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ABSTRACT

The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human 
health, economy, and social life worldwide. As a counteraction for this devastating disease, 
a number of vaccines are being developed with unprecedented speed combined with new 
technologies. As COVID-19 vaccines are being developed in the absence of a licensed human 
coronavirus vaccine, there remain further questions regarding the long-term efficacy and 
safety of the vaccines, as well as immunological mechanisms in depth. This review article 
discusses the current status of COVID-19 vaccine development, mainly focusing on antigen 
design, clinical trials in later stages, and immunological considerations for further study.

Keywords: COVID-19; Vaccines; Prefusion-stabilized; VAERD;  
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INTRODUCTION

Since its first reported case in winter 2019, coronavirus disease 2019 (COVID-19) has been 
spreading at an alarming rate worldwide. As of February 16, 2021, more than 100 million 
confirmed cases and 2.4 million deaths were reported worldwide. In addition to health 
problems, COVID-19 poses a significant threat to the global economy and social life. 
Although there has been no licensed human coronavirus (HCoV) vaccine to date, numerous 
vaccine candidates for pathogenic human viruses have been investigated in animal models 
as well as in clinical trials, including the vaccines against respiratory syncytial virus (RSV), 
influenza virus, HIV and Ebola virus. Information and new technologies accumulated from 
these previous studies have been accelerating the development of current COVID-19 vaccines. 
As of December 2020, 61 and 172 candidates based on diverse vaccine platform technologies 
are being tested in clinical and preclinical stages, respectively (1).
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SEVERE ACUTE RESPIRATORY SYNDROME 
CORONAVIRUS 2 (SARS-CoV-2)
SARS-CoV-2, a causative agent of COVID-19, is a single-stranded positive-sense RNA virus 
belonging to the genus Betacoronavirus. The genome is composed of replicase genes encoded 
within the 5' end and structural protein genes in the 3' end. The structural proteins include 
spike (S), membrane (M), and envelope (E) proteins that are displayed on the envelop of 
SARS-CoV-2 virion, and the nucleocapsid (N) protein that form a helical ribonucleocapsid 
structure by binding to genomic RNA inside the virion. The S protein protrudes on the viral 
surfaces, forming trimeric structures (Fig. 1) (2).

SPIKE: A MAJOR TARGET ANTIGEN FOR COVID-19 
VACCINES
SARS-CoV-2 gains entry into target cells by binding its S to angiotensin-converting enzyme 
2 (ACE2) on host cells (3,4). ACE2 is expressed in various human organs including oral and 
nasal epithelium, nasopharynx, lung, small intestine, kidney, spleen, liver, colon and brain 
(5). SARS-CoV-2 primarily infects respiratory airway, despite its relatively low levels of ACE2 
expression compared to other organs. Since SARS-CoV-2 enters target cells through the 
interaction between S and ACE2, S is considered as a primary target antigen for COVID-19 
vaccine development.

The S protein is composed of a S1 domain containing the N-terminal domain and receptor 
binding domain (RBD), and a S2 domain containing a fusion peptide (FP) and the 
transmembrane and cytoplasmic domains (4) (Fig. 2). Various forms of S protein, including 
full-length, ectodomain, S1, and RBD, have been investigated as target antigens, as shown 
in the SARS and Middle East respiratory syndrome (MERS) vaccine studies (2). Full-length S 
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Figure 1. Genome structure of SARS-CoV-2 and the general classification of the vaccine platforms platforms. 
Modified from Lee et al. (2). 
ORF, open-reading frame; S, spike; E, envelope; M, membrane; N, Nucleocapsid.



is one of the most frequently used antigens in COVID-19 vaccine development, especially for 
gene-based vaccines. The final candidates for mRNA vaccines of Moderna/National Institutes 
of Health (6) and Pfizer/BioNTech (7), a DNA vaccine of Inovio (8), and adenoviral-vectored 
vaccines of AstraZeneca/Oxford University (9), Janssen (10) and Gamaleya Research Institute 
(11) contain full-length S as an antigenic component. In these vaccines, the S protein is 
expressed in a M-bound form on the surface of transfected or infected cells. It is relatively 
easy to handle antigens containing hydrophobic transmembrane domains in genetic 
vaccines compared to recombinant protein vaccines. Novavax is investigating its full-length S 
recombinant protein-based COVID-19 vaccine in a phase 3 clinical trial (12).

An important feature introduced to full-length S-based vaccines is prefusion-stabilizing 
mutations. S protein is firstly expressed as a single polypeptide and then is readily cleaved 
by furin-like protease into S1 and S2 fragments in the host cells (13,14). These 2 fragments 
exist in a metastable prefusion conformation on the viral M. Once S1 binds to hACE2, 
transmembrane protease serine subtype 2, a serine protease on the host cells, cleaves the 
S2' site (15). This additional proteolytic cleavage triggers a conformational change in the 
S2 domain, leading to the dissociation of the S1 fragment. Finally, the S2 undergoes an 
irreversible ‘jack-knife transition’, resulting in a stable postfusion structure (Fig. 3) (14,16). 
Previous studies have reported that proline substitutions in the loop between the first heptad 
repeat and the central helix stabilize the prefusion structure of M fusion proteins such as 
HIV-1 gp160, RSV fusion, and influenza virus hemagglutinin proteins (17-19). Similarly, 2 
consecutive mutations in MERS-CoV S (V1060P and L1061P) resulted in a stable prefusion 
form of S, increasing the immunogenicity and efficacy of the recombinant protein antigen 
(20). Based on these previous studies, the efficacy of COVID-19 vaccine candidates that 
harbor 2 proline substitutions (2P) in the S2 loop (K986P and V987P) or mutations in the S1/
S2 furin cleavage site have been extensively evaluated. In many preclinical studies, prefusion-
stabilized S provided increased neutralizing Ab responses and protective efficacy against 
SARS-CoV-2 and MERS-CoV, compared to wild-type S (6,10,20). Currently, the final products 
or candidates of Moderna, Pfizer/BioNTech, Janssen CureVac, and Novavax include this 
prefusion-stabilized S protein as a target antigen (Fig. 3).

RBD is another promising vaccine target as the most antibodies with neutralizing activities 
bind to RBD (21). Moreover, RBD is glycosylated at a relatively low level within S protein and 
therefore potentially immunogenic (22). However, RBD exhibits lower immunogenicity than 
S, possibly due to its smaller molecular weight and lower stability in vivo. There have been 
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Figure 2. Schematic diagram of a SARS-CoV-2 S protein. 
CD, connector domain; CH, central helix; CT, cytoplasmic domain; HR1, heptad repeat 1; HR2, heptad repeat 2; 
NTD, N-terminal domain; S1/S2, S1/S2 protease cleavage site; S2', S2 protease cleavage site; TM, transmembrane 
domain.



several approaches to overcome such limitation, including Fc fusion (3) or multimerization 
of RBD (23). In particular, compared to RBD monomer, RBD dimer or RBD protein 
nanoparticles significantly increased neutralizing Ab responses and improved protective 
efficacy in a murine model (23,24). These results may be attributed to the increase in the 
molecular weight of RBD as well as the induction of efficient B cell receptor cross-linking by 
the repeated structure of a multivalent antigen (25,26).

Besides the S protein, SARS-CoV-2 has other structural proteins such as M, E and N. As the 
sera immunized with SARS-CoV-2 M and E failed to neutralize the virus (27), these 2 proteins 
are currently not considered as target antigens for COVID-19 vaccines. On the other hand, 
N is highly immunogenic and induces robust humoral and cellular immune responses (28). 
Since the amino acid sequence of N is highly conserved among HCoVs (29,30), N-specific 
immunity can induce cross-reactive responses. A prior study has shown that N-specific 
cellular immune responses in the respiratory mucosa could provide partial cross-protective 
immunity between SARS-CoV and MERS-CoV. Additionally, vaccination with MERS-
CoV N induced cross-reactive cellular immune responses against various coronaviruses, 
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Figure 3. Proteolytic activation of S and prefusion-stabilized S antigens. S protein is expressed as a single 
polypeptide and cleaved by a furin-like protease into S1 and S2 (①). The two fragments exist in a metastable 
prefusion conformation on the viral membrane (②). Upon binding of S1 to hACE2, a TMPRSS2 cleaves the S2' site. 
The proteolytic cleavage triggers a conformational change in S2 and then S1 dissociates from S2 (③). Finally, the 
S2 undergoes an irreversible ‘jack-knife transition’ into a stable postfusion structure (④). Substitution of K986 
and V987 into two prolines and/or mutation in S1/S2 cleavage site prevent the S protein from changing into a 
postfusion conformation, resulting in enhanced immunogenicity and efficacy of COVID-19 vaccines (⑤). 
TMPRSS2, transmembrane protease serine subtype 2; S1/S2, S1/S2 protease cleavage site; S2', S2 protease 
cleavage site.



including SARS-CoV (31). However, another study has reported that the immunization with 
recombinant vaccinia virus expressing SARS-CoV N caused severe pneumonia accompanied 
by infiltration of eosinophils, neutrophils, and lymphocytes into the lungs upon subsequent 
viral infection in mice (32). It remains unclear whether the pneumonia was caused by SARS-
CoV N and SARS-CoV-2 N has a potential of inducing such a side effect. Accordingly, the 
utilization of N as a COVID-19 vaccine antigen requires careful consideration. Currently, 
several candidates containing the N antigen are being evaluated in the preclinical 
development of the COVID-19 vaccine (1).

COVID-19 VACCINES IN LATER STAGES OF 
DEVELOPMENT
As of December 2020, over 200 COVID-19 vaccine candidates are in development based on 
several different platforms: inactivated virus, live-attenuated virus, protein subunit, virus-like 
particle (VLP), DNA, RNA, and viral vectored vaccines (Fig. 1). Among them, 13 candidates 
are being assessed in phase 3 clinical trials, and a few of them have been approved for human 
use in several countries as of December 2020. Tables 1 and 2 summarize the features of each 
vaccine platform and information about COVID-19 vaccines in phase 3 trials and beyond, 
respectively (Tables 1 and 2).

As summarized in Table 1, the magnitude and quality of the immune responses following 
vaccination varies depending on the type and composition of each vaccine. However, the 
immune system utilizes multiple types of cells and molecules in common for inducing 
efficient immune responses. Among them, dendritic cells (DCs) play an indispensable role in 
the recognition of danger signal provided by adjuvants, the processing of ingested antigens 
and the activation of T cells. Follicular DCs, which originate from stromal cells, are also 
critical in the induction of Ab responses to conformational epitopes. Once antigen-specific 
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Table 1. Characteristics of each vaccine platform
Vaccine platform Advantages Limitations Human-approved vaccines 

(except COVID-19)
Inactivated virus Stable and no risk of reversion Biosafety issue Influenza (injection), polio 

(injection), hepatitis AStrong antibody response Usually requires adjuvants
Cost-effective Weak cellular immune response

Live attenuated virus Strong immune responses Biosafety issue Influenza (nasal), polio (oral), 
measlesNo adjuvant required Risk of reversion to virulence

Cost-effective Time-consuming development
Recombinant protein 
subunit

No risk of infection and reversion Low immunogenicity Hepatitis B, influenza (injection)
Fewer side effects Requires adjuvants
Easy antigen modification High cost

VLPs No risk of infection and reversion Complicated manufacturing process Cervical cancer by human 
papillomavirusFewer side effects Requires adjuvants

Good antibody response High cost
DNA Rapid development and production Low immunogenicity -

Stable in room temperature Requires a delivery device (electroporator or jet-injector)
High producibility

mRNA Cell-free Unstable -
Rapid development and production High cost
Good immunogenicity Requires low temperature storage

Viral-vectored Strong immune responses Pre-existing immunity against the vector Ebola
Various viral vectors
Large-scalable

VLP, virus-like particle.



T and B cells experience the cognate vaccine antigen(s), they are activated and differentiated 
into the specialized subset for the optimal function. The general cellular mechanisms of 
immune induction following vaccination are shown in Fig. 4.

mRNA vaccines
mRNA vaccines have induced optimal protective immunity against infectious pathogens 
in various animal models (33-35). Before COVID-19 outbreak, mRNA vaccines targeting 
infectious viruses, including influenza virus, Zika virus and HIV, have been investigated 
in clinical stages (36,37). Moderna performed a phase 3 clinical trial (NCT04470427) of 
COVID-19 vaccine using the mRNA encoding full-length S with 2P substitutions (mRNA-1273) 
and showed 94.1% vaccine efficacy compared to the placebo group (38). In the preclinical 
stage, mRNA-1273 induced neutralizing antibodies against pseudovirus expressing SARS-
CoV-2 S protein in BALB/c, C57BL/6, B6C3 mouse models and rhesus macaques (6,39). After 
vaccination with mRNA-1273, participants in phase 1 clinical trial showed neutralizing Ab 
titers similar to that of convalescent serum (40). Currently, the emergency use of mRNA-1273 
has been authorized in several countries, including the US and Canada. Pfizer/BioNTech is 
investigating the mRNA vaccine BNT162 in clinical trials. BNT162 is divided into 4 mRNA 
types: 1) BNT162a1, unmodified mRNA encoding RBD; 2) BNT162b1, nucleoside-modified 
mRNA (modRNA) encoding trimeric RBD; 3) BNT162b2, modRNA encoding full-length 
S with 2P or prefusion-stabilized S; 4) BNT162c2, self-amplifying mRNA encoding full-
length S. Among them, BNT162b1 and BNT162b2 have entered into phase 2/3 clinical trials 
(NCT04368728), based on safety and immunogenicity tests in preclinical and clinical phase 
1 studies (41). Preclinical results showed that BNT162b2 effectively induced neutralizing 
antibodies against SARS-CoV-2 pseudovirus and authentic SARS-CoV-2 in BALB/c mice 
and rhesus macaques, respectively. T cell responses were also induced in both animal 
models. More importantly, the induction of immune responses by BNT162b2 resulted 
in potent protection against SARS-CoV-2 in rhesus macaques (42). In clinical results, 
although both BNT162b1 and BNT162b2 induced similar levels of neutralizing antibodies, 
BNT162b2 showed lower incidence and severity of adverse events, especially in the elderly 
(41). Neutralizing Ab levels induced by BNT162b2 in the participants were similar to the 
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Table 2. COVID-19 vaccines in phase 3 clinical trials and beyond (as of December 2020)
Platform Developer (product name) Target antigen Comments
mRNA Moderna (mRNA-1273) S protein with 2P (K986P and V987P) LNP-encapsulated

Pfizer/BioNTech (BNT-162b2) S protein with 2P (K986P and V987P) LNP-encapsulated
CureVac AG (CVnCoV) S protein LNP-encapsulated

Viral-vectored CanSino Biological Inc vaccine (Ad5-nCoV) S protein Human Ad5
Oxford/AstraZenaca (AZD-1222) S protein Chimpanzee adenovirus
Gamaleya Research Institutes (Gam-COVID-Vac) S protein rAd5 and rAd26 prime-boost
Janssen Pharmaceutical Companies (Ad26.COV2.5) S protein with 2P (K986P and V987P) and 2 mutations at 

furin cleavage site (R682S and R685G)
Ad26

Inactivated virus Wuhan Institute of Biological Products/Sinopharm 
(NA)

Whole pathogen Alum adjuvant

Beijing Institute of Biological Products/Sinopharm 
(BBIBP-CorV)

Whole pathogen Alum adjuvant

Sinovac Life Sciences (CoronaVac) Whole pathogen Alum adjuvant
Recombinant 
protein subunit

Novavax (NVX-CoV2373) S protein with 2P (K986P and V987P) and 3 mutations at 
furin cleavage site (R682Q, R683Q and R685Q)

Protein nanoparticle, 
matrix-M™ adjuvant

Anhui Zhifei Longcom Biopharmaceutical (NA) RBD RBD-dimer, alum adjuvant
DNA Inovio (INO-4800) S protein Electroporation, intradermal 

injection
Osaka University/AnGes/Takara Bio (AG0301-
COVID19)

S protein Alum adjuvant, intramuscular 
injection

LNP, lipid nanoparticle; NA, not available.

http://clinicaltrials.gov/ct2/show/NCT04470427
http://clinicaltrials.gov/ct2/show/NCT04368728


convalescent serum samples (41). The results of a phase 3 trial of BNT162b2 showed 94.8% 
efficacy compared to that of the placebo group (43). Based on its outstanding safety and 
efficacy, BNT162b2 has been authorized in the EU and US and recently been pre-qualified 
by World Health Organization (WHO). CureVac AG, another company developing mRNA 
vaccine, is currently investigating a vaccine encoding full-length S protein called CVnCoV 
in a phase 2/3 trial (NCT04652102) after completing a phase 1 study (NCT04449276), where 
potent SARS-CoV-2-binding antibodies and neutralizing Ab responses were observed in 
immunized participants. Based on these results, the immunization dose was determined for 
a phase 3 trials, which is currently being conducted (44).

Adenoviral-vectored vaccines
The safety and efficacy of an adenovirus (Ad), a non-replicating viral vector, has been already 
investigated in phase 3 trials and beyond. CanSino Biological Inc. developed the human 
Ad5-vectored vaccine expressing full-length S. No severe adverse effects were observed and 
neutralizing antibodies were effectively induced in the vaccinated group. However, as the titer 
of pre-existing neutralizing Ab against Ad5 was higher, seroconversion and T cell immune 
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Figure 4. Cellular mechanisms of the induction of vaccine-specific immune responses. DCs can uptake protein 
vaccine antigen(s) (①) or be transfected with gene-based vaccines to express the vaccine antigen inside the cells 
(②). Gene-based vaccines can be also transfected to or infected into myocytes (③). The expressed antigens 
in the myocytes are either secreted or released from the cells and taken up by DCs (④). DCs then process the 
antigen into the antigenic peptides and present them on the MHC I or II molecules (⑤). Then, DCs migrate into 
the draining LNs (⑥) where the mature DCs prime antigen-specific CD4+ or CD8+ T cells (⑦). Vaccine antigens 
also can be directly drained into LNs through the lymphatic vessels (⑧). In the draining LNs, FDCs trap the 
soluble antigens and present them to antigen-specific B cells, leading to an antibody response to conformational 
epitopes (⑨). 
FDC, follicular dendritic cell; LN, lymph node.

http://clinicaltrials.gov/ct2/show/NCT04652102
http://clinicaltrials.gov/ct2/show/NCT04449276


responses showed decreasing tendency (45). Despite these phenomena, the vaccine induced 
a higher titer of neutralizing antibodies than did the placebo control. CanSino Biological Inc. 
is further investigating a mucosal vaccine using the Ad5 vector expressing full-length S in a 
phase 1 clinical trial (NCT04552366). The University of Oxford/AstraZenaca has developed 
a chimpanzee Ad-vectored vaccine expressing full-length S (AZD1222, formerly named 
ChAdOx1 nCoV-19) that can bypass pre-existing vector-specific immunity. In preclinical 
stages, AZD1222 induced neutralizing antibodies and T cell responses in BALB/c mice and 
rhesus macaques and protected rhesus macaques from SARS-CoV-2 infection (9). In phase 
1/2 trials, the participants immunized with ADZ1222 exhibited robust T cell responses as well 
as neutralizing antibodies, similar to convalescent plasma (46). Although the neutralizing Ab 
titer was increased by booster immunization, there were no changes in the T cell responses, 
likely due to the immune responses toward homologous viral vector vaccine. In a phase 3 
trial, participants administered with half dose at the first vaccination showed 90% vaccine 
efficacy, while those receiving the full dose at the first vaccination showed 62.1% vaccine 
efficacy (70.4% efficacy on average) (NCT04400838, ISRCTN89951424) (47). AZD1222 has 
been approved in several countries including the UK, India, Argentina, El Salvador, and South 
Korea. Gamaleya Research Institutes tested the safety of rAd5 or rAd26 expressing full-length 
S in a phase 1 trial and investigated their immunogenicity after prime-boost vaccination in a 
phase 2 study (NCT04436471, NCT04437875). Neutralizing antibodies and T cell responses 
were detected in all participants (11). Participants receiving the heterologous vaccination 
elicited a similar titer of neutralizing antibodies compared to convalescent individuals. 
Gamaleya Research Institutes is currently conducting a phase 3 clinical trial with rAd5/rAd26 
prime-boost immunization (NCT04530396). Interim results are showing 91.4% efficacy 
in the vaccinated group compared to placebo group. Janssen Pharmaceutical Companies 
completed preclinical and phase 1/2 clinical tests using the rAd26 vectored vaccine expressing 
full-length S with 2P and mutations in furin cleavage site (NCT04436276) and entered a phase 
3 study (NCT04505722). In a preclinical study comparing the immunogenicity of various S 
mutants in mice, rAd26.S.PP with a furin cleavage site mutation and 2P in the S2 hinge region 
was selected and named rAd26.CoV.S (48). A single immunization with rAd26.CoV.S was 
sufficient to inhibit viral replication in the lungs and nasal region of non-human primates 
(NHPs), and this was well-correlated with the increased neutralizing Ab titer (10). In line 
with a preclinical study, the results from a phase 1/2a trial showed that a single immunization 
induced high levels of neutralizing antibodies similar to those in patients recovered from 
SARS-CoV-2 infection (49). After vaccination with rAd26.CoV.S, the Th1/Th2 ratio in 
participants was 28.9, indicating Th1-skewed responses, and potent CD8+ T cell responses 
were also induced.

Inactivated virus vaccines
The Wuhan Institute of Biological Products/Sinopharm tested the COVID-19 vaccine using 
inactivated SARS-CoV-2. In a phase 1/2 trial, participants immunized with inactivated SARS-
CoV-2 with alum adjuvant showed higher titers of neutralizing antibodies and increased T 
cell responses compared to those of the placebo group. Moreover, the SARS-CoV-2-specific 
Ab titer was increased with the number of vaccinations (ChiCTR2000031809) (50). The 
Beijing Institute of Biological Products/Sinopharm has also investigated inactivated SARS-
CoV-2 (BBIBP-CorV) with alum adjuvant. In a phase 1/2 clinical trial (ChiCTR2000032459), 
BBIBP-CorV generated high titers of antibodies in immunized participants (51). BBIBP-CorV 
achieved 79.3% efficacy in preventing SARS-CoV-2 infection, and participants immunized 
with this vaccine showed 99.5% seroconversion after 2 doses as shown by interim clinical 
results. BBIBP-CorV received conditional approval in China for emergency use. Also, Sinovac 
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Life Sciences has investigated CoronaVac, an inactivated SARS-CoV-2. In preclinical studies, 
CoronaVac effectively induced neutralizing antibodies and T cell responses in BALB/c mice 
and rhesus macaques (52). Subsequently, they tested the safety and immunogenicity of 
CoronaVac in multiple phase 1/2 clinical trials (NCT04383574, NCT04352608, NCT04551547). 
Participants immunized with CoronaVac with alum adjuvant showed seroconversion 
without serious adverse events (53). They are currently conducting phase 3 clinical trials 
(NCT04456595, NCT04508075, NCT04582344, NCT04617483, NCT04617483). CoronaVac 
has been approved in China for emergency use in high-risk groups. It has been reported that 
vaccination with formalin-inactivated SARS-CoV increases, rather than decreases, lesions 
induced by SARS-CoV challenge (52). This result raised concerns that inactivated virus-based 
COVID-19 vaccines could cause Ab-dependent enhancement (ADE) or vaccine-associated 
enhanced respiratory disease (VAERD), but such phenomenon has not been reported to date.

Recombinant protein subunit vaccines
Novavax is investigating a protein nanoparticle vaccine consisting of prefusion-stabilized 
full-length S in combination with Matrix-MTM (NVX-CoV2373). Preclinical results using 
cynomolgus macaques showed that NVX-CoV2373 effectively induced S-specific neutralizing 
Ab responses (12). This vaccine also effectively induced neutralizing antibodies that 
exceeded the levels of convalescent individuals and predominantly induced Th1 responses 
with mild or no side effects in phase 1/2 trials (NCT04368988, NCT04533399) (54). 
Multiple phase 3 studies are being conducted in the US, Mexico, and Peru (NCT04611802, 
NCT04583995, EUCTR2020-004123-16). Anhui Zhifei Longcom Biopharmaceutical 
designed a disulfide bonded RBD-dimer vaccine purified from mammalian cells. In 
preclinical studies, immunization with RBD-dimer with alum adjuvant effectively induced 
Ab responses with neutralizing activity against pseudovirus or live SARS-CoV-2, but did 
not induce T cell responses, in a BALB/c mouse model (23). Although they have completed 
phase 1/2 trials, the results have not been reported yet (NCT04445194, NCT04466085, 
ChiCTR2000035691, NCT04550351). Currently, they are recruiting volunteers for a phase 3 
trial (ChiCTR2000040153).

An adjuvant is one of the most critical factors affecting the efficacy of protein-based vaccines. 
In most prophylactic vaccines, neutralizing antibodies has been considered critical, but the 
importance of the cellular immune response is also increasingly being emphasized. Recently, 
many novel adjuvants have been developed that can simultaneously enhance humoral and 
cellular immune responses. Therefore, in addition to alum, various adjuvants such as MF-59, 
Matrix-MTM, AS03, and GpG1018, are also combined with the COVID-19 vaccine (1). Adjuvants 
mainly stimulate pattern recognition receptors directly or indirectly to provide an “infection-
like signal” in the host. Thus, innate immune responses induced by adjuvants significantly 
affect the quality, intensity and persistence of antigen-specific immune responses. When 
two cervical cancer vaccines with similar antigenic preparation and different adjuvants were 
tested, a significant difference was observed between the those two vaccines in the long-term 
immune response (55). Considering the possibility of COVID-19 recurrence after the current 
global pandemic, an adjuvant inducing long-term immunity could be a critical determinant 
for the efficacy of the protein-based vaccines.

DNA vaccines
DNA vaccines have been applied to various diseases, such as cancer, autoimmune diseases, 
allergies and infectious diseases. Several DNA vaccine candidates against influenza, hepatitis 
B virus and HIV-1 have been tested in clinical trials. In the context of SARS-CoV-2, 2 DNA 
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vaccine candidates are being tested in phase 3 trials. Inovio tested the immunogenicity 
of a DNA vaccine construct encoding a full-length S (INO-4800) in mice and guinea pigs 
in preclinical studies (8). Intramuscular injection of INO-4800 effectively induced SARS-
CoV-2-specific Ab and T cell responses. Sera from BALB/c and C57BL/6 mice immunized 
with INO-4800 effectively neutralized the pseudovirus expressing SARS-CoV-2 S protein 
and live SARS-CoV-2. Intradermal immunization of INO-4800 induced robust SARS-CoV-2 
S-specific Ab and T cell responses in NHPs and the immunized sera effectively neutralized 
both wild-type and D614G variant SARS-CoV-2 (56). INO-4800 also elicited neutralizing 
antibodies and T cells that are comparable with those of convalescent samples in phase 1/2 
trials (NCT04336410) (57). Inovio is currently conducting a phase 3 trial (NCT04642638). 
Osaka University/AnGes/Takara Bio developed a DNA vaccine expressing a full-length S 
(AG0301-COVID19) and tested its safety and efficacy in a phase 1/2 trial (NCT04463472), 
but the results have not been reported. They have recently initiated a phase 3 clinical study 
(NCT04655625). In a preclinical study, AG0301-COVID19 with an alum adjuvant effectively 
induced neutralizing antibodies and T cell responses in the rats, with the complete absence 
of toxic reactions to various organs (58). To date, no DNA vaccine has completed phase 3 
trials or has been approved.

EFFICACY AND SAFETY OF COVID-19 VACCINES

Immune correlates of protection (ICP)
ICP or correlates of protective immunity is a specific immune marker or response that is 
associated with protection against infection (59). As neutralizing antibodies are the most 
critical ICP in many infectious diseases such as influenza and hepatitis A and B, the primary 
objective of most prophylactic vaccines is inducing potent neutralizing Ab responses 
(60-62). In the case of COVID-19, neutralizing antibodies have been considered as the 
primary ICP as well. Passive immunization of convalescent sera or antibodies purified from 
convalescent patients and S-specific monoclonal antibodies effectively inhibited SARS-
CoV-2 infection or alleviated disease symptoms in preclinical or clinical studies (63-65). It 
has also been shown that vaccine candidates whose efficacy has been validated in phase 3 
trials exhibited higher neutralizing Ab titers than convalescent patient sera (49). Recently, 
beyond neutralizing potential, polyfunctionality of the antibodies is considered as a 
substantial factor affecting protective immunity. It has been reported that polyfunctional 
antibodies are closely associated with disease outcomes in patients infected with human 
immunodeficiency, influenza and Ebola viruses (66-68). Several COVID-19 vaccine studies 
have also demonstrated Ab functions such as Ab-dependent cellular phagocytosis, Ab-
dependent neutrophil phagocytosis, Ab-dependent NK cell degranulation and Ab-dependent 
complement deposition (69,70). These Ab features are differently presented in convalescent 
and deceased individuals infected with SARS-CoV-2 (71). However, little is known about the 
direct correlation of polyfunctional antibodies with protection against infectious agents 
including SARS-CoV-2, raising the need for further investigation.

The importance of the cellular immune response in protective immunity has also been 
discussed. Virus-specific T cells are crucial for the clearance of SARS-CoV or MERS-CoV 
(72-74). In a recent study, CD4+ and CD8+ T cells played an important role in protection 
against SARS-CoV-2 infection in a murine model (27). Moreover, strong virus-specific T 
cell responses were observed in asymptomatic or mild COVID-19 patients, suggesting the 
potential of cellular immune responses in the protection or clearance of SARS-CoV-2 (75,76). 
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Therefore, a vaccine that can simultaneously induce neutralizing antibodies and cellular 
immune responses is thought to be ideal. Currently, most COVID-19 vaccine candidates are 
validating both parameters.

Recently, a WHO international standard serum for SARS-CoV-2 has been developed by the 
National Institute for Biological Standards and Control, UK (77). However, in the aspect 
of cellular immunity, it is relatively difficult to prepare a standard sample or quantify the 
immune response compared to the Ab response. The role of antigen-specific T cells in the 
protection from SARS-CoV-2 is also controversial (78). Further studies are required to develop 
a standard assay or establish surrogate markers to quantify the cellular immune response and 
understand the correlation between cellular immunity and protective immunity.

VAERD and ADE of disease
In some cases, virus-specific immune responses generated by prior infection or vaccination 
can increase viral pathogenicity when subsequent infection occurs. There are 2 different 
mechanisms; VAERD and ADE of the disease. VAERD is allergic inflammation in the 
respiratory tract caused by excessive Th2-biased immune responses induced by prior 
vaccination. In a clinical trial of the RSV vaccine in the 1960s, a significant portion (16 out 
of 20) of children administered with a formalin-inactivated RSV vaccine developed severe 
symptoms following natural infection with RSV, whereas only one out of 21 children in the 
placebo group was hospitalized (79). Subsequently, it was revealed that the inactivated RSV 
vaccine induced strong Th2-biased immune responses and caused hyper-production of 
IL-4, IL-5, and IL-13, and excessive lung inflammation by eosinophils (80). ADE is an event 
in which a suboptimal concentration of neutralizing antibodies or cross-reactive non-
neutralizing antibodies increases viral infection through interaction with Fc receptors (81,82). 
ADE is well known in flaviviruses such as dengue virus and Zika virus (83,84), but inactivated 
SARS-CoV or recombinant viral vectored-SARS vaccines also increased liver or respiratory 
lesions during subsequent SARS-CoV infection (85,86). ADE was also observed in cats 
immunized with a feline infectious peritonitis virus (FIPV) vaccine or passively administered 
with FIPV-specific antibodies (87,88). The possibility of ADE may generate serious concerns 
in the development of the COVID-19 vaccine. However, no severe side effects have been 
reported in any of the following cases: passive transfer of convalescent plasma to COVID-19 
patients (89), infection of vaccinated animals with SARS-CoV-2, and large-scale phase 
3 trials. It is required to investigate the potential adverse effects of COVID-19 vaccines 
depending on the antigen design and vaccine formulation.

Pre-existing memory response cross-reactive to SARS-CoV-2
Recently, T cell and Ab responses reactive to SARS-CoV-2 have been observed in people 
who have not been exposed to SARS-CoV-2 (collected before the COVID-19 outbreak or 
seronegative for SARS-CoV-2). This cross-reactivity was presumed to be induced by infection 
with seasonal HCoVs. In many cases, the cross-reactive responses recognize epitopes in the 
S2 domain (90,91). Meanwhile, pre-existing cross-reactive immunity may affect the immune 
response following vaccination as well as viral infection. Influenza virus-specific pre-existing 
memory CD4+ T cells increased the influenza vaccine-induced Ab response in clinical 
trials (92). Pre-existing memory B cells also affect the outcome of a quadrivalent influenza 
vaccine (QIV); when pre-existing B cell memory exhibits a dominant response to a particular 
subtype (subtype immunodominance), Ab response to QIV was positively correlated with the 
preexisting memory (93). Also, it was recently reported that the kinetics and magnitude of 
Ab response to a hepatitis B vaccine were significantly increased in the presence of hepatitis 
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B vaccine-specific memory CD4+ T cells (94). Ab response to HCoV can be observed in most 
adults (95) and the S2 domain of SARS-CoV-2 S exhibits relatively high amino acid sequence 
homology with those of seasonal HCoVs (up to 42%) (90). In particular, epitopes in the FP 
are highly conserved among various coronaviruses (96). Therefore, seasonal HCoV-induced 
pre-existing immunological memory that is cross-reactive to SARS-CoV-2 may affect the 
immune responses induced by a COVID-19 vaccine, especially those containing the S2 
domain. Considering that most COVID-19 vaccines in later stages of development have the S2 
domain, it is necessary to study the influence of cross-reactive pre-existing immunity on the 
efficacy of the vaccine and the diversity of immune responses.

CONCLUDING REMARKS

Paradoxically, COVID-19, a serious threat to human health and the economy, is accelerating 
the advancement of the vaccine field. Technologies that have been utilized in preclinical 
studies and clinical trials are being integrated into the development of COVID-19 vaccines. 
mRNA and viral vectored vaccines have been approved and are now being used in several 
countries. Some of these vaccines harbor a prefusion-stabilized antigen that has never been 
observed in conventional licensed vaccines. Various types of vehicles such as Ad5, Ad26, 
chimpanzee Ad, and other replication-competent viruses are being widely studied for viral 
vectored vaccines. Recombinant protein vaccines have also made significant advancements 
combined with self-assembling nanoparticle technology, which is also considered promising. 
Safety is the most crucial factor to be considered in vaccine development. Considering that a 
substantial portion of the population needs to be COVID-19-vaccinated, it needs to be further 
investigated the long-term study on the potential adverse effects, such as VAERD and ADE, 
and the immunological correlation with seasonal HCoVs.
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