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Abstract: Chromosomal abnormality is one of the impor-
tant causes of dysplasia in children. However, due to
regional and ethnic differences, the reported rates of
chromosomal abnormalities in patients with dysplasia
vary greatly. Moreover, the clinical manifestations in
children with rare chromosomal diseases were heteroge-
neous. So, we retrospectively analyzed the karyotype
results of 436 children with dysplasia and conducted
a detailed analysis of rare chromosomal diseases. The
results showed that chromosomal abnormalities were
present in 181 of 436 cases. Intellectual disability, dys-
morphology, congenital malformations, the disorder of
sexual development, and short stature were the main
five clinical symptoms in children with chromosomal
abnormalities. Moreover, 136 cases of Trisomy 21 (Tri21)
were detected, of which 130 were standard Tri21, 5 were
robertsonian Tri21, and 1 was chimera type. In addition,
16 cases of rare abnormal karyotype, including complex
Tri21, complex Turner syndrome, 4p-syndrome, 18q-syn-
drome, and 5p-syndrome, were also detected. In sum-
mary, chromosome abnormality is one of the important
causes of dysplasia in children. Furthermore, prenatal
screening and diagnosis could play a great significance
in preventing dysplasia in children. In addition, the retro-
spective analysis of rare cases is valuable for clinical
diagnosis and risk assessment of recurrence.
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1 Introduction

Dysplasia in children is increasingly becoming a promi-
nent public health and social problem. Dysplasia in chil-
dren affects children’s health and quality of life and
the healthy and sustainable development of society. So,
reducing congenital disabilities has great social signifi-
cance. Therefore, it is necessary to delve into the causes
of dysplasia in children.

Congenital heart disease (CHD) is one of the most
common dysplasias in children. The incidence of CHD
in neonates is 8-9/1,000, and nearly 1.35 million CHD
neonates are born every year in the world [1]. Chromo-
somal causes of CHD include chromosome aneuploidies,
such as Trisomy 21 (Tri21). Chromosomal aneuploidies
represent 12.5% of CHD causes [2]. In addition, Tri21
syndrome, a common chromosomal disorder, is the
most common cause of severe mental retardation, spe-
cial facial features, and abnormal bone development in
children.

Disorder of sexual development (DSD) and short sta-
ture are also the most common dysplasia symptoms in
children. Sex chromosome abnormality is one of the most
common causes of DSD and short stature. Common sex
chromosomal disorders include Klinefelter syndrome
(1/1,000-1/2,000 in male newborns), Turner syndrome
(TS, approximately 1/5,000 in newborn girls), XYY syn-
drome (1/900 in males), and XXX syndrome (1/1,000 in
newborn girls). Patients with sex chromosome diseases
are often accompanied by gonadal dysplasia, secondary
sexual signs dysplasia, fertility disorders, mild mental
abnormalities, mental deficiencies, and other symptoms.
In addition, children with TS often have short stature.
Children with severe short stature are vulnerable to diverse
developmental, social, and educational problems [3].
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Therefore, the abnormality of the sex chromosome is one
of the important causes of dysplasia in children.

There is a significant evidence in the literature that
the chromosome partial monomer or trisomy can lead to
severe dysplasia in children. The clinical examination
of the patients with structurally abnormal chromosome
15 revealed a series of clinical symptoms, such as intel-
lectual disability, CHD, severe growth retardation, hyper-
telorism, microcephalus, dysmorphology, and multiple
sclerosis hyperpigmented or café-au-lait spots, short sta-
ture, and clinodactyly [4-7]. The common clinical fea-
tures of the patients with partial trisomy of chromosome
8 included developmental delay, intellectual disability,
mental retardation, severe hypotonia, hypospadias, ske-
letal anomalies, renal dysplasia, attention-deficit hyper-
activity disorder, atypical facial appearance, and conge-
nital hypoplasia of the tongue [8-13]. The short arm
monosomy of chromosome 9 may present developmental
delay, hypotonia, trigonocephaly, psychomotor develop-
mental delay, learning difficulties, trigonocephaly, facial
dysmorphia, and genital abnormalities [14,15].

Thus, the chromosomal abnormality is one of the
important causes of dysplasia in children, which ser-
iously endangers children’s physical and mental health
and brings heavy spiritual and economic burdens to
families and society. However, due to regional and ethnic
differences, the reported rates of chromosomal abnormal-
ities in patients with dysplasia vary greatly. So, we retro-
spectively analyzed the karyotype results of 436 children
with dysplasia and conducted a detailed analysis of rare
cases to clarify the chromosomal abnormality rate and
distribution of abnormal chromosomes in local children
with dysplasia and provide a theoretical basis for clinical
diagnosis and prenatal diagnosis, and assess the risk of
recurrence.

2 Patients and methods

2.1 Patients

Four hundred and thirty-six cases (359 male and 77
female) in children with clinically diagnosed dysplasia in
the affiliated Yantai Yu Huang Ding Hospital of Qingdao
University Medical College from January 1, 2012 to October
31, 2019, were recruited. The age group of the participants
ranged from 1 day to 16 years. Patients with dysplasia
caused by autoimmune, chemo- or radio-therapy, infec-
tious, and iatrogenic injury were excluded. The clinical
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data of confirmed cases were retrospectively collected
and analyzed.

Informed consent: Informed consent has been obtained
from all individuals included in this study.

Ethical approval: The research related to human use has
been complied with all the relevant national regula-
tions, institutional policies, and in accordance with
the tenets of the Helsinki Declaration and has been
approved by the Ethical Committee of Yantai Yu Huang
Ding Hospital.

2.2 G banding

Standard chromosomal analyses with G banding were
performed on routinely cultured peripheral blood lympho-
cytes [16]. Thirty metaphases per patient were counted,
and a minimum of five metaphases were analyzed. For
the chimeric case, at least 100 metaphases were counted.
Chromosome polymorphisms, such as pericentric inver-
sion of chromosome 9, centromeric heterochromatin var-
iants, and satellite variants, were classified as normal. The
karyotypic reports were based on the International System
for Human Cytogenetic Nomenclature.

3 Results

Chromosomal abnormalities were detected in 181 of 436
cases. The abnormal rate was 41.51%. Among them were
153 cases of autosomal abnormality (84.53%, 153/181,
Table 1) and 28 cases of a sex chromosome abnormality
(15.47%, 28/181, Table 2). The main clinical symptoms of
181 children with chromosomal abnormalities were intellec-
tual disability (80.66%, 146/181), dysmorphology (71.82%,
130/181), congenital malformations (22.10%, 40/181), DSD
(12.15%, 22/181), and short stature (8.29%, 15/181).

One hundred and thirty-six cases of Tri21 were detected
(31.19%, 136/436), including 89 male and 47 female, with a
ratio of 1.89:1. Among them, 130 cases were standard Tri21
(95.59%, 130/136), 5 cases were Robertsonian Tri21 (3.79%,
5/132) and 1 case was a chimeric type (0.74%, 1/136).

Twenty-eight cases of sex chromosome abnormalities
were detected, among which 20 cases were TS (7 cases
were 45,X, 13 cases were 45,X mosaic), 5 cases were 46,X,i
(X)(q10), 2 cases were sexual reversal, and 1 case was
46,X,idic(X;X)(q21.3;q11.1).
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Table 1: Distribution of autosomal abnormalities in children with dysplasia

Classification Chromosome karyotypes

Number of cases Constituent ratio (%) Abnormality rate (%)

Numerical abnormality
47,XX,+21
47,XY,+21
47 ,XX,+21[12]/46,XX[177]
47,XY,+21,inv(9)(p11q12)
47,XY,+21,13pstkstk
47,XX,+21,inv(9)(p11q13)
47,X,Yqs,+21
47 XX,+mar[74]/46,XX[26]

Structural abnormality
46,XX,der(13;14)(q10;q10),+21
46,XY,der(14;21)(q10;q10),+21
46,XX,der(21;21)(q10;q10),
t(1;12)(g43;p12.1),inv(15)(q13q24)
46,XX,der(21;21)(q10;q10)
46,XY,del(4)(g33)
46,XY,del(5)(p14)
46,XY,del(5)(p14.3)
46,XX,del(13)(q31)
46,XX,del(8)(p23.1)
46,XX,add(16)(q24)
46,XY,r(9)(p24q34)
46,XY,der(9)t(2;9)(p25;p22)mat
46,XY,der(9)t(7;9)(p15;p22)pat
45,XX,der(15;21)(q10;q10)mat,del(18)(q21)
46,XX,der(3)del(3)(p21.3p23)t(2;3)
(q11.2;p23)
46,XX,1(9;15)(p24;q13)
46,XX,1(9;16)(q13;G22)
46,XX,t(2;8)(q13;q23)
46,XX,t(1;3)(p22.1;q27)
46,XX,inv(12)(p12.2q15)

5
5

Combination

132 86.27 30.27
40 26.14 9.17
86 56.21 19.72
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
21 13.73 4.82
1 0.65 0.23
131 0.46
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
1 0.65 0.23
153 100 35.09

Sixteen cases of rare abnormal karyotype were det-
ected, including complex Tri21 (Figure 1), complex TS
(Figures 2-4), partial monomer and partial trisomy
(Figures 5), 4p-syndrome (Figure 6), 18g-syndrome (Figure 7),
and 5p-syndrome.

4 Discussion

Chromosomal diseases are often associated with growth
retardation, mental retardation, and multiple malforma-
tions of organs, which are congenital diseases caused by
chromosome number or structural abnormalities. In our
study, 181 cases with abnormal karyotype were detected,
and the abnormal rate was 41.51% (181/436), which

indicated that chromosomal abnormalities were one of
the important causes in children with dysplasia.
Intellectual disability (80.66%, 146/181) and dysmor-
phology (71.82%, 130/181) are the main clinical symp-
toms of 181 children with chromosomal abnormalities.
As known, Tri21 is the most common chromosomal dis-
order, which implicated with intellectual disability and
dysmorphology. The prevalence of Tri21 ranges from
1/700 to 1/2,000 in different ethnic populations investi-
gated [17]. The cause of Tri21 is related to a variety of
factors, such as increased reproductive age in women
(>35 years old), degeneration of ovarian function, and
genetic susceptibility [18,19]. In our study, 136 cases of
Tri21 were detected (31.19%, 136/436), including 89 male
and 47 female (1.89:1, 89/47). Among them, 130 cases
were standard Tri21 (95.59%, 130/136), 5 cases were
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Classification

Chromosome karyotypes

Number of cases Constituent ratio (%)

Abnormality rate (%)

Numerical abnormality 10 35.71 2.29
45,X 7 25.00 1.61
45,X[73]/47 ,XXX[27] 1 3.57 0.23
45,X[78]/47,XXX[22] 1 3.57 0.23
45,X[90]/46,XX[6] 1 3.57 0.23

Structural abnormality 16 57.15 3.67
46,X,i(X)(q10) 5 17.87 1.15
45,X[91]/46,X,i(X)(q10)[9] 1 3.57 0.23
46,X,i(X)(q10)[89]/45,X[11] 1 3.57 0.23
45,X[61]/46,X,i(X)(p11.3)[39] 1 3.57 0.23
46,X,idic(Y)(q11.22)[94]/45,X[6] 1 3.57 0.23
45,X,inv(9)(p11q13)(72]/46,X,dic(Y) 1 3.57 0.23
(q11.23),inv(9)(p11q13)[10]/46,XY,
inv(9)(p11q13)[4]

46,X, idic(Y)(q11.23)[44]/45,X[56] 1 3.57 0.23
45,X[120]/46,X,r(X)(p22.2q22.2)[12]/ 1 3.57 0.23
46,X,rdup(X)(p22.2q22.2)[4]
45,X[80]/46,X,idic(X)(p11.3)[20] 1 3.57 0.23
46,X,idic(X)(p11.2)[92]/45,X[9]/ 1 3.57 0.23
47,X,idic(X)(p11.2),idic(X)(p11.2)[5]
46,X,idic(X)(p11.2)[90]/45,X[10] 1 3.57 0.23
46,X,idic(X;X)(g21.3;q911.1) 1 3.57 0.23
46,XX (male) 2 7.14 0.46
Sex reversal combination 28 100 6.42
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Figure 1: Karyotype of 46,XX, der(21;21)(q10;q10),t(1;12)(q43;p12.1),inv(15)(q13q24). The arrows show abnormal chromosomes.
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Figure 2: Karyotype of 45,X,inv(9)(p11q13)[72]/46,X,dic(Y)(q11.23),inv(9

)(p11q13)[10]/46,XY,inv(9)(p11 q13)[4]. The arrows show abnormal

chromosomes. (a) 45,X,inv(9)(p11q13). (b) 46,X,dic(Y)(q11.23), inv(9)(p11q13). (c) 46,XY,inv(9) (p11ql3).
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Figure 3: Karyotype of 45,X[120]/46,X,r(X)(p22.2q22.2)[12]/46,X,rdup(X)(p22.2922.2)[4]. The arrows show abnormal chromosomes. (a)

45,X. (b) 46,X,r(X)(p22.2q22.2). (c) 46,X,rdup(X)(p22.2q22.2).
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Figure 4: Karyotype of 46,X,idic(X)(p11.2)[92]/45,X[9]/47,X,idic(X)(p11.2),idic(X)(p11.2)[5].

(a) 45,X. (b) 46,X,idic(X)(p11.2). (c) 47,X,idic(X)(p11.2),idic(X)(p11.2).

Robertson translocation Tri21 (3.79%, 5/132), and 1 case
was a chimerical type (0.74%, 1/136), which is con-
sistent with previous studies [20-22]. In 136 cases of
Tri21, about two-thirds of pregnant women did not
receive maternal serum screening for DS, and 16 preg-
nant women’s results of maternal serum screening for
DS were high risk, but they did not receive a prenatal
diagnosis. Therefore, enhancing people’s awareness of

The arrows show abnormal chromosomes.

the importance of prenatal screening and genetic coun-
seling in eugenics may be an important means of redu-
cing birth in children with Tri2l1. In addition, one case
with 46,XX,der(21;21)(q10;q10),t(1;12)(q43;p12.1), inv
(15)(q13g24) (Figure 1), which is a rare complex Tri21
karyotype, was detected. So, this case is especially
helpful to supplement the karyotype diversity of patients
with Tri21.
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Figure 5: Karyotype of 46,XY,der(9)t(7;9)(p15;p22)pat. The arrows show abnormal chromosomes. (a) The karyotype of the patient. (b) The
karyotype of the patient’s father. (c) The karyotype of the patient’s mother.
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Figure 6: Karyotype of 46,XY,del(4)(g33). The arrows show abnormal chromosomes.

SDS and short stature are the two other major clinical
symptoms of 181 children with chromosomal abnormal-
ities. As known, chromosomal abnormalities are one of
the important causes of gonadal dysgenesis and physical
retardation. In this study, 28 cases of sex chromosome
abnormalities were detected, among which 20 cases were
TS, and 5 cases were 46,X,i(X)(q10). The main manifesta-
tions of TS patients were immature uterus or no uterus,
streak ovary or no ovary, primary amenorrhea, breast dys-
plasia, and short stature, and the main clinical symptoms

of the patients with 46,X,i(X)(q10) were short stature and
primary amenorrhea. These results suggested the neces-
sity of two intact X chromosomes in the normal growth
and development of a female. A single X chromosome in
females randomly becomes inactive, but not all genes on
which are transcriptionally silenced. Still, 15-20% of genes
on inactive X chromosome remain operative and escape
from X inactivation [23]. Moreover, normal female devel-
opment is supported by a double dose of several specific
genes on the X chromosome, such as the short stature
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Figure 7: Karyotype of 45,XX,der(15;21)(q10;q10)mat,del(18)(q21). The arrows show abnormal chromosomes. (a) The karyotype of the
patient. (b) The karyotype of the patient’s mother. (c) The karyotype of the patient’s father.

homeobox (SHOX) gene, which is located at the Xp22,
determines the height [24]. So, the haploinsufficiency of
SHOX may be the main cause of short stature in patients.
Dysmorphology and short stature caused by an X chro-
mosome abnormality are more sensitive to estrogen
before 12 years old. So, these kinds of patients need to
receive treatment in the early stage. However, in this
study, the average age of the patient with TS was11.94,
greater than 6.6, which was reported by Massa et al. [25].
Consequently, the growth and development of children
should be highly concerned during the preschool period.
In addition, another three rare complex karyotypes were
detected. One karyotype was 45,X,inv(9)(pl11q13)[72]/46,
X,dic(Y)(q11.23),inv(9)(p11q13)[10]/46,XY,inv(9) (p11q13)[4]
(Figure 2), the other was 45,X[120]/46,X,r(X)(p22.2q22.2)
[12]/46,X, rdup(X)(p22.2q22.2)[4] (Figure 3), and the third
was 46,X,idic(X)(p11.2)[92]/45,X [9]/47,X,idic(X)(p11.2),
idic(X)(p11.2)[5] (Figure 4).

Chromosome monomer or trisomy is one of the imp-
ortant causes of congenital malformation in children.
Monomer 9p is a rare condition accompanied by trigono-
cephaly, facial dysmorphism, and developmental delay
[26,27]. In this study, two cases with monosomy 9p were
described. The karyotype of one patient was 46,XY,der(9)
t(2;9)(p25;p22)mat, which presented with small ears, low
ear position, small jaw, wide breast distance, short chest,
long fingers and toes, inability to extend the second joint
of the middle finger of both hands, special clenched
fist posture (index finger pressed on the middle finger,
little finger pressed on the ring finger) [28]. The karyotype
of another patient was 46,XX,der(9)t(7;9)(p15;p22)pat
(Figure 5). Studies have shown that patients with der
(9)t(7;9) are mostly characterized by developmentally
delayed psychomotor retardation and generalized devel-
opmental deficits (Table 3). In this study, the patient pre-
sents as developmentally delayed and psychomotor
retardation, according to the previous report.

Chromosome 4q deletion syndrome (4g-syndrome)
is a rare condition, with an estimated incidence of 1 in
100,000 and the death rate was about 28% [36,37].
Although the clinical symptoms of patients with 4q-syn-
drome are complex and diverse (Table 4), through statis-
tical analysis of the clinical symptoms of 101 patients,
Strehle et al. found that craniofacial (99%), digital (88%),
skeletal (54%), and cardiac (50%) were the most common
anomalies [37]. Keeling et al. have reported that the cri-
tical region involved in the 4q terminal deletion syn-
drome may be 4q33 [43]. In this study, we reported a
16-month-old boy with 4q33-qter deletion (Figure 6).
The patient presents with cleft palate, micrognathia,
sydney line of the left hand, and developmental delay.
Our results further support the idea that cleft palate-
related genes might be located at 4g33 [43]. In addition,
although most patients with 4q-syndrome have de novo
deletions, familial cases have been reported, suggesting a
high risk of recurrence of 4qg-syndrome [47,48]. So, for
these patients, prenatal diagnosis is necessary.

Deletion of the long arm of chromosome 18 (18q-) is
relatively common among cytogenetic abnormality, which
occurs incidentally in approximately 1 in 40,000 live
births [49]. 18q-syndrome is characterized by a wide range
of phenotypic abnormalities related to the size of the
deletion and the position of breakpoints. The common
clinical features of the 18q-syndrome are growth retar-
dation, mental retardation, microcephaly, facial dys-
morphisms, ear atresia, abnormal bone development,
CHD, cerebral white matter abnormalities, and imma-
ture myelin formation [50-52]. In this study, the patient
with a rare karyotype of 45,XX,der(15;21)(q10;q10)mat,
del(18)(g21) (Figure 7) presented with mental retardation,
unclear diction, facial dysmorphisms, abnormal bone
development, the little finger end bending, poor balance
ability, and unsteady walking. In addition, the patient
also suffered from type I diabetes and Hashimoto’s
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Table 3: Clinical symptoms of the patient with der(9)t(7;9)

Karyotype

Abnormal phenotype

Authors

46, XY, der(9) t(7;9)
(p15;p22) pat

46, XY,t(7;9)(p22;922)mat

46, XY,der(9)t(7;9)
(p21.2;p23.5)
46,XY, der(9),t(7;9)
(931.1;p23)pat
46,XX,der(9)t(7;9)
(p15.3;p24)
46,XX,der(9)t(7;9)
(935;922.2)

46, XX, der(9)t(7;9)
(p15; p24)

46,XX,der(9)t(7;9)
(p15;p22)pat

Seizure, developmentally delayed, delayed myelination, and widened brain
extracellular space

Hypotrophic, full and wavy hair; a prominent forehead (middle facial part);
microcephaly; low-set abnormal ears; hypertelorism; narrow, short eye slits;
antimongoloid eye slant; broad, flat nasal bridge; bulbous nasal tip;
microretrognathia; high palate; macrostomia; short neck; hollow stomach;
short upper and lower extremities; bilateral clinodactyly of second and fifth
fingers; thumbs and first toes are positioned far from other fingers (sandal
gap); hypoplasia of toes nails; single transverse palmar crease; hypoplastic
aortic arch; and hypoplastic lungs

Bilateral choanal atresia, growth delay, marked psychomotor retardation,
hydronephrosis, muscular hypotonia

Generalized mild dysmorphic, heart failure, and hydrocephalus, sex reversal

Psychomotor retardation, upward slant of palpebral fissures, and
dolichomesophalangy

Hypoplasia of the cerebellar vermis, dilated foramen Magendii, and dilatation
of the cisterna magna

Generalized developmental deficits, a high and large forehead, hypertelorism,
and broad nasal bridge, hypothyroidism, obesity, cerebral palsy, severe mental
retardation

Developmental retardation and mental retardation

Zhong et al. [29]

Manvelyan et al. [30]

Back et al. [31]
Crocker et al. [32]
Teebi et al. [33]
von Kaisenberg

et al. [34]
Kozma et al. [35]

Present case

Table 4: Clinical symptoms of the patient with 4gq-syndrome

Karyotype

Abnormal phenotype

Authors

Deletion of the segment

4q22.1-q23
Deletion of segment
4q28.3-g31.23

Deletion of segment
4q31-qter

Deletion of segment
931.2-q35.2
Deletion of segment
4q31.21-31.23
Deletion of segment
4q31.3-qter
Deletion of segment
4q32-q34

Deletion of segment
4q32.3-934.3
Deletion of segment
4q33-qter

Deletion of segment
4q33-qter

Deletion of segment
4q34.2-qter
Deletion of segment
4q34.3-qter

Slight developmental delay, mild dysmorphic features

Growth failure, developmental delay, ventricular septum defect in the subaortic
region, patent foramen ovale and patent ductus arteriosus, vascular malformation of
the lung, dysgenesis of the corpus callosum and craniofacial dysmorphism
Craniofacial dysmorphism, skeletal anomalies, ocular findings, and cardiac defect

Craniofacial hypoplasia of left side of face, ipsilateral ptosis, erythroderma, and
bilateral thumb anomalies

Pseudohypoaldosteronism

Complex CHD

Mild developmental delay; a left ulnar ray defect with absent ulna and associated
metacarpals, carpals, and phalanges; and a right ulnar nerve hypoplasia
Congenital heart defects

Mildly dysmorphic, heart failure, and hypercalcaemia

Cleft palate, micrognathia, sydney palm of left hand, and developmental delay
CHD, submucosal cleft palate, hypernasal speech, learning difficulties, and right fifth

finger anomaly manifestations
Asymptomatic cor triatriatum sinister

Strehle et al. [38]

Duga et al. [39]

Sandal et al. [40]
Kuldeep et al. [41]
Pritchard et al. [42]
Strehle et al. [38]
Keeling et al. [43]
Xu et al. [44]
Strehle et al. [45]
Present case

Tsai et al. [46]

Marci et al. [47]
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thyroiditis, which were rarely reported. Therefore, this
case is especially helpful in supplementing the pheno-
typic diversity of patients with 18q.

5 Conclusion

Chromosome abnormality is one of the important causes
of dysplasia in children, and prenatal screening and
diagnosis could play a great significance in preventing
dysplasia in children. In addition, the retrospective ana-
lysis of the rare case is valuable for clinical diagnosis and
risk assessment of recurrence.
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