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Abstract: As there are increased levels and activity of butyrylcholiesterase (BChE) in the late stage of
Alzheimer’s disease (AD), development of selective BChE inhibitors is of vital importance. In this
study, a workflow combining computational technologies and biological assays were implemented to
identify selective BChE inhibitors with new chemical scaffolds. In particular, a pharmacophore model
served as a 3D search query to screen three compound collections containing 3.0 million compounds.
Molecular docking and cluster analysis were performed to increase the efficiency and accuracy of
virtual screening. Finally, 15 compounds were retained for biological investigation. Results revealed
that compounds 8 and 18 could potently and highly selectively inhibit BChE activities (IC50 values <

10 µM on human BChE, selectivity index BChE > 30). These active compounds with novel scaffolds
provided us with a good starting point to further design potent and selective BChE inhibitors, which
may be beneficial for the treatment of AD.

Keywords: Alzheimer’s disease; selective butyrylcholiesterase inhibitors; virtual screening;
pharmacophore model; acetylcholinesterase; in vitro enzyme assays

1. Introduction

Alzheimer’s disease (AD), an age-related and progressive neurodegenerative disorder featuring
memory loss and cognitive impairments, is the most common type of dementia among older adults [1].
It affects more than 30 million patients worldwide at present, and the prevalence of AD continues to
increase due to population aging [2,3]. Additionally, the current cost of dementia is about a trillion US
dollars a year, and this figure will rise to 2 trillion US dollars by 2030 [4]. Thus, AD has become one of
the greatest public health issues worldwide and it severely impacts patients and their families [5].

So far, the pathogenesis of AD still remains unclear, while multiple hypotheses, such as the
amyloid-β oligomer hypothesis, the cholinergic hypothesis, and the tau hypothesis, have been offered
to explain the mechanism of AD development and set the stage for new therapeutic approaches against
AD [6–8]. Over the past decade, several anti-AD drugs (tacrine, donepezil, and rivastigmine et al.)
targeting the cholinergic dysfunction have been clinically employed for the treatment of AD based
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on the cholinergic hypothesis, according to which the decline of hippocampal and cortical levels of
acetylcholine (ACh) contributes substantially to cognitive decline [9–12]. In addition, several lines of
evidence also indicated that both cholinesterases (ChEs), named as acetylcholinesterase (AChE) and
butyrylcholinesterase (BChE), play an important role in amyloid-β (Aβ) aggregation during the senile
plaque formation and using the inhibitors can decrease senile plaques [13]. Over the past decade,
AChE inhibitors have been investigated extensively as anti-AD agents. However, the therapeutic effect
of AChE inhibitors is limited, while side effects like nausea and vomiting induced by undesirable
inhibition of peripheral ChEs also hinder the long-term application in clinical trials [14,15]. Recently,
increasing evidence have indicated that BChE plays a pivotal role in regulating brain ACh level in
the late stage of AD. In progressed AD, the AChE level in the brain decreases to 55%–67% of normal
values while BChE increases to 165% of normal levels [16,17]. Moreover, AChE knockout mice models
indicated that BChE can potentially substitute for AChE, maintaining normal cholinergic pathways in
AChE nullizygous animals [18]. In addition, BChE inhibition is not accompanied by the peripheral
adverse effects [19]. Therefore, development of highly potent and selective BChE inhibitors that are able
to restore Ach levels in the brain, with much reduced peripheral side effects, represents a significant
advancement [20].

Up to now, only a limited number of highly selective and potent BChE inhibitors have
been reported, as the two isoforms human AChE (hAChE) and human BChE (hBChE) are highly
homologous proteins [21] (Figure 1). Stanislav Gobec et al. reported a series of sulfonamide
BChE inhibitors in 2016. Among them, compound 1 showed highly selective and nanomolar
inhibitory activity against hBChE [22]. Further modification of compound 1 led to the generation
of naphthamide compound 2 with slightly improved potency [23]. Additionally, 6-substituted
3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one (THAI) compound 3 and 2-thiophenyl compound
4 were also highly potent and selective hBChE inhibitors [24,25]. Since BChE-targeting inhibition
represents a promising therapeutic approach against AD, the discovery of potent and selective
BChE inhibitors is urgent. Over the past decade, multiple X-ray crystallographic structures of
complexes between hBChE proteins and hBChE inhibitors with various scaffolds have been determined,
which sets the stage for virtual screening [26–28]. There are already several reports of using a
structure-based virtual screening protocol and successfully obtained potent and highly selective hBChE
inhibitors [16,29,30]. After identifying drug hits with novel scaffolds and desired properties by virtual
screening, further studies like structure–activity relationship (SAR) studies based on enzyme or cell
bioassay and crystallographic study could provide more useful information for structural modification
and improvement [31–33].

Recently, Sun et al. reported a valid structure-based pharmacophore model which led to the
discovery of three compounds displaying IC50 values < 2 µM on hBChE [34]. Considering the
effectiveness of the pharmacophore model, further structure-based pharmacophore virtual screening
(SBP VS) of three commercial compound collections (ChemBridge, ChEMBL, Vitas-M) was reported in
this paper. The employed screening workflow was depicted in Figure 2. With the integration of docking
and diversity analysis, 25 compounds were selected and 15 of them were purchased for bioassays.
Finally, two compounds with different scaffolds were identified as selective hBChE inhibitors. The
new emerging molecules with different scaffolds not only enriched the structural types of selective
BChE inhibitors, but also may provide valuable starting structures for medicinal chemists to develop
anti-AD drugs.
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5DYW) [22]. Specifically, the model consists of two hydrogen bond acceptor points, two 

hydrophobic points, one aromatic ring point, and one positive ionizable point (Figure 3). In this 

paper, it was used for virtual screening of three commercial compound collections: Vitas-M 

(1315684), ChEMBL (918887), ChemBridge (777451). We retained 18,498 compounds whose 

pharmacophore fit value above 3, after the first filtration step. Next, 1502 compounds with 

favorable physicochemical properties were identified by using drug-like descriptors of Lipinski and 

Veber rules [35]. In order to reduce the amount of compounds to handle prior to biological 

experiments, two complementary methods including docking and structural clustering were 

utilized. On one hand, the CDOCKER module of Discovery Studio 3.0 (DS) was applied to predict 

the binding modes of all selected virtual hits with BChE active site (PDB ID: 5DYW) to check their 

interactions with BChE binding site residues [36]. The docked compounds were ranked by the 

corresponding values of –CDOCKER energy. Careful visual inspection was performed, and the 

following interactions were considered significant: π–π interaction between the molecule and 
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Figure 2. An overview of the structure-based pharmacophore virtual screening (SBP VS) protocol
applied to identify selective butyrylcholinesterase (BChE) inhibitors.

2. Results and Discussion

2.1. Virtual Screening

The construction and validation of the 3D pharmacophore model was reported in the previous
paper [34]. Generally, the six-feature model was generated on the basis of 1-BChE complex (PDB ID:
5DYW) [22]. Specifically, the model consists of two hydrogen bond acceptor points, two hydrophobic
points, one aromatic ring point, and one positive ionizable point (Figure 3). In this paper, it was
used for virtual screening of three commercial compound collections: Vitas-M (1315684), ChEMBL
(918887), ChemBridge (777451). We retained 18,498 compounds whose pharmacophore fit value above
3, after the first filtration step. Next, 1502 compounds with favorable physicochemical properties
were identified by using drug-like descriptors of Lipinski and Veber rules [35]. In order to reduce
the amount of compounds to handle prior to biological experiments, two complementary methods
including docking and structural clustering were utilized. On one hand, the CDOCKER module of
Discovery Studio 3.0 (DS) was applied to predict the binding modes of all selected virtual hits with
BChE active site (PDB ID: 5DYW) to check their interactions with BChE binding site residues [36]. The
docked compounds were ranked by the corresponding values of –CDOCKER energy. Careful visual
inspection was performed, and the following interactions were considered significant: π–π interaction
between the molecule and Trp231, Trp82, and Phe329, H-bonding interaction of the molecule with
His438, and occupancy of the molecule in the acyl pocket. A set of 100 compounds were saved. On
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the other hand, the above-mentioned 1502 compounds were subjected to structural clustering. Ten
clusters were produced based on the FCFP_6 fingerprints using the Cluster Ligand module of DS and
twenty compounds with diverse scaffolds in each cluster were chosen. In consideration of the binding
mode and structural diversity, 25 candidates were selected and 15 commercially available candidates
(Figure 4) were purchased from Topscience (www.tsbiochem.com) for biological investigation.
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2.2. ChEs Inhibitory Activities of Hit Compounds

Initial screening of the 15 potential inhibitors obtained from in silico studies was performed
with human ChEs using a modified Ellman’s assay, and tacrine was used as the reference control
(Table 1). The result indicated that compounds 8 and 19 exhibited over 50.0% inhibitory effects on both
AChE and BChE at the concentration of 10 µM. Interestingly, compound 18 exhibited selective BChE
inhibitory effect (BChE = 58.4% at 10 µM, AChE = 11.1% at 10 µM). Next, the dose-dependent inhibitory
activities of compounds 8, 18, and 19 against BChE and AChE were tested at doses ranging from
10−4 to 10−9 M, and their IC50 values were calculated (Figure S1). The result demonstrated that three
compounds showed great anti-BChE activities (BChE IC50 < 10 µM). Additionally, compounds 8 and
18 showed much better BChE selective index (SI BChE, AChE IC50/BChE IC50 > 30) than compound 19
(SI BChE = 6). To the best of our knowledge, compounds 8 and 18 were structurally different from the
previously reported selective BChE inhibitors, and were used in the follow-up studies.

Table 1. The inhibitory activities against cholinesterases (ChEs) of the hits from virtual screening.

Compound
BChE AChE

IR a (%) IC50
b (µM) IR c (%) IC50 (µM)

5 7.2 ± 0.6 nd. d −0.31 ± 0.5 nd.
6 8.5 ± 0.3 nd. −1.5 ± 0.5 nd.
7 16.3 ± 1.1 nd. 0.6 ± 0.6 nd.
8 68.6 ± 0.7 1.1 ± 0.6 58.5 ± 1.2 43.2 ± 17.6
9 15.5 ± 1.6 nd. 16.0 ± 1.5 nd.
10 9.9 ± 1.0 nd. 7.8 ± 0.7 nd.
11 14.8 ± 1.3 nd. −0.7 ± 0.7 nd.
12 −1.8 ± 1.1 nd. 1.1 ± 1.0 nd.
13 20.1 ± 1.2 nd. 11.3 ± 1.3 nd.
14 3.4 ± 0.4 nd. 10.9 ± 0.8 nd.
15 −0.6 ± 0.5 nd. 0.6 ± 1.0 nd.
16 26.4 ± 1.1 nd. 38.7 ± 1.7 nd.
17 11.8 ± 1.2 nd. 2.9 ± 0.5 nd.
18 58.4 ± 0.9 6.3 ± 2.0 11.1 ± 1.5 nd.
19

Tacrine
61.2 ± 1.8

100
2.4 ± 1.0

0.003 ± 0.004
53.2 ± 0.6
95.2 ± 0.3

13.8 ± 6.0
0.01 ± 0.003

All data are shown as mean ± SEM of three experiments. SEM = standard error of mean. a Inhibition ratio (IR)
against AChE at 10 µM. b IC50 values represent the concentration of inhibitor required to decrease enzyme activity
by 50%. c Inhibition ratio (IR) against BChE at 10 µM. d nd = not determined.

2.3. Kinetic Studies

As compounds 8 and 18 showed selective BChE inhibitory activity, they were selected to perform
enzymatic kinetic studies with BChE in order to gain information about the mode of inhibition and
binding. As shown in Figure 5, the patterns clearly indicate both compounds are mixed-type inhibitors:
The presence of compounds 8 and 18 reduce the maximum velocity Vm, and increase the Km value.
This means that compounds 8 and 18 can bind to the free enzyme, and to the Michaelis complex of the
enzyme and substrate. The inhibition constant Ki values of 8 and 18 are shown in Table 2.
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Figure 5. Representative plot of BChE activity and the effect of substrate concentration (90–904 µM) in
the absence of inhibitor and in the presence of 8 and 18 (0.5–2 µM). (A) Substrate-velocity curves of
BChE inhibition by compound 8; (B) Substrate-velocity curves of BChE inhibition by compound 18.

Table 2. The inhibition constants for the inhibition of BChE by compounds 8 and 18.

Compound Kic a Kiu b

8 0.88 ± 0.07 µM 3.61 ± 0.24 µM
18 0.93 ± 0.13 µM 2.31 ± 0.32 µM

All data are shown as mean ± SEM of three experiments. a Kic is the inhibition constant for the competitive part of
inhibition. b Kiu is the inhibition constant for the uncompetitive part of inhibition.

2.4. Docking Simulation of Hit Compounds

To verify the binding mode of hit compounds 8 and 18 to BChE, we carried out a docking
simulation using CDOCKER module in DS 3.0 and the docking results are shown in Figure 6.Molecules 2019, 24, x FOR PEER REVIEW 7 of 15 
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Figure 6. Binding mode predictions for compound 8 (A) and 18 (B) with BChE domain (PDB ID:
5DYW). Compounds were shown in green stick mode; key residues were shown in yellow stick mode;
the solvent accessible surface (SAS) of proteins contoured by white.

For 8 (Figure 6A), the phenyl group occupies the acyl binding pocket (mainly formed by Trp231,
Leu286, and Val288) and interacts with Trp231 via π–π T-shaped interaction. In addition, the positively
charged nitrogen of piperidine moiety forms a salt bridge with Asp70 in the peripheral anionic site
(PAS) and π–cation interaction with Tyr332, respectively. Basic or permanently charged nitrogens
are proposed as important for cation–π interactions with active site residues of ChE and blood-brain
barrier (BBB) permeability, and common amidst ChE inhibitors [37–40]. The 2-methoxybenzyl group
fits into the choline binding pocket (mainly formed by Tyr332 and Trp82), which further enhances the
binding affinity. Furthermore, the -(CH2)2-N(Me)2 side chain points out of the gorge and stabilizes the
U-shaped conformation.

For 18 (Figure 6B), although the structure is obviously different from 8, the binding pattern of 18
with BChE, including the orientation of the binding pose and the key residue for the intermolecular
interaction, is similar to that of 8 with BChE. However, the inhibitory activity of 18 towards BChE
is lower than 8, this could be explained by the following reasons: (1) The protonation ability of the
secondary amine is lower than the tertiary amine; and (2) the 4-substituted benzyl ring of 18 is not
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completely inserted into acyl binding site, therefore, it is unable to interact with Trp231, which plays
an important role in BChE–ligand interaction [41].

2.5. Molecular Dynamics

To further understand the binding modes of 8 and 18 with BChE, we explored the interactions
between BChE and compounds by carrying out 100 ns molecular dynamics (MD) simulations for the
complexes of 8-BChE and 18-BChE. Stable MD simulations trajectories were utilized for data extraction
and binding free energy calculation. Time dependencies of root-mean-squared deviation (RMSD) values
for the backbone atoms of proteins and compounds during the MD simulation were provided in Figure
S2. The total free binding energies were calculated using the molecular mechanics/Poisson–Boltzmann
surface area (MM-PBSA) method. As shown in Table 3, the total binding free energy was −42.90 ±
9.39 and −48.23 ± 6.08 kcal/mol for the complexes of BChE-8 and BChE-18, respectively. The result
indicated that the binding of the two compounds with BChE was energetically stable. It is noteworthy
that the electrostatic energy (EEL) played a greater role in the binding of the two compounds with
BChE than the hydrophobic contacts (van der Waals energy (VDWAALS)).

Table 3. Predicted binding free energies (kcal/mol) for bindings of 8 or 18 with BChE by the molecular
mechanics/Poisson–Boltzmann surface area (MM-PBSA) method.

Energy Terms (kcal/mol) 8 18

VDWAALS a
−43.3 ± 5.8 −52.2 ± 3.5

EEL b −51.3 ± 16.8 −142 ± 24.0
EGB c 57.6 ± 15.0 153 ± 21.3

ESURF d −5.9 ± 1.0 −7.1 ± 0.7
DELTA G gas e

−94.6 ± 19.1 −195 ± 24.6
DELTA G solv f 51.7 ± 14.2 146 ± 20.8

DELTA TOTAL g
−42.9 ± 9.4 −48.2 ± 6.1

a van der Waals energy. b Electrostatic energy. c Polar solvation energy. d Non-polar solvation energy. e Total gas
phase free energy. f Total solvation free energy. g Total binding free energy.

The contribution of potential hot residues for the binding of 8 and 18 was evaluated with the
MM-PBSA method (Figure 7). Meanwhile, energy decomposition of potential hot residues was
performed to evaluate which interaction was the dominating factor for the binding free energy
(Figure 7). Usually, a residue is supposed to be vital for interaction of proteins with ligands if the
interaction energy with ligand is lower than −1 kcal/mol [42]. For 8, none of the determined residues
(Asp70, Trp82, Trp231, and Phe329) are the key residue for the binding of 8 with BChE. This result could
be explained by the significant conformational change of 8 during MD process, which might be related
with the presence of retained water molecules (Figure S2). For 18, Trp82 (−3.30 ± 0.35 kcal/mol), Gly116
(−1.15 ± 0.66 kcal/mol) and Phe329 (−2.61 ± 0.53 kcal/mol) were considered as important residues for
binding of 18 with BChE.

The evolution of interatomic distances between functional groups of ligands and the
above-mentioned key amino acid residues during MD was also performed to obtain more detailed
information. As shown in Figure 8A, the distances between the functional groups of 8 and four
monitored amino acid residues in the binding pocket: the piperidine ring-Asp70, the benzene
ring-Trp82, the benzene ring-His231, and the benzene ring–Phe329, seemed to be changing greatly
during the MD simulation, showing that these interactions are relatively unstable. In contrast, the
distances between the benzene ring of 18 and important amino acid residues (Phe329 and Gly116)
basically maintained the same during the MD simulation. However, the distances between compound
18 and two amino acid residues, Asp70 and Trp332, change greatly. This might explain why Asp70
and Trp332 played a minor role in the binding of 18 with BChE. All these MD results provide detailed
information on the interactions between the hits and BChE.
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Figure 8. The evolution of interatomic distances between chemical functions of the ligands and key
amino acid residues in the binding pocket during molecular dynamics (MD). (A) The evolution of
interatomic distances between chemical functions of 8 and key amino acid residues during MD. Asp70
represented the distance between N atom of the piperidine ring and Asp70; Trp82 represented the
distance between the methoxy-substituted benzene ring and Trp82; Trp231 represented the distance
between the unsubstituted benzene ring and Trp231; (B) The evolution of interatomic distances between
chemical functions of 18 and key amino acid residues during MD. Asp70 represented the distance
between N atom of the secondary amine group and Asp70; Gly116 represented the distance between
the methoxy-substituted benzene ring and Gly116; Phe329 represented the distance between the
methoxy-substituted benzene ring and Phe329; Tyr332 represented the distance between N atom of the
secondary amine group and Tyr332.

2.6. Cell Viability Assay

The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium (MTT) assay was used to evaluate
potential cytotoxic effects of hit compounds 8 and 18 on neuroblastoma cell line SH-SY5Y [43]. As
indicated in Figure 9, none of compounds was observed to affect cell viability at concentrations of
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10 µM and 50 µM. The result indicated that 8 and 18 have preliminary safety on neuroblastoma cell
line SH-SY5Y.

Molecules 2019, 24, x FOR PEER REVIEW 9 of 15 

 

Asp70 represented the distance between N atom of the piperidine ring and Asp70; Trp82 represented 

the distance between the methoxy-substituted benzene ring and Trp82; Trp231 represented the 

distance between the unsubstituted benzene ring and Trp231; (B) The evolution of interatomic 

distances between chemical functions of 18 and key amino acid residues during MD. Asp70 

represented the distance between N atom of the secondary amine group and Asp70; Gly116 

represented the distance between the methoxy-substituted benzene ring and Gly116; Phe329 

represented the distance between the methoxy-substituted benzene ring and Phe329; Tyr332 

represented the distance between N atom of the secondary amine group and Tyr332. 

2.6. Cell Viability Assay 

The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium (MTT) assay was used to evaluate 

potential cytotoxic effects of hit compounds 8 and 18 on neuroblastoma cell line SH-SY5Y [43]. As 

indicated in Figure 9, none of compounds was observed to affect cell viability at concentrations of 

10 μM and 50 μM. The result indicated that 8 and 18 have preliminary safety on neuroblastoma cell 

line SH-SY5Y. 

 

Figure 9. The cytotoxicity of hit compounds on SH-SY5Y cells. 

2.7. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) in Silico Prediction 

As shown in Table 4, compounds 8 and 18 appeared to have very poor solubility in aqueous 

media which have already been observed during bioassays. Both compounds were predicted to 

possess good absorption properties, which means both compounds could successfully enter the 

blood circulation from the site of administration. Additionally, compounds 8 and 18 were predicted 

to have high and medium blood–brain barrier (BBB) penetration, respectively, which is vital for AD 

treatment. The polar surface area (PSA-2D) of both compounds was less than 80. Notably, 8 may 

bind to CYP2D6, which would affect the efficacy of 8 and result in potential side effects. All 

compounds may be highly bound to plasma proteins. In this prediction, both compounds were 

negative in hepatotoxicity. In brief, further biological experiments are required to provide 

additional data. 

Table 4. Predicted pharmacokinetic properties of hits. 

Comp. 
AlogP98 

a 
PSA-2D b 

Solubilit

y 

Level c 

Absorptio

n 

Level d 

BBB 

Level 
e 

PPB f 
CYP2D6 

g 

Hepatotoxi

c h 

8 3.53 53.589 3 0 1 true true false 

18 3.514 63.209 3 0 2 true false false 

a AlogP98: Lipophilicity descriptor. b PSA-2D: Polar surface area. c Solubility Level: (0, good; 1, 

moderate; 2, poor; 3, very poor). d Absorption Level: (0, good; 1, moderate; 2, poor; 3, very poor). e 

blood–brain barrier (BBB) Level: (0, very high blood–brain barrier penetration; 1, high; 2, medium; 3, 

low). f PPB Prediction: PPB refers to plasma protein binding. The classification describing whether a 

compound is highly bound (> = 90% bound) to plasma proteins using the cutoff Bayesian score of 

−2.209 (obtained by minimizing the total number of false positives and false negatives). g CYP2D6 

Prediction: The classification describing whether a compound is a cytochrome P450 2D6 (CYP2D6) 

Figure 9. The cytotoxicity of hit compounds on SH-SY5Y cells.

2.7. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) in Silico Prediction

As shown in Table 4, compounds 8 and 18 appeared to have very poor solubility in aqueous media
which have already been observed during bioassays. Both compounds were predicted to possess good
absorption properties, which means both compounds could successfully enter the blood circulation
from the site of administration. Additionally, compounds 8 and 18 were predicted to have high and
medium blood–brain barrier (BBB) penetration, respectively, which is vital for AD treatment. The
polar surface area (PSA-2D) of both compounds was less than 80. Notably, 8 may bind to CYP2D6,
which would affect the efficacy of 8 and result in potential side effects. All compounds may be highly
bound to plasma proteins. In this prediction, both compounds were negative in hepatotoxicity. In brief,
further biological experiments are required to provide additional data.

Table 4. Predicted pharmacokinetic properties of hits.

Comp. AlogP98 a PSA-2D b Solubility
Level c

Absorption
Level d

BBB
Level e PPB f CYP2D6

g
Hepatotoxic

h

8 3.53 53.589 3 0 1 true true false
18 3.514 63.209 3 0 2 true false false

a AlogP98: Lipophilicity descriptor. b PSA-2D: Polar surface area. c Solubility Level: (0, good; 1, moderate; 2, poor;
3, very poor). d Absorption Level: (0, good; 1, moderate; 2, poor; 3, very poor). e blood–brain barrier (BBB) Level:
(0, very high blood–brain barrier penetration; 1, high; 2, medium; 3, low). f PPB Prediction: PPB refers to plasma
protein binding. The classification describing whether a compound is highly bound (>= 90% bound) to plasma
proteins using the cutoff Bayesian score of −2.209 (obtained by minimizing the total number of false positives and
false negatives). g CYP2D6 Prediction: The classification describing whether a compound is a cytochrome P450
2D6 (CYP2D6) inhibitor using the cutoff Bayesian score of 0.161 (obtained by minimizing the total number of false
positives and false negatives). h Hepatotoxic Prediction: The classification describing whether a compound is
hepatotoxic using the cutoff Bayesian score of −4.154 (obtained by minimizing the total number of false positives
and false negatives).

3. Materials and Methods

3.1. Virtual Screening

The validated pharmacophore model, consisting of two hydrogen bond acceptor points, two
hydrophobic points, one aromatic ring point, and one positive ionizable point, was used to screen
three commercial databases using Accelrys Discovery Studio 3.0 (DS, Accelrys, Inc. San Diego, CA,
USA). Virtual screening was performed based on the query fit. The drug-likeness of compounds was
assessed using the DS 3.0 Filters ligands using Lipinski and Veber Rule protocol. Docking simulation
was performed with the CDOCKER module implemented in DS, using the same protein applied for
pharmacophore generation. A site sphere (in 10 Å radius) around the native compound was defined
as the binding site. Other parameters were set as the defaults. The Cluster Ligand Module was
used to cluster compounds. The number of cluster was set as 10 and the predefined set was FCFP_6.
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Other parameters were maintained as the defaults. Finally, 15 hits were purchased from Topscience
(www.tsbiochem.com), with purity >95% (liquid chromatography-mass spectrometry, LC-MS).

3.2. Biological Evaluation

Modified Ellman’s assay was performed to measure the inhibitory effects of purchased compounds
on ChEs using a Thermo Fisher Scientific spectrophotometer [44]. AChE (from human erythrocytes,
C0663), BChE (from human serum, B4186), 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB, D218200),
acetylthiocholine iodide (ATC, A5751), and butyrylthiocholine iodide (BTC, B3253) were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

Each compound was dissolved in DMSO and prepared a dilution series of six different
concentrations (10−4 to 10−9 M) that the DMSO concentrations lower than 1%. For measurement, a
cuvette containing 30 µL of phosphate buffer, 10 µL of AChE (2.5 units/mL) or BChE (2.5 units/mL),
and 10 µL of the test compound solution was allowed to stand for 5 min before 10 µL of DTNB was
added. After the addition of 20 µL of ATC or BTC, the reaction was initiated and the solution was
mixed immediately. Two minutes after substrate addition, the absorption was measured at 412 nm
by Thermo Fisher Scientific spectrophotometer (multiskan FC, USA). 10 µL of phosphate-buffered
solution replaced the enzyme solution were used to determine the blank value. All the measurements
were done in triplicate. The inhibition curve was drawn by plotting the percentage enzyme activity
(100% for the reference) versus the logarithm of the test compound concentration. The IC50 values
were calculated by GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA), and the data were
shown as mean ± standard error of mean (SEM).

3.3. Kinetic Study

Kinetic studies were performed in the same manner as the determination of ChE inhibition as
previously described [45]. The substrate (BTC) was used at various concentrations (90, 150, 226, 452,
and 904 µM) for each test compound concentration and the enzymatic reaction was extended to four
minutes before determining the absorption. The Vmax and Km values of the Michaelis–Menten kinetics
were calculated by nonlinear regression from substrate–velocity curves using Graphpad Prism 6
(GraphPad Software, San Diego, CA, USA) (Table S1). Inhibition constants were evaluated from the
effect of substrate concentration (S) on the degree of inhibition according to equation:

V0 = Vmax[S]/(Km(1 + [I]/Kic) + [S] (1 + [I]/Kiu)) (1)

where S is the substrate BTC, I is the inhibitor, Kic is the enzyme–inhibitor inhibition constant of a
complex formed at the catalytic site, Kiu is the Michaelis complex–inhibitor inhibition constant of a
complex formed at the peripheral site, Km is the Michaelis complex, and Vm is maximal velocity.

3.4. Binding Mode Prediction

The molecular docking procedure to study the binding mode of compounds 8 and 18 against
BChE was performed according to our previously reported protocol [36]. The co-crystal structure of
N-((1-benzylpiperidin-3-yl)methyl)-N-(2-methoxyethyl)naphthalene-2-sulfonamide–BChE (PDB ID:
5DYW) was used here.

3.5. Molecular Dynamics

MD simulations were performed using the Particle Mesh Ewald Molecular Dynamics (PMEMD)
module in AMBER 16 accelerated by GPU system consisting of the NVIDIA CUDA processor [46].
Five structural water molecules (PDB ID: 5DYW, Chain B: HOH806, HOH765, HOH749, HOH761,
and HOH715) were conserved during the preparation of the protein model for molecular docking
(Figure S3). The other steps were the same as usual. Briefly, the 10 top ranked binding poses were
retained after molecular docking. The structure, from which its ligand had interactions with known

www.tsbiochem.com
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crucial amino acids like Trp82, Trp231, and Phe329 et al., was selected for the next MD simulation. The
proteins were assigned with the AMBER ff99SB force field, while the ligands were treated with the
ANTECHAMBER module and the general AMBER force field [47,48]. All hydrogen atoms of proteins
and ligands were added using the reduce module. The systems were solvated in a TIP3P water box in
a 9 Å hexahedron. Sodium ions were added to neutralize the systems. Each system was subjected
to 1000 steps of steepest-descent energy minimization followed by 1000 steps of conjugate gradient
minimization with the purpose of remove possible steric stresses. Both systems were gradually heated
from 0 to 300 K using a Langevin thermostat during the initial 60 ps and weak restraints 10 kcal/mol
on the protein backbone atoms over 1 ns. Finally, a dynamics simulation of 20 ns NPT ensemble
was set at 1 atm and 300 K. After MD simulation, the trajectory was stored every 1 ps for CPPTRAJ
analysis [49]. Binding free energies and energy decomposition was determined by using the MM-PBSA
method in the AMBER 16 [50]. The distance between chemical functions and residues were monitored
within CPPTRAJ module. The chemical group was defined as centroid of multiple atoms. Specifically,
the phenyl group was defined using the center of its six carbon atoms. The results were shown
in XMGRACE.

3.6. Cell Viability Assay

The human neuroblastoma SH-SY5Y cells (3 × 103, DMEM medium supplemented with 10%
fetal bovine serum, volume 0.1 mL) were placed in a 96-well flat-bottomed plate, in a humidified
atmosphere of 95% air and 5% CO2 at 37 ◦C and grown to 80% confluence. Before cell treatment, the
complete medium was replaced with reduced-serum medium (BI, 01-052-1ACS) [43]. Then, cells were
treated with various concentrations of compounds for 24 h. MTT reagent (D&B, Q108115) (0.5 mg/mL)
was added to the wells and the plates were incubated for 4 h at 37 ◦C. Supernatants were carefully
removed, and 150 µL of dimethylsulfoxide (DMSO) were added into each well. The absorbance was
measured at 570 nm using the spectrophotometer (Thermo, multiskan FC, USA). Cells were treated in
quadruplicate. The values are the mean ± SD of three independent experiments.

3.7. ADMET in Silico Prediction

The ADMET properties (absorption, distribution, metabolism, excretion, and toxicity) and
physicochemical properties of compounds 8 and 18 were calculated within ADMET software and
Calculate Molecular Properties in Discovery Studio 3.0.

4. Conclusions

Considering the effectiveness of the pharmacophore model built by Sun et al. in the previous study,
further pharmacophore-based virtual screening of three commercial compound collections containing
3.0 million compounds was reported in this paper to identify new BChE inhibitors [34]. Molecules
passed pharmacophore filters and drug-like filters were further studied by using two complementary
methods including docking and cluster to select potential hit compounds for biological evaluation.
Satisfyingly, in vitro enzyme inhibition tests confirmed that compounds 8 and 18 could potently and
highly selectively inhibit BChE activities (BChE IC50 < 10 µM and SI BChE > 30). In addition, the result
of cell viability assay indicated that compounds 8 and 18 have preliminary safety on neuroblastoma
cell line SH-SY5Y at concentrations of 10 µM and 50 µM. Furthermore, MD simulation, docking
studies, and kinetic studies were performed to analyze the detailed binding modes of representative
compounds 8 and 18 with BChE. The results indicated a mixed-type inhibition of the two compounds
towards BChE. These active compounds with novel scaffolds provided us with a good starting point to
further design potent and selective BChE inhibitors, which may benefit the treatment of AD.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/23/4217/s1,
Figure S1. The primary human ChEs IR (%) screening of hit compounds under 10µM (A and B); The dose-dependent
inhibition of hits against human BChE (C) and human AChE (D), respectively. Figure S2: Time dependencies
of RMSDs for the heavy atoms (Cα, C, and N) of proteins and ligands. Figure S3. Schematic representation
of interaction between ligands (compounds 8 and 18) and BChE before the MD simulation. Figure S4. The
binding modes of ligands (compounds 8 and 18) with BChE (PDB ID: 5DYW). Protein models were taken from
the last frame of the MD simulation. Table S1. The apparent Vmax and Km values for compounds 8 and 18 in
kinetic studies.
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