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Abstract: Clinical trials in the treatment of heart failure have relied on the use of a composite of
hard clinical endpoints to evaluate the efficacy of the treatment arm. This has led to prolonged
trials requiring large patient cohorts and extensive funding to reach statistical significance.

In this paper, we have explored the potential of currently available circulating and imaging bio-
markers associated with heart failure as a surrogate for hard clinical end points in clinical trials.
This would be expected to result in shorter trials, smaller patient cohorts and limited funding re-
quired. We have subsequently theorized on combining circulating and imaging biomarkers as a sur-
rogate for clinical end points such as hospitalization from heart failure and cardiac mortality.
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1. INTRODUCTION
Heart failure (HF) is a global pandemic affecting at least

26 million people worldwide [1] and is associated with high
morbidity and mortality [2]. It is a clinical syndrome charac-
terised by signs and symptoms of dyspnoea, fatigue, oedema
and pulmonary rales. The syndrome may represent either sys-
tolic dysfunction causing HF with reduced ejection fraction
(HFrEF) or diastolic dysfunction resulting in HF with pre-
served ejection fraction (HFpEF). No single diagnostic test
exists, which is why diagnosis is made with a combination
of history, examination, laboratory testing and imaging [3].
Biomarkers are now frequently relied upon to aid diagnosis,
monitor treatment and identify those at the highest risk of de-
terioration  [4].  A  number  of  circulating  and  imaging  bio-
markers for HF exist but alone have limited prognostic pow-
er [5]. A combination of biomarkers typically yields the best
results,  and  although  limited,  there  is  some  evidence  to
suggest  this  may  also  be  true  in  HF  [6].

This review will discuss available circulating and imag-
ing (i.e., echocardiographic and Cardiovascular Magnetic Re-
sonance imaging (CMR)) biomarkers used in the assessment
and prognostication of HF patients. The review will also dis-
cuss the available evidence for combining these biomarkers
with a  focus on their  utility in  describing  cardiac  inflam-
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mation and fibrosis. Lastly, mortality and HF admissions are
used  as  endpoints  in  pharmacological  and  device  trials  in
HF. They require large study cohorts over an extended trial
duration. The review will allude to the unique potential of
combining these biomarkers as a surrogate for outcome as-
sessments.

2. BIOMARKERS
A biomarker can be defined as a characteristic that is ob-

jectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologi-
cal  responses  to  therapeutic  interventions  [7].  Biomarkers
are utilised frequently to improve patient care; this is most
prominently seen in the field of medical oncology. Biomark-
ers such as oestrogen receptor status in breast cancer directly
dictate the use of tamoxifen treatment to improve outcomes.
This direct relationship between biological processes and tar-
geted  treatment  is  not  well-established  in  cardiology  [8].
This  individualised precise medical  management  is  attrac-
tive, and there have been large volumes of research into bio-
markers in HF. Some such as B-type Natriuretic Peptide (B-
NP) or Ejection Fraction (EF) are routine in clinical  prac-
tice,  while  others  are  regularly  employed  in  research  sett-
ings. For an HF biomarker to be clinically useful, it should
fulfill a number of suggested criteria: 1 -) testing should be
low cost, 2 -) assays used to detect that the biomarker must
be robust with quick turnaround, 3 -) the biomarker should
reflect an important pathophysiological pathway involved in
the HF disease process, 4 -) the biomarker should provide in-
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formation beyond what is available from routine examina-
tion and laboratory evaluation, and 5 -) it should add to clini-
cal  judgement  for  understanding  diagnosis,  prognosis  and
management of HF [9, 10].

3. METHODS
We completed a review of the literature for articles dis-

cussing  biomarkers  in  HF.  We  searched  the  PubMed
database in March 2020 for studies published between Jan-
uary 2010 and February 2020. We used a number of search
terms,  including  free-text  terms  such  as  heart  failure  bio-
markers, circulating biomarkers in heart failure, imaging bio-
markers in heart failure and combining biomarkers in heart
failure. Article references were also searched further for ad-
ditional relevant studies.

4. CIRCULATING BIOMARKERS

4.1. Myocardial Stretch
The  first  natriuretic  peptide  introduced  as  a  marker  of

myocardial  stretch  was  Atrial  Natriuretic  Peptide  (ANP)
[11]. ANP was a marker of elevated cardiac filling pressures
[11], but its use was limited by instability [12]. As a result,
ANP was replaced by the largely ventricular-derived BNP
and  its  amino-terminal  propeptide  equivalent  N-terminal
pro-BNP (NT-proBNP). Their use is now widespread in the
management of HF [9]. Ventricular wall stress is the most
significant trigger for the induction of the BNP gene, which
releases the prepeptide proBNP. This is cleaved both within
the cardiomyocyte and in peripheral sites to the biologically
active BNP and inactive NT-proBNP [9]. BNP binds to natri-
uretic  peptide  receptors,  stimulating  natriuresis,  vasodila-
tion,  lusitropy and reducing cardiac  remodelling [9].  BNP
and  NT-proBNP  play  a  role  in  diagnosis  with  values  less
than 35 pg/ml and 100 pg/ml, respectively, effective in ex-
cluding  HF,  while  values  of  less  than  100pg/ml  and
300pg/ml, respectively, are appropriate cut-offs in acute pre-
sentations  [2,  13].  Both  BNP  and  NT-proBNP  are  estab-
lished markers predicting prognosis in HF, and their raised
levels are independently associated with mortality and other
adverse outcomes [14-16]. The 2017 American College of
Cardiology (ACC) guidelines for the management of heart
failure endorse the use of BNP and NT-proBNP, with class I
recommendations for its use in diagnosis and prognosis [17].
The use of both markers alone to guide therapy in HF is less
clear  and  controversial  due  to  conflicting  results.  Few
studies have shown significant survival benefits with natri-
uretic peptide-guided therapy, while others have only shown
positive trends or even neutral results [18-24].

Despite  ANP’s  lack  of  stability,  its  precursor  protein
mid-regional-proANP  (MR-proANP)  is  stable  and  can  be
measured  [9].  Data  suggests  that  MR-proANP  is  a  robust
marker in HF [25]. It is non-inferior to BNP and NT-proB-
NP in the diagnosis of HF and can even reclassify patients
with BNP results that are difficult to interpret [26]. In addi-
tion, MR-proANP has prognostic power and can predict mor-
tality in patients with chronic HF [27].

4.2. Myocardial Injury
Troponin  was  first  identified  as  an  integral  protein

within the cardiac muscle in 1963 [28]. It is superior to tradi-
tional markers of injury such as myoglobin and creatine ki-
nase-MB due to its clinical sensitivity and tissue specificity.
It has formed the basis of acute myocardial infarction diagno-
sis  for  many years  [29].  High sensitivity assays now exist
measuring troponin T (TnT) and troponin I (TnI), two dist-
inct troponin subunits. Both TnT and TnI are found in indivi-
dual  isoforms  encoded  in  three  genes,  slow  skeletal,  fast
skeletal and cardiac muscle [30]. These high sensitivity as-
says detect the cardiac-specific isoforms. TnT and TnI as-
says are often used interchangeably, and their use clinically
is often determined by local biochemistry laboratory supply.
Comparisons between the assays in certain populations have
shown only a modest correlation (r=0.54) between TnT and
TnI, suggesting that some care is required in interpreting th-
ese assays [31].

Cardiac  troponin  is  almost  completely  found  bound  to
the sarcomere, but 5% can be found in the cytoplasm [32].
During episodes of ischaemia, this cytoplasmic troponin is
released first and causes the initial rapid rise in serum tro-
ponin levels [32]. However, rises in detectable troponin oc-
cur most commonly in the absence of ischaemia [33]. This is
now termed myocardial injury and occurs through a number
of mechanisms, including HF [33]. Myocardial injury in HF
arises as a result of a number of factors, including subendo-
cardial stress and myocyte degeneration [10]. A number of
studies have confirmed that elevation of high sensitivity tro-
ponin  T  (despite  undetectable  levels  on  conventional  tro-
ponin assays)  in  patients  with  acute  HF predicts  mortality
[34, 35]. High sensitivity troponin T remains prognostic in
patients with chronic stable HF, with elevated levels predict-
ing adverse cardiovascular outcomes, hospitalisation for car-
diovascular  causes  and mortality  [36,  37].  The  use  of  tro-
ponin as a prognostic marker in HF has a class I recommen-
dation from the ACC guidelines [17].

4.3. Cardiac Inflammation
The myocardium is sensitive to inflammatory cytokines,

which  can  promote  inflammation  and  cardiac  injury  [38,
39].  The  resulting  damage  can  impair  heart  function  and
cause HF. The most prominent and frequently used marker
for the overall systemic burden of inflammation is the acute
phase reactant C-Reactive Protein (CRP), which is produced
by hepatocytes and stimulated by the inflammatory cytokine
interleukin IL-6 [40]. Interest in inflammation and HF out-
comes began as early as 1956 when it was found that chron-
ic HF patients with elevated levels of CRP had more severe
cardiac  dysfunction  [41].  More  recently,  high  sensitivity
CRP (hsCRP) has become available to detect low-grade in-
flammation in conditions such as HF [42]. Elevated hsCRP
in chronic HF is now an established marker of poor progno-
sis, predicting more severe disease and increased morbidity
and  mortality  [43-45].  For  patients  presenting  with  acute
HF, the role of hsCRP as a marker of prognosis is less clear
and is not recommended [38].
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Tumour necrosis factor-alpha (TNFα) is a proinflamma-
tory cytokine that forms part of the innate immune system’s
inflammatory response [46]. It was in 1990 that it was first
identified that circulating levels of TNF-α were elevated in
patients with chronic HF [47]. Further research into the asso-
ciation  between  TNFα  and  chronic  HF  demonstrates  that
raised levels can predict the development of HF in healthy
individuals [48], predict symptom severity [49] and predict
mortality  [50,  51].  These  findings  are  explained  by  TNFα
downregulating myocardial sarcoplasmic reticulum Ca2+ AT-
Pase  and  promoting  cardiac  remodelling  resulting  in  im-
paired cardiac function [38].

4.4. Cardiac Fibrosis
Fibrotic  diseases,  including  HF,  are  a  proven  cause  of

morbidity and mortality, accounting for over 800,000 deaths
around  the  world  each  year  [52].  Cardiac  fibrosis  is  trig-
gered following an insult, most frequently ischaemia. It is a
protective  mechanism but,  over  time,  leads  to  irreversible
ventricular remodelling and cardiac dysfunction [52]. The fi-
brosis-related dysfunction is a result of increased ventricular
stiffness and compromised electrical conduction [53]. Given
the impact of fibrosis on the heart, there is great interest in
novel markers of cardiac fibrosis [54].

The suppression of the tumorigenicity-2 (ST2) network
plays a critical role in mediating fibrosis and myocardial and
vascular remodelling. Usually, IL-33 binds to the ST2 recep-
tor  causing  the  downstream reduction  in  programmed cell
death and activation of  profibrotic  pathways.  Soluble  ST2
(sST2) acts as a decoy receptor for IL-33, preventing bind-
ing to the ST2 receptor promoting myocardial cell death and
fibrosis [9]. Levels of sST2 may be elevated in the absence
of heart failure in 10-18% of men and 2-8% of women, but
measurement  still  has  value  in  both  acute  and chronic  HF
[55]. Serial measurements of sST2 in the acute setting pre-
dicts mortality [56], and in chronic HF, it is superior to BNP
and NT-proBNP in predicting worsening HF, rehospitalisa-
tion, heart transplantation and death [57]. In contrast to the
natriuretic peptides, sST2 concentrations are also unchanged
by obesity, age, atrial fibrillation or renal function [9].

Galectin-3 is produced by activated macrophages and sti-
mulates  macrophage  migration  and  fibroblast  prolifera-
tion-inducing  cardiac  fibrosis  [58].  The  concentration  of
galectin-3 is maximal during peak fibrosis and is almost ab-
sent after recovery, making it a dynamic marker of fibrosis
[59].  It  has  been  shown to  be  a  superior  predictor  to  NT-
proBNP in patients with acute HF in predicting episodes of
recurrent HF and death [60]. Despite being a useful marker
in acute HF, its role in diagnosis is limited, and it is inferior
to the natriuretic peptides in this regard [61]. In chronic HF,
galectin-3 is effective in predicting mortality [62], and the
use of serial levels has been shown to predict the first mor-
bid event, hospitalisation for HF and mortality [63]. In addi-
tion,  elevated  levels  of  galectin-3  in  healthy  individuals
predict the development of new-onset HF and also mortality
[64]. Galectin-3 is an effective marker in HFpEF, elevated
levels correspond to more severe diastolic dysfunction [65,

66], and it is the most accurate marker of hospitalisation and
mortality in these patients [67].

Despite the available evidence for cardiac fibrosis bio-
markers, their utilisation in clinical settings remains limited.
At this time, a class IIb recommendation by the ACC exists
for their use in HF, and it has been suggested that more bene-
fit may be derived through the combination with other bio-
markers (circulating or imaging) [17].

4.5. Future Directions
The search continues for novel circulating biomarkers in

heart failure despite the wide range currently available. Re-
cent work has identified the potential of MicroRNAs (miR-
NAs) and metabolomics as biomarkers.

MiRNAs  are  endogenous,  conserved,  single-stranded,
small (~22 nucleotides) non-coding ribonucleic acid (RNA)
with  critical  roles  in  cardiovascular  biology.  They  have
shown promise  in  challenging  clinical  settings  where  cur-
rently established biomarkers perform poorly, such as atrial
fibrillation  or  obesity,  discriminating  between  HFrEF  and
HFpEF, and determining heart failure aetiology [68-70]. Fur-
ther investigation is still required in validating miRNA pan-
els and clarifying their role in prognosis, diagnosis and man-
agement.

The heart is a highly metabolically active organ that is
capable of generating adenosine triphosphate (ATP), the en-
ergy-carrying  molecule  in  cells,  from  a  diverse  range  of
sources, including carbohydrates, lipids, lactate, amino acids
and ketones. Despite the heart’s adaptability, it remains sus-
ceptible  to  disruptions  in  cardiac  metabolism,  frequently
seen in most cardiovascular diseases. Metabolomics investi-
gates metabolites affecting genetic, epigenetic, transcription
and protein factor variation that remain responsive to envi-
ronmental exposures, dietary intake and the gut microbiome
[71]. Measurement of these circulating metabolites exposes
changes  in  both  cardiac  and  systemic  metabolism  [72].
Studies  have  already  identified  metabolites  such  as  long-
chain  acylcarnitines  levels  that  are  related  to  heart  failure
severity  and  are  sensitive  to  treatment  [73,  74].
Metabolomics  has  also  revealed  that  patients  with  HFrEF
and HFpEF, currently thought to be unique clinical entities,
share common metabolic derangements with raised levels of
long-chain acylcarnitines [75]. Despite currently being in its
infancy, metabolomics has the potential to identify clinically
relevant biomarkers that add to our understanding of heart
failure pathophysiology and may lead to the development of
targeted metabolic therapies.

5. IMAGING BIOMARKERS

5.1. Echocardiogram
Echocardiogram is a safe and available resource for car-

diac  imaging.  The  use  of  transthoracic  echocardiogram  is
the mainstay of HF assessment and cardiac function [2].

The EF is the basis of ventricular systolic function and
can be defined as the percentage of blood ejected in systole
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in relation to the volume of blood in the ventricle at the end
of  diastole.  It  can  be  calculated  by  a  number  of  methods,
most frequently by using a biplane technique [76]. The Left
Ventricular EF [LVEF] is a strong predictor of clinical out-
comes in patients with HF. Reduction in LVEF strongly pre-
dicts the severity of symptoms and all-cause mortality [77].
Furthermore,  a  declining  trajectory  of  LVEF also  predicts
mortality [78]. In addition to its prognostic power, LVEF is
vital in guiding medical and device therapy [2].

Increases in Left Ventricular Mass (LVM) are caused by
cardiac  remodelling,  and  it  is  associated  with  high  blood
pressure, increased body mass index, smoking status and dia-
betes mellitus. LVM can be estimated by using either two-di-
mensional  (2D)  or  three-dimensional  (3D)  echocardiogra-
phy. The LVM is based on the myocardial density (1.05g/m-
l)  multiplied  by  the  myocardial  volume  (left  ventricular
(LV)  volume subtracted  from the  volume enclosed  by  the
epicardium). Echocardiogram-derived LVM has been shown
to be a  reliable  predictor  of  adverse  cardiovascular  events
[79].

The  term  strain  in  echocardiography  describes  local
shortening, lengthening and thickening of the myocardium
to evaluate regional LV function. Strain is frequently calcu-
lated  using  speckle-tracking  echocardiography.  This  tech-
nique employs the speckles in myocardial tissue caused by
acoustic markers on ultrasound. The speckles throughout the
myocardium are  stable  over  a  short  time period,  and their
2D displacement can be calculated. With these results, strain
can be calculated for the LV in circumferential, longitudinal
and radial directions. In 2D echocardiography, strain can be
only be calculated in two axes, whilst strain in all three axes
can  be  recorded  with  3D  echocardiography.  Typically  to
measure  global  LV  function,  strain  is  recorded  as  Global
Longitudinal Strain (GLS), the average strain of all speckles
in the longitudinal direction [80]. In acute HF, GLS predicts
HF readmission [81], adverse cardiac events [82], and it has
been shown to be superior to LVEF in predicting mortality
[83]. In chronic HF, GLS effectively predicts HF exacerba-
tion, ventricular assist device placement, cardiac transplanta-
tion and all-cause mortality [84, 85]. Furthermore, in asymp-
tomatic  individuals,  GLS  can  predict  the  development  of
new-onset HF [86]. This has led to increasing utility within
the cardio-oncology specialty for monitoring LV function in
patients  at  risk  of  chemotherapy-related  cardiac  toxicity
[87]. This allows timely initiation of HF therapy to avoid ces-
sation of potential lifesaving cancer therapy, an area with fur-
ther studies underway [88].

Myocardial Work (MW) is a novel non-invasive echocar-
diographic approach that assesses regional myocardial work
by LV Pressure-Strain Loop (PSL) analysis via echocardio-
graphic  software,  thus  incorporating  both  strain  and after-
load with non-invasively estimated pressure from brachial
cuff blood pressure. This technique has been validated with
invasive  LV  Pressure-Volume  Loops  (PVL)  and  regional
myocardial metabolism with glucose turnover measured by
positron emission tomography,  providing a  robust  method
for LV performance assessment taking loading conditions in-

to account [89]. The association between non-invasive de-
rived global MW by PSL and favourable response to Cardi-
ac Resynchronisation Therapy (CRT) was demonstrated in
patients with HF of both ischaemic and non-ischaemic aetiol-
ogy,  predicting  subsequent  reverse  remodelling  [90,  91].
MW efficiency is distinctly reduced in HFrEF patients [92].
A Global Work Index (GWI) of <500 mmHg% was shown
to be a predictor of poor prognosis with established prognos-
tic parameters of HF [94]. Non-invasive myocardial work is
still at an early developmental stage. The published results
to date are promising whilst requiring further validation to
reach routine clinical practice.

Diastolic dysfunction of the LV or HFpEF may be chal-
lenging  to  detect  with  echocardiography.  During  diastole,
the left atrium is exposed to increasing LV pressures. Subse-
quently,  left  atrial  pressures  rise  to  maintain  appropriate
filling. This sustained increase in pressure leads to dilatation
and  stretching  of  the  atrial  myocardium.  Therefore,  left
atrial volume is an established marker of the severity of dias-
tolic dysfunction [94]. Despite this clear association, up to
one-third of patients with diastolic dysfunction have normal
left atrial volume [94, 95]. This triggered an investigation in-
to  assessing  left  atrial  function  by  evaluating  parameters
such as left atrial strain. Work in this area has identified that
left atrial strain is a marker of diastolic dysfunction, worsen-
ing atrial fibrillation, stroke and may be a predictor of ad-
verse cardiovascular events [96, 97].

The  Right  Ventricle  (RV) can  be  defined  as  low pres-
sure,  high volume pump in  contrast  to  the  LV, which is  a
high pressure, high volume pump [98]. Consequently, due to
exposure to lower pressures, the overall mass of the RV is
approximately one-sixth of the LV. The RV and LV are in-
terconnected by networks of muscle fibres and are function-
ally interdependent. As a result, impairment of RV function
is detrimental to overall cardiac function [99]. Assessment
of the RV, although not the gold standard, is possible with
the use of echocardiography through a number of methods
[5]. RV fractional area change is a percentage change in cavi-
ty area from end-diastole to end-systole and is a predictor of
stroke,  HF,  cardiovascular  death  and  all-cause  mortality
[100]. Tricuspid Annular Plane Systolic Excursion (TAPSE)
is a relatively simple measure of RV function. It is calculat-
ed with the use of M-mode in the apical four-chamber view
measuring the displacement of the tricuspid ring in the longi-
tudinal plane of the RV. TAPSE has been shown in healthy
individuals to predict the development of cardiovascular dis-
ease [101]. Given the success of strain measurements in the
LV, RV strain has also been investigated. The results show
that RV strain in chronic HF patients is a powerful predictor
of admission for HF, cardiac transplantation, emergency ven-
tricular assist device implantation and death, and may even
be superior to other measurements of RV and LV function
[102].

5.2. CMR
CMR is the gold standard cardiac imaging modality for

the measurement of volumes, mass, and EF. It also plays a
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pivotal role in determining HF aetiology, visualising myocar-
dial  fibrosis  and  assessing  viability.  Weaknesses  include
availability, cost, limited use of gadolinium-based contrast
in renal impairment due to the risk of nephrogenic systemic
fibrosis and patient compliance factors such as orthopnoea
and claustrophobia [2]. Detailed images produced by CMR
rely on hydrogen nuclei which are abundant in water and fat.
The use of a strong magnetic field followed by a radiofre-
quency wave causes the randomly spinning nuclei with their
own magnetic vector to initially align and subsequently reso-
nate. The magnetic field and radiofrequency wave are then
terminated, causing the nuclei to emit a signal which is used
to create the images seen in MRI. Multiple radiofrequency
pulses can be used in sequence to emphasise different medi-
ums. Each medium has a different rate of relaxation and can
be measured in two ways, the first is T1 relaxation which is
the time for the nuclei to return to the resting magnetic vec-
tor and T2 relaxation is the time taken for the nuclei to re-
turn to their resting spin [103]. The use of gadolinium-based
contrast is commonplace. The contrast reduces the T1 relaxa-
tion time of tissues, and the factors contributing to the great-
est changes are local perfusion, the extracellular volume of
distribution and water exchange rates (between vascular, in-
terstitial and cellular spaces) [104, 105].

As discussed earlier,  myocardial  fibrosis  has  a  signifi-
cant impact on heart function. CMR is an effective tool in
measuring fibrosis with the use of Late Gadolinium Enhance-
ment (LGE) to measure focal localised fibrosis and T1 map-
ping to measure diffuse interstitial fibrosis. The use of LGE
to  measure  cardiac  fibrosis  was  first  described  in  animal
models in 1984 [106]. Since this time, it has been increasing-
ly  used  to  accurately  measure  cardiac  fibrosis  in  a  wide
range of conditions, including HF, myocardial infarction, hy-
pertrophic cardiomyopathy, aortic valve disease, sarcoido-
sis, amyloidosis, hypertensive cardiomyopathy and diabetic
cardiomyopathy [107]. LGE has also been shown to predict
adverse  outcomes  in  many  of  these  conditions  [108-112]
and more recently has been proposed to guide implantable
cardioverter defibrillator therapy [113]. Native T1 mapping
to  measure  fibrosis  and  inflammation  is  more  novel  and
could be used in the absence of gadolinium without limita-
tion by renal  impairment.  There are  a  number of  different
techniques to acquire a T1 map, the more common ones be-
ing a  Modified  Look-Locker  inversion recovery  (MOLLI)
and the Shortened Modified Look-Locker inversion recov-
ery (SchMOLLI), which have been shown to accurately mea-
sure fibrosis both in the intracellular and extracellular space,
in myocardial infarction [114, 115], amyloidosis [116], sys-
temic sclerosis [117], diabetic cardiomyopathy [118], hyper-
trophic  cardiomyopathy  [119]  and chronic  HF [120,  121].
The map is an image of each pixel which is colour-coded ac-
cording to the absolute T1 time. There is also evidence now
demonstrating that fibrosis detected by T1 mapping predicts
adverse outcomes [122]. Increased TI times may also indi-
cate inflammation and, therefore, will need to be interpreted
in conjunction with T2 mapping described in a later section.

The  other  method  of  evaluating  extracellular  volume
(ECV) is by creating pre and post-contrast T1 maps (ECV

mapping). The extracellular volume is a marker of volume
expansion, which can be due to diffuse myocardial fibrosis
or myocardial inflammation. There was a prospective obser-
vational multi-centre longitudinal study in 637 consecutive
patients with dilated non-ischemic cardiomyopathy undergo-
ing  CMR  with  T1  mapping  and  LGE  at  1.5-T  and  3.0-T
[123]. The primary endpoint was all-cause mortality, and a
composite  of  HF  mortality  and  hospitalization  was  a  se-
condary endpoint. During a median follow-up period of 22
months (interquartile range: 19 to 25 months), a total of 28
deaths (22 cardiac)  and 68 composite  HF events  were ob-
served. T1 mapping indices (native T1 and extracellular vol-
ume fraction),  as  well  as  the presence and extent  of  LGE,
were predictive of all-cause mortality and HF endpoint (p <
0.001 for all). In multivariable analyses, native T1 was the
sole  independent  predictor  of  all-cause  mortality  and  HF
composite endpoints (hazard ratio: 1.1; 95% confidence in-
terval: 1.06 to 1.15; hazard ratio: 1.1; 95% confidence inter-
val: 1.05 to 1.1; p < 0.001 for both), followed by the models
including the extent of LGE and RV EF, respectively. Non-
invasive measures of diffuse myocardial disease by T1 map-
ping are significantly predictive of all-cause mortality and
HF events in non-ischaemic dilated cardiomyopathy. The av-
erage LVEF in the initial cohort was about 47%, suggesting
that the sensitivity of detecting changes is very high using th-
ese methods in a cohort with early disease.

The combination of other poor prognostic markers such
as LVEF <35% or LGE with native T1 did not improve the
predictive value of native T1 values alone, indicating the in-
dependent pathophysiological role of a diffuse myocardial
disease as indicated by an elevated native T1 value [124]. Vi-
ta et al. further refined the assessment of diffuse myocardial
disease by mapping 6 anatomical locations using all 4 CMR
tissue-characterizing methods (native T1, extracellular vol-
ume mapping, partition coefficient (ƛGD) and late gadolini-
um enhancement) associating this with outcome [125]. The
authors performed T1 mapping of the myocardium and the
blood pool, before and serially after contrast injection, using
a  Look-Locker  cine  gradient-echo  technique  to  obtain  T1
and the corresponding reciprocal R1(1/T1) values. ƛGd val-
ues were derived from the slopes of the least-squares regres-
sion lines for myocardial versus blood R1, then adjusted to
serum haematocrit to yield ECV.

After a median of 3.8 years, 36 (15%) experienced major
adverse cardiac events (MACE), including 22 HF hospital-
izations and 14 deaths. Non-ischemic LGE was detected in
34%, whereas ECV was elevated (in more than 1 location)
in 58%. Comparing the 4 methods, mean ECV and ƛGd both
demonstrated  a  strong  association  with  MACE  (both  p  <
0.001). In contrast to native T1 and LGE, ECV values from
all 6 locations were associated with MACE and death, with
the  anteroseptum being  the  most  significant  (p  <  0.0001).
The number of abnormal ECV locations correlated linearly
with annual MACE rates (p = 0.0003). Mean ECV was the
only  predictor  to  enter  a  prognostic  model  that  contained
age, sex, New York Heart Association functional class, and
LVEF.  For  every  10%  increase,  mean  ECV  portended  to
2.8-fold adjusted increase risk to MACE (p < 0.001). These
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newer  non-invasive  imaging  techniques,  namely  serial  T1
mapping  imaging  characterizing  ECV  fraction,  have  been
validated against diffuse interstitial fibrosis by histology in
non-ischaemic dilated cardiomyopathy [126, 127].

Detection  of  myocardial  inflammation-causing  cardiac
dysfunction is significant as it is treatable with a number of
management options available [128, 129]. The gold standard
in diagnosis is the endomyocardial biopsy, but it is prone to
sampling errors, is invasive and has risks [130]. The use of
CMR with T2 mapping presents an opportunity for non-inva-
sive detection of myocardial inflammation. Research com-
paring  the  use  of  T2  mapping  to  endomyocardial  biopsy
suggests that it may be a reasonable alternative [131], and in-
creased T2 has also been shown to be a predictor of MACE
[132].

As with any diagnostic test, standardization of data acqui-
sition and post-processing, as well as predefined reference
ranges, are a prerequisite for the application of quantifiable
imaging biomarkers in clinical routine. Achieving this and
standardizing the various vendor platforms remain the main
impediments to this being used in routine clinical practice,
but  in  the setting of  clinical  trials,  these obstacles  may be
overcome, especially with the use of a core lab to acquire
and process the images.

6. COMBINING CIRCULATING AND IMAGING BIO-
MARKERS

An extensive range of biomarkers is now available in HF
[5,  133].  Both  circulating  and  imaging  biomarkers  have
much to offer, but most research has investigated their utili-
ty in isolation. Risk models do exist but largely only incorpo-
rate  circulating biomarkers  [134].  The limited work avail-
able  combining  circulating  and  imaging  biomarkers  has
been confined to mostly natriuretic peptides and echocardio-
gram [5].

Natriuretic peptides have been considered the gold stan-
dard biomarker in HF and are routinely used in its manage-
ment [135]. However, as discussed earlier, the benefits of us-
ing natriuretic  peptides  alone to  guide HF therapy are  un-
clear. The work by Simioniuc et al. highlights the potential
benefits of combining circulating and imaging biomarkers.
The  authors  compared  clinically  guided  HF  therapy  and
BNP combined with echocardiogram-derived measures of in-
creased LV pressure (E wave deceleration time as a surro-
gate of pulmonary capillary wedge pressure and for patients
in atrial fibrillation deceleration time of mitral flow veloci-
ty)  guided HF therapy.  Patients  were not  randomised,  and
propensity score matching of confounding baseline variables
was utilized to minimise bias. The results demonstrated that
combining these biomarkers reduced rates of acute kidney in-
jury  (9.8%  vs.  21.4%,  p<0.0001)  and  death  (hazard  ratio:
0.45;  95%  confidence  interval:  0.30-0.67,  p<0.0001)  [6]
(Fig. 1). Furthermore, Bajraktari et al. compared 794 outpa-
tients with heart failure treated in three groups: group I with
BNP combined with echocardiogram (E/e’ and E wave de-
celeration time as  surrogates  of  increased LV pressure  to-
gether with lung ultrasound to assess B lines) guided thera-

py,  group  II  with  clinically  guided  therapy  and  group  III
with  those  managed  with  no  specific  specialist  follow up.
They found a 60 months survival of 88% in group I, 75% in
group II and 54% in group III (p<0.0001) [136]. These re-
sults  highlight  a  clinical  role  for  the  combination  of  BNP
and echocardiogram in improving HF outcomes.

BNP: B-type natriuretic peptide; HR: Hazard ratio; CI:
Confidence  interval.  Figure  used  with  permission  from
Simioniuc  et  al.  [6].

As discussed previously, circulating biomarkers of fibro-
sis  exist,  such as galectin-3,  which have been proposed to
not be just a by-product but an active culprit in the develop-
ment of myocardial fibrosis [137]. CMR and possible myo-
cardial works with echocardiography is an effective tool for
visualising both focal and diffuse myocardial fibrosis. The
combination of CMR and markers of fibrosis presents an op-
portunity  to  directly  visualise  the  underlying  pathological
process. There is some evidence to suggest that galectin-3
and Matrix Metalloproteinase-2 (MMP-2), a marker of extra-
cellular matrix remodelling, may best correlate with the lev-
el of fibrosis seen on CMR with the use of T1 mapping and
LGE [138]. Further work is needed to develop models com-
bining CMR and circulating fibrosis markers to predict out-
comes.

Multiple circulating biomarkers of myocardial inflamma-
tion also exist.  There has been work performed to investi-
gate combining T1 mapping and LGE findings of fibrosis to-
gether with circulating inflammatory biomarkers. Mateus et
al. investigated a population of 1345 patients from the Multi-
-Ethnic  Study  of  Atherosclerosis  (MESA),  a  multicentre
prospective cohort study. These patients had CMR with T1
mapping using the MOLLI recovery sequence. Patients were
excluded if they self-reported medical conditions that could
elevate non-specific inflammatory markers. 772 participants
remained in the final study population. The results showed
that in men, elevated IL-6 was associated with a 0.4% high-
er ECV (p=0.05), and elevated CRP was associated with a
4.9ms higher native T1 (p=0.03). However, no such correla-
tion between inflammatory markers and CMR detected fibro-
sis was present in women [139].  Markers of inflammation
and CMR were also explored by Wu et al. to identify HF pa-
tients at the highest risk of malignant cardiac rhythms. In to-
tal, 235 patients with chronic ischaemic and non-ischaemic
cardiomyopathy with an LVEF <35% undergoing insertion
of  an  Implantable  Cardioverter-Defibrillator  (ICD)  had
hsCRP and CMR to assess grey zone (scar related heteroge-
nous myocardium via LGE) performed and the median fol-
low-up was 3.6 years. The primary end point was appropri-
ate ICD shock for ventricular tachycardia/fibrillation or car-
diac  death.  The  adjusted  hazard  ratio  for  the  primary  end
point  for  hsCRP  was  up  to  2.8  (95%  confidence  interval:
1.1-7.1, p=0.03), and for the grey zone, it was 4.6 (95% con-
fidence interval: 1.4-15.4, p<0.01). Significantly, the combi-
nation of hsCRP and grey zone was associated with a hazard
ratio  of  up  to  24.0  (95%  confidence  interval:  3.1-184,
p=0.002), suggesting the combination of hsCRP and CMR
may assist in identifying low-risk patients, with the least po-
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tential benefit, meeting current guidelines for ICD insertion
[140]. Ongoing work in this area may continue to identify
further prognostic indicators.

CMR  with  T2  mapping  provides  an  alternative  to  en-
domyocardial  biopsy to evaluate myocardial  inflammation
[131]. However, to our knowledge, no studies exist that com-
bine  circulating  biomarkers  of  inflammation  and  T2  map-
ping, providing an opportunity for future studies.

7. UTILITY OF BIOMARKER(S) AS A SURROGATE
FOR AN OUTCOME MEASURE

The selection of the primary ‘endpoint’ or ‘outcome mea-
sure’ has a major impact on the reliability and interpretabili-
ty of clinical trials designed to study the effect of an interven-
tion. As HF studies, especially interventional studies, with
hard  outcome  measures  such  as  mortality,  are  difficult  to
conduct, the use of biomarkers as a surrogate measure be-
comes attractive for a number of reasons [7]. Biomarkers are
far cheaper, easier and faster to measure than the actual out-
come measure and also require smaller sample sizes which
can subsequently reduce costs and the time for trial comple-
tion. However, to prevent confounding factors from nullify-
ing  the  value  of  surrogate  outcome  measures,  a  thorough
knowledge of the pathophysiology of the disease and the in-

tervention being performed is required [141]. While HF bio-
markers strongly correlate with clinical efficacy measures in
natural history observations, they are not causal in the path-
way of the disease process and may provide misleading in-
formation about clinical efficacy.

HF is a complex heterogenous condition, and in some re-
spects, such as HFpEF, it is still poorly understood [142]. In
addition, our understanding of biomarkers is still not compre-
hensive, the timing of measuring biomarkers to confirm ben-
efit is uncertain, and we have limited knowledge in regard to
how significant a change in biomarker levels is needed be-
fore there is any benefit [143]. Vaduganathan et al. evaluat-
ed  the  use  of  ANP,  BNP  and  NT-proBNP  biomarkers
known to be associated with mortality as  a  surrogate end-
point for HF therapy. The authors found that the changes in
natriuretic peptides levels were associated with HF hospitali-
sation but not mortality [144]. These findings highlight that
we still lack a complete understanding of the relationships
between HF and its biomarkers.  It  would be reasonable to
conclude that despite an array of promising biomarkers avail-
able to us, we are not yet in a position to completely replace
mortality as a primary endpoint, but considering biomarkers
as  a  composite  of  surrogate  outcomes  may  have  potential
[145].

Fig. (1). (A) Kaplan-Meier curves for all-cause death in patients of the echo-BNP guided and clinically guided groups before (left) and after
(right) propensity score matching. (B) Kaplan-Meier curves for the combined end point of and worsening renal function in echo-BNP guided
and clinically guided groups before (left) and after (right) propensity score matching. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).
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Fibrosis, a marker of cell death, represents the last stage
of the pathophysiological process of myocardial injury from
a range of disease processes [146]. We posit that targeting
cardiac  fibrosis  as  the  surrogate  endpoint  for  HF  therapy
with the use of a combination of circulating and imaging bio-
markers  is  a  future  research  area.  Based  on  available  evi-
dence from previous studies, the combination of Galectin-3
and either myocardial works with echocardiography or T1
mapping with CMR holds the most promise as they repre-
sent the closest surrogate for fibrotic replacement of the myo-
cardium  [59,  107,  147].  Future  studies  should  evaluate  a
combination of fibrosis biomarkers as a composite end point
that would also include HF hospitalization as the latter has
been shown to result in poorer quality of life, prognosis, as
well as represents a huge economic burden on the health sys-
tem [148].

CONCLUSION
A vast range of circulating and imaging biomarkers are

used for HF diagnosis, monitoring treatment and also identi-
fying patients  who are  at  the  highest  risk  of  deterioration.
Preliminary studies indicate that a strategy based on the com-
bination of circulating and imaging biomarkers is superior to
when  either  one  is  used  alone  for  such  purposes.  Larger
studies are, however, needed before such approaches can be
adopted into clinical practices.
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