transcriptase quantitative PCR (RT‑qPCR) protocol for RNA targets.  Standard non‑nest‑
ed RTqPCR.  A standard, non-nested, RT-qPCR protocol was used to determine the LLOQ plasma viral load of 
the assay. The qPCRBIO 1-Step Go Lo-Rox kit (PCR Biosystems) was used with the same oligonucleotide and 
tRNA concentrations as in the qPCR protocol. As recommended by the manufacturer, an initial reverse tran-
scription step of 50 °C for 10 min was followed by a “touch up” cycling protocol with an enzyme activation step 
of 95 °C for 2 min; 40 amplification cycles of 95 °C for 10 s, 52 °C → 60 °C* for 10 s and finally 72 °C for 1 min. 
The arrow and asterisk indicates that the annealing temperature was increased from 52 to 60 °C in equal incre-
ments across 40 cycles. Five µl of sample was used in a final reaction volume of 50 µl for maximum sensitivity.

Semi‑nested RTqPCR for sample enrichment.  To allow target enrichment of limited archival samples, a semi-
nested RT-qPCR protocol was also developed (Fig.  1c). A bacteriophage lambda sequence—a foreign, non-
human oligonucleotide—was used as a tag on the first-round forward primer, λ-525F, while a primer against the 
tag—λT (Table 2), was used in the second round of the PCR. For this semi-nested protocol, HIV-1 cDNA syn-
thesis and first round amplification were conducted using an Applied Biosystems Veriti Thermal Cycler (Applied 
Biosystems/ThermoFisher Scientific) and the qPCRBIO 1-Step Go Lo-Rox kit (PCR Biosystems) with 600 nM 
λ_525F and 599R primers. A “step-up” cycling protocol was adopted with a reverse transcription step of 50 °C 
for 15 min followed by a polymerase activation step of 95 °C for 2 min; five amplification cycles of 95 °C for 20 s; 
52 °C for 10 s and 60 °C for 1 min; followed by seven cycles of 95 °C for 20 s, 56 °C for 10 s, and 60 °C for 1 min. 
For second round amplification, 2 µl of the first-round product was used in the 20 µl second round amplification 
(10%v/v), with 600 nM λT forward primer, 600 nM 599R reverse primer and 200 nM 574P probe (Table 2). The 
same reagents, instrumentation and cycling protocol described for the qPCR of DNA targets were used.

The presence of RNA in sample extracts was confirmed using an in-house HPRT1 reference gene assay and 
the HPRT synthetic template described previously to generate the standard curves. The qPCRBIO 1-Step Go Lo-
Rox Kit reagents (PCR Biosystems) and manufacturer recommended cycling parameters were used with900 nM 
TGA​CAC​TGG​CAA​AAC​AAT​GCA HPRT Forward Primer, 900 nM GGT​CCT​TTT​CAC​CAG​CAA​GCTHPRT 
Reverse Primer and 250 nM CTT​CCT​TGG​TCA​GGC​AGT​ATA​ATC​ VIC/TAMRA Probe (TermoFisher Scientifc).

qPCR and RTqPCR run acceptance criteria.  Each assay run included quantification standards, and a known 
positive sample or an AcroMetrix HIV-1 positive control or calibrator (ThermoFisher Scientific); and a known 
negative sample or an AcroMetrix HIV-1 negative control (ThermoFisher Scientific). Assay runs were consid-
ered acceptable if no target was detected in the non-template and negative controls, the standard curve had a 
slope of − 3.2 to − 3.5, and R2 values were > 0.95. Linearity was based on the slope and R2 of the standard curve 
and expressed as y = mx. The linear range of the assay was determined from the standard curves. Precision/
reproducibility was expressed as a percentage of the coefficient of variability (CV), with a CV of less than 10% 
being acceptable. HIV-1 RNA target runs were only considered valid if a parallel HPRT1 reference gene assay 
was also valid and HPRT1 was detected in the samples, while HIV-1 DNA target runs were only considered valid 
if a parallel RNaseP reference gene assay was also valid and RNaseP was detected in the samples.

Assessing laboratory developed assay performance.  Confirmation of correct sequence amplifica‑
tion.  To determine whether a single PCR product of the desired length and sequence was being produced 
by the assays, PCR products were run on a 1% Agarose gel (Fluka, NJ, USA). Bands were visualized using the 
SYBR Safe DNA Gel Stain (Invitrogen) and a Bio-Rad Molecular Imager Gel Doc XR + with Imager Lab Software 
(Bio-Rad Laboratories) and cut out on a safe Imager 2.0 (ThermoFisher Scientific). DNA was recovered using a 
QIAquick gel purification kit (Qiagen). Purified PCR products were sequenced by the Sanger sequencing service 
at Genewiz, Surrey, United Kingdom and confirmed proper amplification of the target sequence.

Assay linearity, lower limit of detection (LLOD) and lower limit of quantification with 95% confidence 
(LLOQ95).  Linearity of the HIV-1 LDA was evaluated in a non-nested format on triplicate samples of the 
AcroMetrix HIV-1 Quantification Panel (ThermoFisher Scientific) ranging from 5e2 to 5e6 copies/ml.

LLOD/LLOQ95 values were calculated based on detection of two-fold dilutions of negative EDTA plasma 
samples spiked with the 5e4 copies/ml Acrometrix standard (ThermoFisher Scientific) at dilutions ranging from 
25 to 0.46 copies per ml using 10 replicates per data point.

Intra‑assay and inter‑assay reproducibility and precision.  Cell pellet aliquots were thawed, lysed and quantified 
as previously described in the “Cellular Standard for DNA qPCR” section. Ten-fold serial dilutions ranging from 
3e6 to 3 input cell equivalents per reaction were prepared in TE Buffer containing 100 µg/ml salmon sperm DNA 
(ThermoFisher Scientific).

Intra-assay reproducibility was evaluated on 3 separate batches of serially diluted 8E5 cell lysates tested by 
a single technician on 3 separate occasions, using the standard qPCR protocol. Inter-assay reproducibility was 
evaluated on a single batch of 8E5 cells run on three separate occasions by three separate technicians. Mean val-
ues, within-run %CV, run-to-run %CV and total %CV were derived for each concentration in the dilution series. 
Six replicates per run were tested at the 3 input cells dilution, with 3 replicates per run at the other dilutions.

The precision of the assay was evaluated using the replicates from the intra- and inter-assay variability experi-
ments. The means, standard deviations and coefficients of variation were calculated for the 30 replicates run at 
3 copies, and 15 replicates run at higher dilutions.
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Assay specificity for HIV‑1.  The specificity of the assay for HIV-1 was determined using the standard non-
nested RT-qPCR RNA protocol by demonstrating lack of a specific signal in the EDTA plasma from 10 unin-
fected donors (Biological Specialty Corporation, Colmar, PA, USA) and lack of cross-reactivity with donor or 
spiked samples infected with other RNA viruses, including Affymetrix-Valiquant HBV and HCV standards 
(Affymetrix Inc., Santa Clara, CA, USA), cultured EBV, HSV-1, CMV, VZV and Parvovirus from Zeptome-
trix (Buffalo, NY, USA) spiked into Basematrix diluent (SeraCare, Milford, MA, USA), HIV-2 NIH Reference 
samples, and a College of American Pathologists (CAP) respiratory panel, ID2-A 2012, containing Influenza, 
Parainfluenza, RSV, Adenovirus, Human Metapneumovirus and Coronavirus also spiked into Basematrix dilu-
ent (SeraCare, Milford, MA, USA).

 As previously mentioned, the specificity of the assay on crude cellular lysates was determined using 74 HIV-1 
negative IAVI protocol L donors (26 male and 46 female, and two donors with unknown gender), 12 chronically 
infected protocol L donors (8 male and 4 female) and 32 treatment-suppressed male HIV-1 positive donors from 
the London St. Stephens Trust. The IAVI protocol L study was designed for assay characterization and testing of 
sample collection methods. Volunteers were enrolled from Kigali, Rwanda and the Kenyatta National Hospital 
and Kangemi Health Centre in Kenya where subtype A is predominant, followed by D, C and G. The London 
St. Stephens Trust participants were all confirmed as subtype B (Supplementary Table S5). Assay sensitivity, 
specificity, positive predictive value, negative predictive value and accuracy were determined using the online 
calculator—https://​www.​medca​lc.​org/​calc/​diagn​ostic_​test.​php.

HIV‑1 cross‑subtype specificity.  The cross-subtype specificity and accuracy of the assay was determined using 
well-characterized diversity panels from the U.S. Military’s HIV Research Program (MHRP) and EQAPOL. The 
MHRP isolates represented an established 60-member international panel consisting of 10 isolates from each of 
the 6 Major HIV-1 subtypes (https://​www.​hivre​agent​progr​am.​org, Catalog Number ARP 11412). The EQAPOL 
isolates represented a broad range of recently sourced transmitter/founder (T/F) viral strains of HIV-1 includ-
ing all major subtypes, common circulating recombinant forms (CRFs) and a few unique recombinant forms 
(URFs) (EQAPOL, duke.edu). The custom panel included all the transmitted/founder (T/F) viral strains that 
had been provided to EQAPOL by IAVI and that could be cultured to high titers in primary PBMCs. In total, 
127 isolates were tested and comprised of 18 Subtype A, 22 Subtype A recombinants, 18 Subtype B, 17 Subtype 
C, 2 Subtype C recombinants, 13 Circulating Recombinant F01_AE (CRF01_AE), 12 Subtype D, 2 Subtype F1, 2 
Subtype F2, 12 Subtype G, 3 Subtype O and 6 Unique Recombinant Forms (URFs). The EQAPOL-supplied stock 
samples were diluted 1000-fold in AcroMetrix EDTA plasma dilution matrix (ThermoFisher Scientific) to bring 
them into the dynamic range of the assay. HIV-1 viral load was expressed in copies per ml, using concentrations 
determined by the AcroMetrix HIV-1 quantification reference panel (ThermoFisher Scientific).

Statistical analysis
All data was analyzed using GraphPad Prism 9 (https://​www.​graph​pad.​com/​scien​tific-​softw​are/​pris) and Micro-
soft Excel unless otherwise stated. A variety of online calculators and tools were utilized wherever they are stated. 
PCR standard curve statistics were generated by the thermocycler instrument manufacturer’s software packages.

Data availability
Detailed raw data files corresponding to Figures 2 and 3; Tables 1,3,4 and 5 and Supplementary Table 2, as well 
as other data mentioned but not shown in the results section, have been deposited in a "center for open science" 
database and can be viewed via this link https://​osf.​io/​m9yne/?​view_​only=​47cbc​fd3d3​9b4a8​9a0d7​58a47​4441e​38.
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