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Developing new treatments for emerging infectious diseases in infectious and noninfectious diseases has attracted a particular attention.
The emergence of viral diseases is expected to accelerate; these data indicate the need for a proactive approach to develop widely active
family specific and cross family therapies for future disease outbreaks. Viral disease such as pneumonia, severe acute respiratory
syndrome type 2, HIV infection, and Hepatitis-C virus can cause directly and indirectly cardiovascular disease (CVD). Emphasis
should be placed not only on the development of broad-spectrum molecules and antibodies but also on host factor therapy,
including the reutilization of previously approved or developing drugs. Another new class of therapeutics with great antiviral
therapeutic potential is molecular communication networks using deep learning autoencoder (DL-AEs). The use of DL-AEs for
diagnosis and prognosis prediction of infectious and noninfectious diseases has attracted a particular attention. MCN is map to
molecular signaling and communication that are found inside and outside the human body where the goal is to develop a new black
box mechanism that can serve the future robust healthcare industry (HCI). MCN has the ability to characterize the signaling process
between cells and infectious disease locations at various levels of the human body called point-to-point MCN through DL-AE and
provide targeted drug delivery (TDD) environment. Through MCN, and DL-AE healthcare provider can remotely measure
biological signals and control certain processes in the required organism for the maintenance of the patient’s health state. We use
biomicrodevices to promote the real-time monitoring of human health and storage of the gathered data in the cloud. In this paper,
we use the DL-based AE approach to design and implement a new drug source and target for the MCN under white Gaussian noise.
Simulation results show that transceiver executions for a given medium model that reduces the bit error rate which can be learned.
Then, next development of molecular diagnosis such as heart sounds is classified. Furthermore, biohealth interface for the inside and
outside human body mechanism is presented, comparative perspective with up-to-date current situation about MCN.

in Figure 1. Viral strains and the area of epidemics are indi-
cated along with the timeline [1].

In the last twenty years of 21% century, coronavirus, alpha-
virus, fungal viruses, filamentous viruses, and members of
the flavivirus family members cause more than 10 main viral
diseases in the population. Significant overview of the 21%
century viral epidemics is presented. Timeline of 21*" cen-
tury viral epidemics, from 2000 to the present day, is shown

Over the past ten years, an interdisciplinary field of study
called molecular communication networks (MCN) has been
developed [2]. It bridges the areas of information engineer-
ing, and networking, and molecular biology [3]. The MCN
focuses on realizing revolutionary new technology for a
society that holds the promise for understated sensing and
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FIGURE 1: 21% century viral disease epidemics.

actuation capabilities inside the human body through a net-
work of microsized devices [4]. These devices can use the
existing natural signaling of cells, organs, tissues, and blood
vessels to interact and communicate with the human body
[5]. The MCN is moderately dissimilar from traditional
electromagnetic communication in that MCN transfers
information by using molecules for encoding, transmitting,
and receiving information [6]. At present, scholars have con-
tributed to MCN because of its potential to allow complex
nanotechnology (NT) applications such as nanomedicine
environment (NME) that requires microscopic entities to
collaborate. For example, MCN can be used in in vivo bio-
medical applications [7], such as monitoring the healthcare
industry (HCI) using biomicrosensors empowered by the
Internet of Biohealth things (IoHNT) [8], target drug delivery
(TDD), and so on. Presently, the most significant issue in the
MCN is the way that the information is efficiently transmit-
ted from one end transmitter (T,) to another end receiver
(R,) called the transceiver. The information is modulated
by the physical properties of the molecules, where it is
possible to change the type, volume, or time of releasing
for the molecules to transfer the information. Each molecule
diffuses in the medium after Brownian motion once emitted
by the transmitter [9, 10]. During the transmission, due to
the complex medium state, the signal suffers from interfer-
ence and noise. MCN depends on the velocity of the fluid,
the diffusion coeflicient, the width of the bit pulse, and the
response rate of the detector. The number of molecules con-
sumed at each bit period is used at the receiver to demodu-
late the signals received. In MCN, modeling the entire
system is optimized in a divide and conquer perception
[11]. Commonly, the physical layer of the transmitter con-
tains coding and modulation units, while the physical layer
of the receiver contains equalization, demodulation, and
decoding. Each component is individually optimized and
requires a significant amount of expert knowledge. The
enormous investigation has concentrated on optimizing
each unit for various medium settings and demands for
applications. The optimization of interaction subunits
cannot assure global optimality for the entire interaction

scenario [12]. In actuality, such execution is considered to
be suboptimal [13]. In various composite MCN, it is chal-
lenging to directly find the transceiver design and medium
model or other theories, which raises the difficulty of the
study. Therefore, intelligent MCN is becoming an essential
mainstream direction.

L.1. Role of Molecular Communications Networks (MCN) in
Viral Disease Interaction. The related work based on the
MCN is introduced inside and outside the body. The MCN
gives us an exact representation of how the virus moves
and distributes in the body over time. In the information
environment, virus ions are considered information carriers,
which transmit information (genome) from the transmitter
location to the receptor which can be host cells in specific
organs. The information transmitted by the virus is the func-
tion of the disease as shown in Table 1 [14]. A single virus
ion is enough to enter the human body and cause viral
illnesses as long as the host cell can attain virus binding. In
addition to being disease-prone, vulnerable cells must also
express receptors that bind to the virus and allow disease
to develop, implying that they have the proteins and
machinery required for virus replication

In MCN, micromachines are basic elements, and their
sizes can vary from the micrometer level. These micrometers
can carry drugs and provide therapeutic effects to humans
during diseases. Drug-loaded micrometers are used for
TDD. These drugs must act on cells because diseases are
caused by cell disorders. To master the efficacy of therapeu-
tic drugs, it must reach the target cells of the human body. In
order to deliver the drug to the target in vivo, the drug-
loaded nanomaterials must reach the nearby lesion cells
and deliver the drug. In this work, we have studied all
aspects of MCN and need a strong interaction mechanism,
which brings many challenges. The first challenge is the
effect of dynamic channel impulse response (CIR). During
the interaction process, the molecules transported in the
extracellular fluid move randomly according to Brown’s
motion. According to the Einstein diffusion theory, the
CIR of the channel (medium) varies with time and the
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TaBLE 1: Related work of models for the viral air transmission medium.

Author Propagation medium Turbulence Puff Droplelt DroPlet.
flow flow evaporation crystallization

L. F. Akyildiz et al. [11] Air-based (transient air) v v v v

P.S. S. Tissera and S. Choe (2017) [15] Air-based (cloud air) v v v

K. Aghababaiyan et al. (2019) [16] Molecular based (single droplet) v v v

T. Nakano et al. (2012) [17] Molecular based (particle dist. v v

J. Ziv and M. Zakai (1973) [18] Molecular based (concentration) v v

distance between the micrometers. We propose a different
autoencoder (AEs), which sends a certain number of mole-
cules to transmit bit 1 instead of sending molecules to send
bit 0. On the nanoscale receiver, the signal is detected by
sample, and the number of molecules is measured on each
sample, and the concentration difference between two
different samples is calculated. The transmitter sends signal
molecules to interact with the receiver. These molecules
reach the receiver, and the receiver detects the information
in the molecule.

The transmitter and receiver are diffused mediums. For
encoding and decoding, the difference between the samples
of each interval is taken at the time ¢, and, ¢, so that the
absolute difference between these samples is maximized.
Then, the difference is compared with the threshold to make
a decision that is advantageous to bit 1 orbit 0. When the bit
1 is received, the positive value of the concentration differ-
ence is given. When bit 0 is received, the negative value of
the concentration difference is given. In MCN, bit 0 is repre-
sented by symbol [0, 1] and bit 1 is represented by symbol |
1, 0]. Differential encoding and decoder r calculate the differ-
ence between peak values of received signals in continuous
bit duration. When bit 0 is received, the difference is nega-
tive; when the bit 1 is received, the difference is positive.
TDD is the most promising technology to deliver drugs to
the target inside body. It can ensure that the amount of drug
needed is intelligently located at a lower toxicity level. TDD
can be achieved in two ways; first, nanoparticles carrying
drug molecules are inserted through the cardiovascular dis-
ease and then reach the target MCN. Second, microdevices
carrying drug molecules are implanted near target cells,
bypassing the injection of cardiovascular disease [18].

1.2. Biohealth Interfaces for inside and outside Human Body
MCN. The MCN mechanism provides a healthcare export
that can use remotely measure biological signals and control
certain processes in the organism required for the mainte-
nance of the patient’s health state. This technology can be
further extended to use biomicrodevices to promote real-
time monitoring of human health and storage of the
gathered data in the cloud platform. This brings new chal-
lenges and opportunities for the development of biosensing
networks, which will depend on the extension of the current
inside and outside human body device functionalities. The
improvement in the efficiency of HCI is expected, as these
new devices will be able to interconnect among themselves
and use the cloud to provide full-time access to all the data
gathered by them [19]. To communicate with external

networks, including the internet, these systems will require
a translator device that will convert any molecular signal
into electrical, which will continue to be applied for macro-
level computer networks, such as the Internet. The biointer-
face will also convert the different types of detected
molecular signals to interface the exchange of information
between the different micro networks placed inside the
human body as shown in Figure 2.

Healthcare platforms, whole-cell biosensors are designed
using synthetic biology (which is the formal method for the
design of artificial systems using biological components) and
can be applied to detect and treat CVD, assess the health
risks associated with environmental pollution, and discover
novel antibiotics, for example, cardiac pacing implant.

1.3. Cardiac Interfaces as Case Study. Inside the body,
nanoscale devices have also been designed to interface the
measurement of biochemical signals in the heart and circu-
latory system with external devices. For example, a cardiac
interface was proposed to safely wirelessly power an
implanted cardiac pacemaker (millimeter-scale device). The
device is capable of closed-chest (rabbit) wireless control of
the heart. The method allows to power nanoscale devices
implanted with up to 5cm of depth. The powering device
is placed outside the body, it has dimensions of 6 by 6 cm,
and power the cardiac pacemaker using an electromagnetic
signal with the frequency of 1.6 GHz. The device consists
of a multiturn coil structure, rectifying circuits for AC/DC
power conversion, a silicon-on-insulator integrated circuit
(IC) for pulse control, and electrodes to stimulate the heart.
Experiments were conducted with a cardiac pacemaker
(2mm diameter and 3.5mm of height) implanted into the
lower epicardium of a rabbit, and its heart rate was moni-
tored through an ECG. The size of the implant is 2mm in
diameter, 70 mg, and is capable of generating pulses at rates
dependent on the extracted power. The device does not con-
tain a battery; it is powered remotely. A portable, handheld
power source was placed 4.5cm distant from the device,
after closing the chest, and it delivered 1 W of power to the
cardiac pacemaker. The rabbit’s cardiac rhythm was con-
trolled wirelessly by adjusting the operating frequency. This
powering system can be applied for any other optical or
electrical stimulation task in the body, including neurons
or muscle cells.

1.4. Deep Learning Techniques. The quick-growing deep
learning (DL) has led to an innovative line of transmitter
and receiver design. DL has been applied in various health



Computational and Mathematical Methods in Medicine

(b) Molecular communication networks inside heart
[ .
i_Cardiomyocytes Ca* Cardiomyocytes E
°
Micro- E ° -: e o E
pacemaker! 3 . > |
' ! °*'e o” oofe i
23 heart\ : ) %% . . ) !
osel ! Transmitter Propagation Receiver
g Electro-bio ‘I {—ﬁ /—H ;
— Bio—electroF: H : : [ ! l
Mol.nle 47\ i 7" [ Environment |
device O{"o o : Tx X Y Rx }
%\/ (’{,ﬁ ' ~—®  Channel |—» #
* %, ¢ EW wave | !
o ! !
"> Digital ‘ i |
/I stethoscopes ‘ } « __________________________________ 4
/Particle | | J’
concentration n\!‘
at the target area i‘ 1Y
o W
Internet Access point bio-interface Targeted detection

FiGure 2: The MCN that can be placed inside the human body and interconnected using biohealth interfaces. (a) Biohealth interface
exchanges molecular data with the internet to enable the remote monitoring and control of intra-body devices. (b) An implanted
nanopacemaker uses electromagnetic waves (EW) to stimulate the heart cells to exchange calcium ions.

care applications such as cancer diagnosis and prognosis
prediction [20] (see also [21]). Current work displays that
the transceiver can be jointly learned from data deprived of
presenting any block-intelligent construction like modulator
and channel encoder. This perception was first brought up
in [22], in which an information system was deduced as an
AE. However, DL could be applied in the interaction of
physical layers and it is witnessed a dramatic performance
improvement [17]. At present, DL clearly shows immense
significance in breaking down the challenges of the informa-
tion system. It is therefore inferred that DL boosts the output
efficiency of each element in information networks or opti-
mizes the full transceiver with an AE model [23]. The DL
techniques allow the design of the MCN because of their
abilities to approximate any nonlinear function. This moti-
vates us to use the DL-AE to enable the transceiver to design
the MCN. We proposed a model based on the multilayer
perception deep neural network autoencoder (MLP-AE)
and convolutional neural network autoencoder (CNN-AE),
respectively, that can jointly optimize the transceiver design
of the MCN system. A comparison between MLP-AE and
CNN-AE is done in terms of SNR and BER. We have
reported that under WGN noise, the proposed structure is
capable of handling the challenge of mapping scenarios of
various stages. Our techniques achieve efficient accuracy
due to training epoch and less complexity concerning tradi-
tional model systems. By simulation, we compared SNR and
BER and studied constellations from various AE configura-
tions and prove that in a shorter training period, our sug-
gested AE achieves a greater degree of reconstruction
precision. We have illustrated the power of optimization
approaches and the proper initialization of weight in provid-
ing ways to satisfy the demands of modern MCN applica-

tions for high-mobility and multienvironment applications.
Table 2 is a related work of MCN used by different tech-
niques of DL.

The structure of the paper is organized as follows: Struc-
ture of the paper as in Section 2, we discuss the experimental
design. Section 3 gives results and discussion. Section 4 sum-
marizes our work in the conclusion.

2. Experimental Design

Autoencoder is used to optimize the design of the MCN
transceiver as an end to end [32]. The goal of this section
is to explain how to use MLP-AE and CNN-AE to design
and optimize MCN. Then, we compare and analyze the
performance of our techniques based on accuracy obtained
after our AE has been trained and signal to noise ratio
(SNR) vs. bit error rate (BER) for different configurations.
In Figure 3(a) inside the body, the neuromuscular junction
is one of the occurrences in biological communication sys-
tems where two cells communicate as a transceiver with each
other using an intermediary molecule that propagates in the
extracellular environment. When the muscle needs to be
contracted, the nerve cell releases presynthesized special
neurotransmitter molecules, called acetylcholine (ACh).
These molecules propagate in this environment, and when
they get close to the cell membrane of the muscle cell, they
bond with the transmembrane receptors, called the ACh
receptors (AChR). The neurotransmitters stay bounded for
some time after which the bond degrades and the ACh mol-
ecules are again set free to the neuromuscular junction.
Figure 4(b) shows the MCN model using DL.

The transmitter selects the symbol m which contains S
bits of information, to be linked over a medium to the
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TaBLE 2: Related work of MCN used by different techniques of DL.

Author name Year Techniques used Results

DL-based variational autoencoder Unsupervised deep learning-based variational autoencoder
RE Mansour [24] 2021 (UDL-VAE) model model diagnosis
Y Huang [25] 2020 CNN Model-based detectors, data-driven detectors
TT Nguyen [26] 2019 Al Artificial intelligence in the battle against viral disease

Prove that model-based and data-driven approaches generate the
Qian [27] 2018 ANN typical optimum receiver model, ensuring that the device
model is correct
Alshammri [28] 2018 Joint ANN with the Demodulate the data proFessed in the.: MCN system
fuzzy method by on-off-keying modulation

Z. Qin [29] 2019 DL DL enhances the intellectual communication of physical layers
He et al. [30, 31] 2019 DL Model-driven DL decreases the demand for training data,

results in faster deployment and reduces the risk of overfitting
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FiGure 3: The block diagram for the proposed MC transceiver design as MLP-AE.

receiver. More clearly, the transmitter rule is to do a trans-
formation to the symbol m so that Figure 3 produced trans-
mitted signal X conquers n channel time slots. Then, a noisy
version Y from X can be detected on the receiver side.
Therefore, the receiver has to generate as similar as possible
the approximation 7 of the initial symbol m. Hence, the
system code rate is in equation (1).

Coderate = S (L, use). (1)
n \medium
2.1. Cumulative Density Function (CDF) Gaussian Model.
The arrival of molecules in their nature is a binomial pro-
cess. When considering multiple emissions, the number of
molecules obtained is influenced by current and previous
emissions over a period of time. It is expressed as a random
binomial variable indicated as in equation (1). And N,fx
indicates the number of emitted molecules in the k™ symbol
duration, Pi denotes the expected number of molecules
absorbed by the receiver, while 8 (n;p) indicates the bino-
mial distribution with n success and trail probability p.
Because of the complexity of binomial random variables,

the computational model is often approached by the Gauss-
ian model [26] stated as in equation (3). The N;** values are
used to evaluate the cumulative density function (CDF)
Fy®(x) for Gaussian using the equation (4), where p(.)
refers to the event probability. In our work, the additive
white Gaussian noise (AWGN) is utilized. The noise pro-
ceeds digital values, though, its distribution role is estimated
as in equation (5).

i
NE~ Y B(NT P @)
k=1

i i
Nin~N<ZNI{xPik+1’ ZNZXPika (1=Pig) |> (3)
k=1 k=1

Fyre(x) = P(N < x), (4)
N poise (n) ~N(0’ 02)' (5)

2.2. MLP-AE-Based Model. As shown in Figure 5, MLP-AE
is a feedforward neural network that maps the input to the
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F1GURE 5: The block diagram for proposed MC transceiver design as CNN-AE-AE.

output. An MLP-AE is consisting of neurons at multiple
layers, containing the input (m), output (#1), and the num-
ber of hidden layers (L). Each layer in an MLP-AE has fully
connected (FC) with the following layer, and each additional
hidden layer needs an additional encoder and decoder. In
the hidden layers, each neuron is activated with a nonlinear
activation function. The idea is to train encoder (E) and
decoder (D). Therefore, backpropagation using gradient
descent [33] is appropriate for training an MLP-AE. In spe-
cific, AE learns a map from the input to itself through
encoding and decoding stages. In specific, an MLP-AE can
be regarded as an answer to equation (7) optimization prob-

lem. For MLP-AE, the | hidden unit activities, h; is as in
equation (8). Where f is the activation function (in this
work, we use the softmax), W, is a matrix of the parameter,
and a vector of bias parameters bias;. Then, the I hidden
layers output of the data is defined as in equation (9).

1= D(E(m), )
o Ilm = DG, )
hy=f(Wihy, + bias)), (8)
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ﬁ1:f<l7v,h, + Eia\s,), (9)

where W, and bias, is the decoding matrix and bias param-
eters, respectively.

2.3. CNN-AE-Based Model. Classically, a DL-AE can com-
prise a fully connected, layer, a densely connected layer,
and a convolutional layer. FC or densely connected layers
suffering from explosive dimensionality due to the tremen-
dous number of connections between the neurons and there-
fore does not extend exceedingly to big-scale systems [34].
Besides, if the size of the system changes, the MLP-AE needs
to be retrained since the number of tunable parameters dif-
fers mostly with the size of the system. To overcome these
problems, we suggest an AE-based MLP comprising only
convolutional neural network layers (CNNs). In a convolu-
tional layer, each neuron will only be linked to a limited por-
tion of the neurons throughout the preceding layer, and then
all the neurons in the layer bear the typical set of biases and
weights. This greatly lowers the overall amount of learning
parameters. Our AE model-based learning essentially has
two phases: (1) the encoder phase has sample input, convo-
lution layers, and normalization layer and (2) the decoder
stage includes feature coding input, deconvolution layers,
and the reconstruction samples. The convolutional layers
applied for both transmission and reception are a single-
dimensional convolutional (ConvlD) layer. In our work,
three layers were set up to be suitable to accomplish the fin-
est possible bit error rate (BER) performance without losing
any learning capability. From modulation perception, the
ConvlD layers at the transmitter convert the input symbol
sequence to a new signal illustration. The structure of the
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FIGURE 7: CNN-AE and MPL-AE trained loss comparison.

CNN-AE model is shown. We utilized ReLU as the activa-
tion function for the hidden layers in equation (11). For
the output layer, we choose the softmax function as the
activation function. We can describe the channel layer as
the conditional probability density function p (x| y). Also,
an additive Gaussian white noise with a fixed variance is
added to the signals. Based on the system design of
Figure 3, we propose a DL-assisted MCN transceiver,
MLP-AE, and Figure 5, as CNN-AE, where the transceiver
consists of DL-AE layers that are optimized jointly. The
structure considered for MLP-AE and CNN-AE.

x=f(m), (10)
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ReLU(x) = max (y,0), (11)

y = softmax(x) = P (%) . (12)
Xjexp(x;)

2.4. Implementation Details of MLP-AE and CNN-AE
(Cardiac Interfaces as Case Study). We design two AEs with
identical configurations. Wach AE was trained on samples
representing the recovered patients. We want to have the
model with different parameters at the end of the training.
To this end, we divide the samples to 10 groups of 20 sam-
ples {gj,j=1,2,--,n} where gj is the j group of samples.
To train the i model, g' is set aside for validation and the
nine remaining groups {gj,j€{1,2,.,n} —{i}} are used
for training. Recall that each model is initialized with
different parameters, trained on partially different training
samples, and validated on the different validation sets. The
20 deceased samples are fed to each of the trained AEs.
The samples undergo the compression and decompression
routine of AEs. The decompression procedure is a loss so
the reconstructed samples (after decompression) are not
identical to the original ones. Moreover, the trained AEs
exhibit different behaviors on the same input data since their
parameters are different from each other. Therefore, feeding
the same samples to the AEs will yield new samples which
belong to the deceased class. The motivation behind the
explained procedure is data augmentation to remedy the
lack of enough samples for the deceased class. The recon-
structed samples are attached to the original ones to yield a
dataset of samples. A model was designed to classify samples
as recovered or deceased. The model was trained using all
samples. We apply 10-fold cross-validation during the train-
ing. Hence, the training sample size (samples of 9 folds) and
the test sample size is 52 (samples of 1-fold). Using the
trained one to classify the test data is shown in Figure 6.

3. Results and Performance Evaluation

The simulation findings are provided to illustrate the reli-
ability of the suggested approach for various system settings.
In this section, we compare the BER and SNR of the
proposed CNN-AE and MLP-AE. The nonzero medium
coefficients are believed to be drawn independently from a
complex Gaussian distribution CN (0, 1). We, therefore,
presume that the signals generated are similarly distributed.
Besides, it is presumed that the noises from CN (0, o) are
drawn. This assumption enables a large range of SNR values
to be identified by the proposed CNN-AE once it is well
trained. In Figure 7(a), using MLP-AE techniques, BER is com-
pared to CNN-AE data training at K,,,-20 and k,,,;,-100. It
also indicates that our approach achieves a higher precision
over the 100 training cycles. In Figure 7(b), using MLP-AE
techniques accuracy is compared to CNN-AE data training at
K ain-20 and k.., -100. The problem with improving the learn-
ing rate is that even after several iterations AE could not
diverge, converge, or stop learning. If AE cannot converge,
the end-to-end MC process can trigger bit reconstruction
errors. By analyzing epoch and accuracy, epoch, and loss
response, we can verify that AE is not convergent. Moreover,
the slow rate of convergence is converted into higher BER
and positioning in the AE-produced constellations. The pro-
posed CNN-AE codec design can capture the MC medium/
channel impairments by jointly optimizing transceiver opera-
tion. Through simulation, we compared SNR and BER and
learned constellation from different MC medium configura-
tions. Our results demonstrate that the optimization strategy
and appropriate weights initialize the ability to provide new
techniques for high mobility requirements. CNN-AE is
described as a DNN model set, joint encoding at Tx corre-
sponds to encoding, while joint decoding at receiver corre-
sponds to the decoder. The reconstruction of information bits
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FIGURE 9: Comparison of (a) BER and (b) accuracy performances between CNN-AE and MLP-AE with K =20 and 100.

is optimized through the artificial neural network damage
layer, which preliminarily verifies the good performance of
AEs. An AE can learn without previous experience. Joint
optimization entails pressuring the AE to obtain only the
required features and characterize the data entered to store
them in the block layer. After 100 epochs, all findings are
acquired. Figure 8 shows the rapid loss decrease in AE config-
uration. When we are talking about BER, the FNN-MLP has a
low value of camper to all others. Finally, a comparison combi-
nation of both BER/SNR based on AE in Figure 8 is shown. In
addition, Figure 9 shows a comparison of BER and accuracy
performance between CNN-AE and MLP-AE with K =20
and K = 100.

3.1. Comparison-Based CNN-AE and MLP-AE. The loss and
accuracy plots of training the CNN on CT images are presented
in Figure 7 showing loss and Figure 10 showing accuracy.

4. Conclusion and Future Work

Automated technologies for illness clinical diagnosis are
increasingly desired as a result of viral disease analysis.
DL-AE is a diagnostic and predictive tool for infectious dis-
eases. The MCN mechanism maps to molecular signaling
and communication found intrabody and interbody and
characterized the signaling process between cells and infec-
tious disease locations at various levels of the human body
called point-to-point MCN. The DL-AE is a microscale sys-
tem technology for TDD environments. Through MCN, a
healthcare provider can remotely measure biological signals
and control certain processes in the organism required for
the maintenance of the patient’s health state. This technol-
ogy is further extended to use bionanodevices to promote
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FIGURE 10: CNN-AE and MPL-AE trained accuracy comparison.

real-time monitoring of human health and storage of the
gathered data in the cloud. The performance has been
evaluated in terms of BER and SNR. In this sense, it was
emphasized that the accuracy rate of diagnosis can be
improved via DL-AE by not needing any hybrid-complex
models. The development of therapeutics/molecular diagno-
sis such as heart sounds was classified, when there is a prob-
lem with the heartbeat function, the heartbeat signal seems
distorted. In future practices, advanced improvement learn-
ing techniques of our presented model should be used to
disseminate a creative intellectual degree and improve
convergence speed. We are optimistic that groundbreaking
new research will emerge to aid in the fight against current
and future pandemics.
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