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A B S T R A C T   

SARS-CoV-2 is a newly discovered virus which causes COVID-19 (coronavirus disease of 2019), initially docu-
mented as a human pathogen in 2019 in the city of Wuhan China, has now quickly spread across the globe with 
an urgency to develop effective treatments for the virus and emerging variants. Therefore, to identify potential 
therapeutics, an antiviral catalogue of compounds from the CAS registry, a division of the American Chemical 
Society was evaluated using a pharmacoinformatics approach. A total of 49,431 compounds were initially 
recovered. After a biological and chemical curation, only 23,575 remained. A machine learning approach was 
then used to identify potential compounds as inhibitors of SARS-CoV-2 based on a training dataset of molecular 
descriptors and fingerprints of known reported compounds to have favorable interactions with SARS-CoV-2. This 
approach identified 178 compounds, however, a molecular docking analysis revealed only 39 compounds with 
strong binding to active sites. Downstream molecular analysis of four of these compounds revealed various non- 
covalent interactions along with simultaneous modulation between ligand and protein active site pockets. The 
pharmacological profiles of these compounds showed potential drug-likeness properties. Our work provides a list 
of candidate anti-viral compounds that may be used as a guide for further investigation and therapeutic 
development against SARS-CoV-2.   

1. Introduction 

The new SARS-CoV-2 coronavirus, responsible for causing COVID- 
19, was initially documented as a human pathogen in December 2019 
in the city of Wuhan, Hubei province in China [1]. The virus has quickly 
spread across the globe, and as of December 2020, there were 119,988, 
220 cases reported with 2,655,612 fatalities (John Hopkins Coronavirus 

Resource Center 3/14/2021). Infection by the SARS-CoV-2 virus, a 
single-stranded RNA virus, results in a wide spectrum of illnesses from 
an asymptomatic carrier state to mild and severe cold-like symptoms to a 
fatal pneumonia. Multiple vaccines against the SARS-CoV-2 virus are 
available in several countries, including three in the United States [2,3]. 
However, concerns related to the timeline of widespread and global 
vaccination as well as questions about continued vaccine efficacy 
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against newly emerging SARS-CoV-2 variants (e.g. UK and South Afri-
can) continue to highlight need for development of COVID-19 treat-
ments in parallel to vaccination efforts [4,5]. SARS-CoV-2 belongs to the 
beta coronavirus genus, which also includes severe acute respiratory 
syndrome coronavirus (SARS-CoV) and the Middle East respiratory 
syndrome coronavirus (MERS-CoV). Rapid genomic sequencing of 

SARS-CoV-2 has enabled comparative analysis between the novel virus 
and those responsible for previous pandemics [6]. Due to significant 
homology between the viruses, previously curated knowledge generated 
through studies with SARS-CoV and MERS-CoV can be used in an 
attempt to find potential drug targets for SARS-CoV-2 [7]. A tremendous 
amount of effort has been placed in finding therapeutics for the various 
coronaviruses. Since the original SARS-CoV emerged in 2002, an effort 
has been made to target various viral structures and proteins including 
helicase, protease, endonuclease, exoribonuclease, methyltransferase, 
and non-structural proteins (NSPs). Researchers have continued to use 

Fig. 1. Process for identifying SARS-CoV-2 inhibitors from CAS dataset.  

Fig. 2. Snapshot and representative illustration of descriptor calculations. First column describes all compounds (CAS antiviral compounds + controls), while 
remaining columns show seven of the 46 molecular descriptors with calculated fingerprints. 

Fig. 3. Random Forest tree predicted plot of molecular descriptors. The plot 
shows the measure of relative unsaturation content relative to molecular size 
(ETA_dBetaP) as the most important classifier of potential antiviral compounds. 

Fig. 4. Receiver operating curve for classifier model developed to identify 
compounds as potential inhibitors of SARS-CoV-2 target proteins. The area 
under the curve (AUC) of the classifier showed a good predictive ability of 
0.92 (92%). 
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traditional methods to determine antiviral activity of compounds, but 
these processes can be slow and cumbersome. For these reasons, many 
researchers have now turned to virtual screening using genomic and 
structural models. Past efforts have shown that using molecular docking 
studies as an initial step is useful for screening the most promising 
antiviral, antibacterial, and antiprotozoal compounds [8,9]. In April 
2020, CAS, a division of the American Chemistry Society, released a 
database containing 49,431 chemical substances assembled from the 
CAS REGISTRY that have antiviral activity reported in published liter-
ature or are structurally similar to known antivirals. In an attempt to 
find potential anti-viral compounds as inhibitors of SARS-CoV-2, a 
pharmacoinformatics approach including a classifier model coupled 
with a multi molecular docking and dynamics analysis was performed. 

2. Materials and methods 

To identify potential antiviral compounds as inhibitors of SARS-CoV- 
2, we obtained the CAS dataset of antiviral chemical compounds avail-
able at https://www.cas.org/covid-19-antiviral-compounds-dataset. All 
compounds were converted to Protein Data Bank (PDB) and AutoDock 
(PDBQT) format for subsequent analysis using the open source Babel 
package available at http://openbabel.org. The initial data-set of anti- 
viral compounds in SDF format was subjected to chemical and biolog-
ical curation. The Konstanz Information Miner (KNIME) workflow (htt 
ps://www.knime.org/) was employed to perform these curations. We 
use the SDF reader node in the KNIME workflow to read chemical and 
biological properties of antiviral compounds. For chemical curation, 
modules in the KNIME workflow included the following for inorganic 
and organo-metallic removal: SDF reader used to read the input file, 

element filter (removes inorganic and organo-metallic compounds), 
connectivity (removes mixtures), RDKit Salt Stripper (removes salts), 
RDKit Optimize Geometry (geometric optimization of screened com-
pounds), RDKit Structure Normalizer (standardizes compounds), RDKit 
Add Hs (adding of hydrogen), and the SDF writer (generates an output 
file of screened compounds in SDF format). To perform biological 
curation, The Duplicate Analysis Workflow using the 3D D-Similarity 
module was performed to identify duplicate molecules in the dataset. An 
activity cliff analysis using the Automated Matched Pairs module com-
putes matched molecular pairs and understands molecular activity. A 

Fig. 5. Summary of results from the classifier model workflow.  

Table 1 
Active sites of SARS-CoV-2 target proteins used for multi docking.  

Target Protein Active Site Amino Acid Residue PMID 

SBD LEU455, ALA475, PHE486, GLN493, 32568012 
ARG403, GLY496, ASN501 33190011 
PHE456, TYR489 33184600  

33657325 
33299995 
32623480 

NSP12 ASP618, LEU758, SER759, ASP760 32283108 
LEU758, SER759, ASP760, ASP761, 32812340 
LYS798, LIS813, SER814 32438371 
LIS813, SER814 32346490 

NSP13 LYS288, SER289, ARG567, GLN404 32346490 
GLU375, ASP374  

NSP15 HIS235, HIS250, LYS290, THR341, 32552462 
TYR343, SER294  

Mpro CYS 145, HIS41 (catalytic dyad) 32534187 
ACE-2 SER19, ASP38, ASN90, GLU329, 32225175 

GLU35, LYS353, LYS31  

Key: PMID, PubMED identifier. 

Table 2 
Scores generated by multi molecular AutoDock Vina of the top binding com-
pounds to the active site of SARS-CoV-2 targets.  

ID CAS registry 
Number 

Compound 
Number 

Binding Energy (kcal/mol) 
(Vina) 

SBD 
1 1809249-37-3 Control − 6.4 
2 1002336-72-2 65 − 7.1 
NSP12 
3 687967-00-6 137 − 12.8 
4 1052524-91-0 11 − 12 
5 911195-33-0 169 − 12 
6 957794-14-8 177 − 11.6 
7 774511-55-6 148 − 10.9 
8 909082-43-5 166 − 10.9 
9 134637-14-2 34 − 9.3 
10 190141-36-7 76 − 9.2 
11 918934-15-3 170 − 9.1 
12 1399805-48-1 40 − 8.7 
13 1637769-10-8 61 − 8.7 
NSP13 
14 687967-00-6 137 − 14.2 
15 774511-55-6 148 − 12.4 
16 957794-14-8 177 − 12.4 
17 768322-56-1 147 − 12.0 
18 1107652-06-1 14 − 11.2 
19 710272-33-6 140 − 11.2 
20 1107652-05-0 13 − 11.2 
21 911195-33-0 169 − 11.0 
22 1250937-05-3 25 − 10.9 
23 122931-60-6 20 − 9.8 
24 1399805-48-1 40 − 9.6 
Mpro 
33 1389335-41-4 37 − 11.8 
34 1817756-68-5 70 − 9.5 
35 1009113-51-2 2 − 9.4 
36 1399805-48-1 40 − 9.0 
37 172645-16-8 64 − 9.0 
38 134637-14-2 34 − 8.6 
39 193898-65-6 79 − 8.3 
40 1883270-61-8 73 − 8.2 
41 100926-24-7 4 − 7.9 
42 2256068-99-0 92 − 7.9 
ACE-2 
43 1399805-48-1 40 − 6.5  
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careful and manual curation of compounds with similar structure and 
activity values were then removed. The chemical and biological curation 
is well documented by Ambure and colleagues [10]. To establish a list of 
standard or control compounds (i.e. reported potential compounds with 
favorable interactions against SARS-CoV-2), a search of the literature 
was performed. These latter set of compounds served to classify pro-
spective inhibitors of SARS-CoV-2 from the CAS dataset. For developing 
a classification model, a set of molecular descriptors (or indices) for the 
CAS dataset and controls were calculated using PaDEL, a software 
package that calculates molecular descriptors and fingerprints available 
at http://padel.nus.edu.sg/software/padeldescriptor. The generated 

fingerprints of all compounds from each descriptor were scaled. To 
obtain the best fit of anti-viral compounds against SARS- CoV-2 from the 
optimal set of descriptors, a random forest classifier in the R environ-
ment [11] was implemented. Control and experimental biomolecules 
and their accompanying descriptors and fingerprint properties were 
obtained and divided into testing and training data sets. The training 
data set consisted of all 32 control molecules and an additional 32 
experimental molecules, which were selected from the larger dataset by 
implementing the Kennard-Stone algorithm with Euclidean distance. 
The testing data set consisted of 23,520 experimental molecules. A 
receiver operating curve (ROC) and the area under the curve (AUC) was 

Fig. 6. Chemical Structure of antiviral compounds from the CAS registry as potential inhibitors of SARS-CoV-2 target protein active sites.  
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calculated to determine the reliability of the classifier. Next, four 
SARS-CoV-2 structural and non-structural protein targets, including 
NSP12 (RNA polymerase, ID: 6NUR), NSP13 (helicase, ID: 6ZSL), main 
protease (Mpro, ID:7BQY), spike protein (spike binding region – SBD, ID: 
6LZG) from the protein databank (https://www.rcsb.org) were evalu-
ated against potential anti-viral compounds. The angiotensin converting 
enzyme-2 (ACE-2) protein on the host, essential for attachment to the 
SBD region that leads to SARS-CoV-2 entry into the host was also eval-
uated (ID: 7DF4). Moreover, the emerging more transmissible South 
African SARS-CoV-2 variants with the following amino acid residue 
substitutions in the SBD region of the spike protein: LYS417ASN, 
GLU484LYS and ASN501TYR) were also evaluated. Target proteins were 
refined using AutoDock Tools by deleting water molecules, adding polar 
hydrogens, Kollman charges, computing the Gasteiger charges and 
assigning the ADT4 type atoms. The active sites of the target proteins 
were highlighted by using the grid box of AutoDock. Thereafter, a multi 
molecular docking analysis between anti-viral compounds and target 
proteins using AutoDock Vina [12] was subsequently performed. Only 
those compounds with an affinity to the target protein of less than − 7.5 
kcal/mol were retained for downstream analysis (binding affinities of 
less than − 6 kcal/mol are generally considered significant values for 
binding). Thereafter, each of these compounds were manually curated to 
determine the area of the active site they covered by using Pymol 
(http://pymol.org). Those ligands that covered a significant area in the 
active site were subsequently prepared by the LigPrep and Epik modules 
(Schrödinger Release 2020-4: Schrödinger, LLC, New York, NY) for 
docking. The AutoDock and MGL Tools were then used to dock these 
ligands against SARS-CoV-2 active site target structure and 
non-structure proteins. Subsequently, the Protein-Ligand Interaction 
Profiler available at https://projects.biotec.tu-dresden.de/plip-web/p 
lip was used to identify the molecular noncovalent interactions of pro-
teins and their ligands. Remdesivir obtained from the PubChem data-
base (pubchem.ncbi.nlm.nih.gov), officially approved as an antiviral to 
treat SARS CoV-2 patients, was used as a control for docking and mo-
lecular interactions studies. To validate the molecular interactions, a 
molecular dynamic (MD) simulation was then performed. The ligand 
structures were parametrized, and input files were generated by using 
CHARM-GUI [13–15] on the docking structures for compounds 65 and 
remdesivir. The parametrized structures were solvated in a periodic box 
of TIP3 molecules. The sizes of TIP3 boxes were 90 × 90 × 90 Å3 and 85 
× 85 × 85 Å3 for remdesivir-protein and compound 65-protein struc-
tures, respectively. Sodium and chloride ions were added to neutralized 
and obtain a salt concentration of 0.15 mol/L. CHARMM36 force field 

was used for protein [16]. The simulations were conducted with the 
NAMD 2.12 package [17]. After 50,000 minimization MD steps with 
Conjugate gradient algorithm at 0 K, subsequent 600,000 steps equili-
bration simulation with constrained protein and ligand was applied for 
both structure at 303.15 K. At the final production MD simulation, NPT 
ensemble was applied by using Nose-Hoover Langevin piston pressure 
control [18] at 303.15 K and 1.01325 bars for 20 ns simulation time. 2 fs 
integration step is applied through all simulation steps. To evaluate the 
interaction energies and RMSDs, VMD 1.9 software [19] was used. 
Thereafter, simultaneous modulation of SARS-CoV-2 target proteins was 
assessed using the virus-associated disease-specific chemo-genomics 
knowledge (Virus-CKB) available at https://www.cbligand.org/g/ 
virus-ckb. Lastly, pharmacological characteristics, including absorp-
tion, distribution, metabolism, excretion, toxicity, drug likeness prop-
erties of potential inhibitors of SARS-CoV-2 were explored using the 
ADMET platform (http://admet.scbdd.com/home/index/). The general 
workflow illustrating steps taken in screening of the CAS dataset in 
search of potential inhibitor compounds of SARS-CoV-2 target proteins 
is shown in Fig. 1. 

3. Results 

A total of 49,431 compounds were initially obtained from the CAS 
registry. After the KNIME chemical and biological curation, 23,575 
compounds remained. To identify potential compounds as possible in-
hibitors of SARS-CoV-2 and to establish a set of standards or controls to 
compare against the CAS dataset, a literature search was performed to 
identify anti-viral compounds with potential activity against COVID-19. 
A list of 113 antiviral compounds was selected (see Supplemental 
Table 1). These compounds served as controls for subsequent classifi-
cation of the CAS dataset. To construct the classification model, mo-
lecular descriptors (topo-chemical atom indices) were generated for 
each of the compounds (CAS dataset + controls) by using the PaDEL- 
molecular descriptor software. A total of 25 molecular descriptors (see 
Supplemental Table 2) and their molecular fingerprints for each of the 
compounds was calculated and their values subsequently scaled (see 
Fig. 2). 

Thereafter, a matrix composed of 25 descriptors, 23,575 CAS com-
pounds and 113 controls was constructed to perform a random forest 
tree classifier in the R environment. Fig. 3 shows the random forest tree 
predicted plot of molecular descriptors and their importance in the 
classification of antiviral compounds against SARS-CoV-2, while Fig. 4 
shows a 0.92 reliability (area under the curve – AUC of the ROC curve) at 
predicting compounds as inhibitors of SARS-CoV-2. 

Based on these findings, the classifier identified 178 antiviral com-
pounds as potential inhibitors of SARS-CoV-2 (Fig. 5). 

To validate the compounds obtained from the classifier, a multi 
molecular docking analysis using AutoDock Vina was performed on 178 
compounds against SARS-CoV-2 target proteins: SBD, NSP12, NSP13 
(helicase) and Main protease (Mpro). Table 1 shows the protein active 
site residues that were targeted for multi docking. 

Ligands with binding energy less than − 6 kcal/mol to SARS-CoV-2 
target protein active sites were then selected. A total of 39 compounds 
plus four duplicates (40, 137, 177, 148) were identified (Table 2). 

From these group of compounds, a list of 4 (ID: 40, 65, 70 and 137) 
were selected based on visual inspection of the active site and the area 
ligands covered. Selected compounds underwent subsequent analysis, 
including docking, molecular interactions and description of pharma-
cological properties. Fig. 6 depicts representative chemical formulas of 
the four potential antiviral compounds to the various active sites of the 

Table 3 
SMILE and molecular weight of candidate compounds with inhibitory potential 
for SARS-CoV-2.  

Ligand SMILE Format Molecular 
Weight 

65 C(OC(=O)CCC(=O)N[C@@H]1[C@@H](OCc2ccccc2) 
[C@@H](OCc2ccccc2)[C@H](OC1OCc1ccccc1) 
COCc1ccccc1)[C@@H]1[C@@H]2[C@H]([C@@H] 
(O1)n1nc(nc1)C(=O)N)OC(O2)OC 

907.96 

137 N(=N\c1c(C)c(/N––N/c2cc(/N––N/c3c4c(c(cc3)S(=O) 
(=O)[O-])cccc4)c(cc2N)N)cc(c1)S(=O)(=O)[O-]) 
\c1c2c(c(cc1)/N––N/c1cc(/N––N\c3c4c(c(cc3)S(=O) 
(=O)[O-])cccc4)c(cc1N)N)cccc2 

1063.11 

40 [C@]123O[C@]1(OC1=COPO[C@@]21[C@H]3C#C) 
n1c2c(nc1)c(=O)[nH]c(N)n2 

425.33 

70 C(=C\1/C––C(C(=O)O)C(=O)C––C1)(\c1cc(Cc2cc(C 
(c3cc(C(=O)O)c(cc3)O)c3cc(C(=O)O)c(cc3)O)cc(c2O) 
C(=O)O)cc(c1O)C(=O)O)/c1cc(C(=O)O)c(cc1)O 

858.71  
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SARS-CoV-2 proteins, including the control remdesivir, whereas Table 3 
describes the SMILE format and molecular weights of the four com-
pounds. The 3D structural surface representation of SARS-CoV-2 target 
proteins and molecular docking of the potential candidate antiviral 
compound to each of the targets (including the SBD South African SARS- 
CoV-2 variant) is illustrated in Fig. 7. 

Covalent interactions of the four selected compounds against the 
active sites of SARS-CoV-2 were then determined using the Biotec mo-
lecular profiler, while representative molecular interactions were 
rendered using Pymol. All molecular interactions and their distance 

given in angstroms is shown on Table 4, while Fig. 8 illustrates repre-
sentative molecular interactions between SARS-CoV-2 targets and 
selected compounds. 

To support these interactions, a molecular dynamic simulation was 
carried out between the control compound (remdesivir) and ligand 65 at 
the SBD interphase. Both systems were simulated for a fixed period of 
time (0–20 ns - ns). During this time interval both control and ligand 65 
maintain binding affinity to active sites amino acid residues of the SBD 
protein (see Fig. 9). The binding energies of the two ligands to the SBD 
region at different time intervals are described on Table 5, while contact 

Fig. 7. 3-D surface representation of SARS CoV-2 target proteins and potential inhibitory compounds. Key: blue, SARS-CoV-2 target protein; yellow, target active 
site; magenta, antiviral compound. Panels (A): The control compound (remdesivir) and its binding relationship to the SBD region. An active site residue in the SBD 
region GLN493 is labeled in white for reference; (B): ligand 65 predicted binding to the SBD region; (C) ligand 65 binding to the SBD – South African variant with the 
N501Y (asparagine to tyrosine amino acid residue 501) substitution depicted; (D) ligand 137 bound to NSP12; (E) ligand 40 binding interaction with NSP13; (F) 
ligand 70 targeting Mpro and panel. Of note, for the South African variant, the ASN417 and LYS484 substitutions are not covered by ligand 65. For the Mpro protein 
only the dyad active site of HIS45 and CYS145 are shown in yellow. 
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residues at different time intervals are outlined on Table 6. 
Ligand binding to active site amino acid residues in the SBD region at 

different time intervals are bold in black. 
The selected list of ligands (40, 65, 70 and 137) were subsequently 

evaluated with the knowledge base Virus-CKB to determine whether 
these compounds showed simultaneous modulation of viral pathways in 
the life cycle of SARS-CoV-2. The analysis predicted all ligands with 
combined modulation of viral protein targets (e.g. ligand 40 to ACE-2: 
− 9.25 kcal/mol; ligand 65 to ACE-2: − 11.26 kcal/mol; ligand 70 to 
ACE-2: − 10.15 kcal/mol, methyl transferase: − 8.6 kcal/mol, Mpro: 
− 8.77 kcal/mol, and NSP12: − 8.77 kcal/mol; ligand 137 to ACE-2: − 11 
kcal/mol, Mpro: − 9.21 kcal/mol, NSP12: − 9.72 kcal/mol, methyl 
transferase: − 10.77 kcal/mol and papain like protease: − 8.68 kcal/ 
mol). A spider plot outlining the various viral interactions pathways 
between selected ligands and targets across viral networks is shown in 
Fig. 10. 

The generated interactions by the spider plot were then evaluated to 
determine whether ligands bind to SARS CoV-2 target active site amino 
acid residues. This evaluation revealed only ligand 137 and 40 with a 
potential drug combination effect to SARS-CoV-2 active site target 
proteins. Table 7 shows the newly identified interactions. Ligand 137 
was also evaluated for the SBD South African variant. 

Thereafter, pharmacological properties of these compounds were 
evaluated using the ADMET Lab server. Properties evaluated included: 
solubility by the logP distribution coefficient with suggested values of 
0–3; volume distribution score (VD), <0.07L/kg confined to blood 
bound to plasma protein, 0.07–0.7L/kg evenly distributed, >0.7L/kg 
bound to tissue components (e.g., protein, lipid), blood-brain barrier 
(BBB) with a suggested value of greater than 0.1 indicating BBB 
permeation; absorption was evaluated by the Papp (Caco-2 Perme-
ability) with a suggested value greater than − 5.15, human intestinal 
absorption (HIA) including two categories: Category 1 > 30% HIA; 
Category 0, HIA <30%; elimination by the T1/2 half-life time value 
(range: >8 h: high; < 8 h: moderate; <3 h: low) and toxicity by the LD50 
of acute toxicity score (High-toxicity: 1–50 mg/kg; Toxicity: 51–500 
mg/kg; low-toxicity: 501–5000 mg/kg); metabolism and drug likeness 
assessed by the Lipinski’s rule of 5 with a suggested value score of 2 or 
greater. The pharmacological properties evaluated of the selected 
compounds are shown on Table 8. 

Based on the Lipinski’s rule of 5, ligand 65 and 40 showed the highest 
drug-likeness activity. Ligands 65, 137 and 70 were predicted to have 
poor aqueous solubility, whereas compound 40 showed poor lipid 
bilayer permeability. All ligands displayed blood-brain barrier perme-
ation except for compound 70. All set of ligands showed poor absorp-
tion, however compound 40 was predicted to have greater than 30% 
human intestinal absorption. In terms of toxicity and elimination, all 
showed low toxicity and demonstrated optimal half life time. 

4. Discussion 

The ongoing SARS-CoV-2 (COVID-19) global epidemic outbreak, 
infecting people worldwide, has fast track both vaccine and drug ther-
apeutics. In this context, computational methods may be used to 
decrease the time of drug discovery and development. Indeed, results 
from in-silico studies have advance ranking of lead compounds and 
reduce both time and selection of poor lead molecules in the laboratory. 
These studies have contributed to the development of a series of 
pharmaco-therapeutic drugs and has proven an effective tool for drug 
discovery [20–23]. In a similar manner, computational methods have 
the advantage of testing a wide spectrum of compounds that may be 
model against specific target areas. For example, a recent work by Wu 
and colleagues reported compounds from different sources including 
flavonoids, anti-bacterial, anti-HIV and anti-fungal with activity against 

Table 4 
Molecular interactions between selected compounds and SARS-CoV-2 active site 
target proteins.  

Target Compound Interaction Amino acid Distance 
(Angstroms) 

SBD Standard Hydrogen ARG403 3.00 
GLN493 2.70 
GLN493 2.09 
GLY496 3.43 
PHE497 3.06 
GLN498 3.03 
ASN501 2.02 
ASN501 3.91 

Hydrophobic GLU406 3.92 
LYS417 3.30 
TYR453 3.45 
TYR495 3.41 

SBD 65 Hydrogen ARG403 2.10 
ARG403 2.93 
GLN493 3.01 
GLN493 3.16 
GLY496 2.03 
PHE497 3.20 
GLN498 3.49 
ASN501 2.27 
TYR505 1.70 

Hydrophobic TYR489 3.59 
PHE490 3.72 

SBD_SA 65 Hydrogen ARG403 3.22 
TYR453 2.38 
GLY496 2.23 
TYR505 2.72 
TYR505 2.85 

Hydrophobic ILE418 3.93 
TYR453 3.91 
TYR453 3.18 
LEU455 3.77 
GLN493 3.60 
TYR495 3.75 
PHE497 3.94 
TYR501 3.85 
TYR501 3.29 
TYR505 3.02 
TYR505 3.66 
TYR505 3.30 

NSP12 137 Hydrogen bond LYS621 3.67 
CYS622 2.51 
LYS798 2.97 

Hydrophobic ASP618 3.53 
LYS798 3.59 
TRP800 3.17 

Salt bridges ASP618 5.00 
NSP13 20 Hydrogen bond GLY285 2.25 

GLY287 3.17 
LYS288 2.45 
SER289 1.92 
ASP374 3.46 
GLU375 3.32 

Hydrophobic GLU375 3.95 
Salt bridges LYS288 3.97 

ARG567 4.52 
Mpro 70 Hydrogen bond GLU166 2.66 

GLU166 3.11 
Hydrophobic HIS41 3.98 

MET165 3.17 
PRO168 3.33 
GLU166 3.61 
ASP187 3.70 

Salt bridges HIS41 5.43 
HIS41 5.44 
HIS41 5.35 

ACE-2 40 Hydrogen GLU35 3.60 
Hydrophobic HIS34 3.97 

GLU37 3.70 
Cation 
interaction 

GLU35 3.79 
ASP38 4.42 
LYS353 3.34 
LYS353 4.60 

Key: SBD, spike binding domain; SBD_SA, spike binding domain South African 
variant. 
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SARS-CoV-2 [24]. Likewise, Natesh et al. described culinary compounds 
with potential to inhibit main protease, spike protein and ACE2 re-
ceptors of SARS-CoV-2 [25]. In a similar framework, Feng et al. used 
pattern recognition computing to identify ten potential anti-viral com-
pounds from the CAS COVID-19 dataset [26]. Similarly, during the first 
months of the COVID-19 outbreak, machine learning approaches have 
been applied to a wide spectrum of areas in an effort to better under-
stand and contain the virus, including genomics, prediction of patient 
outcomes and infections, assay development and potential drug dis-
covery as inhibitors of COVID-19 [27–32]. 

In this study, computational methods including a random forest 
classifier along with molecular docking, interaction profiles and mo-
lecular simulation were used to identify potential anti-viral compounds 
against SARS-CoV-2 structure and non-structure proteins. The random 
forest classifier showed 0.92 (AUC of the ROC curve) reliability at 
identifying potential inhibitors and selected 178 compounds with po-
tential activity against SARS-CoV-2 from a large dataset of antiviral 
compounds; it also provided key chemical important features for pri-
oritization of anti-viral compounds and identified key molecular fin-
gerprints as most important classifiers. Binding affinity of these 
compounds were subsequently validated and confirmed using a multi- 
molecular docking analysis. Of these, only 39 were validated to bind 
active sites of viral structural (SBD spike region) and non-structural 
proteins involve in RNA replication (NSP12-RNA polymerase, NSP13- 
helicase, and Mpro-main protease). Although the latter compounds 
showed coverage to SARS-CoV-2 active sites, only four (compounds 40, 
65, 70 and 137) were selected for subsequent downstream analysis 
(molecular interactions and pharmacological properties) based on visual 
inspection of the active sites covered. The selected compounds showed 
high affinities to structure and non-structure SARS-CoV-2 targets and 

formed non-covalent interactions with key active site amino acid resi-
dues. All but one, to the best of our knowledge, are exclusively cited as 
anti-viral agents in the CAS dataset. Only compound 70 (C45 H30 O18, 
Benzoic acid, 5-[bis(3-carboxy-4-hydroxyphenyl)methyl]-3-[[3-car-
boxy-5-[(3-carboxy-4-hydroxyphenyl)(3-carboxy-4-oxo-2,5-cyclohexa-
dien-1-ylidene)methyl]-4-hydroxyphenyl]methyl]-2-hydroxy, CAS 
#1817756-68-5) and its derivatives have varied applications (e.g. 
treating conditions including nociceptive pain, cancer, age-related 
macular degeneration, and hemolytic uremic syndrome) [33–36]. To 
support the molecular interactions identified, molecular dynamics (MD) 
of a control molecule (remdesivir) and ligand 65 (C48H53 N5 O13, 
D-Galactopyranoside, phenylmethyl 2-[(3-carboxy-1-oxopropyl)ami-
no]-2-deoxy-3,4,6-tris-O-(phenylmethyl)-, 5’-ester with 1-[2, 
3-O-(methoxymethylene)-β-D-ribofuranosyl]-1H-1,2,4-tri-
azole-3-carboxamide, CAS #1002336-72-2) were simulated against the 
SBD region of the spike protein. These results show the interactions of 
remdesivir and ligand 65 against active site amino acid residues 
(ARG403, GLN 493, GLY496, TRY489, ASN 501) of the SBD spike pro-
tein region were maintained with strong binding affinity throughout the 
entire trajectory time interval. Only LEU455 not initially identified by 
docking and molecular profiles was later described by the MD simula-
tion. We recognize that only one control and one compound were used 
to confirm the predicted molecular interactions by MD simulation and 
additional in-vitro and in-vivo experimental studies are warranted to 
evaluate the bioactivity effects of these compounds on target proteins. 
Nonetheless, our initial observations provide a foundation to pursue 
these candidate compounds as potential therapeutics against 
SARS-CoV-2. 

Although the single-drug approach of selected compounds as in-
hibitors of SARS-CoV-2 may effectively target viral active pockets, it 

Fig. 8. Molecular interactions between active site amino acid residues and anti-viral compounds. (A) SBD and control ligand remdesivir, (B) SBD with compound 65, 
(C) SBD South African variant interactions with ligand 65 shows hydrophobic interaction between TYR501 and ligand depicted by gray dashed lines, (D) NSP12 
interaction with ligand 137, (E) NSP13 and ligand 40, (F) Mpro and ligand 70, (G) ACE-2 interactions with ligand 40. Molecular interactions represented by solid blue 
(hydrogen bonding) and dashed lines (gray: hydrophobic; yellow, cation interaction; orange, salt bridge). 
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may not be enough to arrest the life cycle of the virus and both multi- 
target or combinations of drugs may be needed to treat COVID-19. 
This is consistent with current clinical trials [37]. In this alternative 
approach, we applied the four selected compounds to the virus 

chemo-genomics platform described by Feng and colleagues to identify 
potential drug treatment combinations against SARS-CoV-2. Several 
combinations were identified that target structural and non-structural 
targets simultaneously, however, only two (ligand 40, C16H20 N5 O7 
P, Guanosine, 2’-C-1,2-propadien-1-yl-, cyclic 3′,5’-(1-methylmethyl 
phosphate), CAS #1399805-48-1 and ligand 137, C49H38 N14 O9 S3, 
1-Naphthalenesulfonic acid, 4-[[2,4-diamino-5-[[4-[[3-[[2,4-diami-
no-5-[(4-sulfo-1-naphthalenyl)azo]phenyl]azo]-2-methyl-5-sulfo-
phenyl]azo]-1-naphthalenyl]azo]phenyl]azo], CAS #687967-00-6) 
were confirmed by docking and molecular interactions to bind to active 
site pockets of SARS-CoV-2. Of these, compound 40 showed binding to 
both NSP13 and ACE-2, while compound 137 showed affinity to NSP12 
and the SBD region of the spike protein. Interestingly, compound 137 
was able to bind with high affinity to the South African variant amino 
acid residues ASN417 and LYS484. These latter two compounds possibly 
generating a drug combined effect treatment strategy to both structure 
and replication apparatus of the virus and possibly inhibiting the newly 
emerged South African variant to gain access to the host may prove 
interesting therapeutic candidates to pursue. 

In terms of the pharmacological profiles, selected compounds 
demonstrated acceptable drug-likeness metrics, especially compounds 
40 and 65 as inhibitors of NSP13/ACE-2 and the SBD region each. 
Although the metric for drug likeness of compounds 70 and 137 were 
not optimal, it should be noted that clinical drugs may have 

Fig. 9. Molecular dynamic simulation of the control and ligand 65 against the SBD region. Panels A + B + C show the control remdesivir binding to the SBD region at 
multiple time interval frames (0; 506, 10.14 ns; and 986, 19.74 ns). Panels D + E + F illustrate ligand 65 binding to the SBD region at interval frames (0; 503, 10.08 
ns; and 990, 19.82 ns). 

Table 5 
Energies of Remdesivir and ligand 65 to the SBD active site regions at different 
time intervals.  

Remdesivir: 

Frame Time (ns) Elec VdW Nonbond Total 

0 0 − 18.804 − 36.5253 − 55.3293 − 55.3293 
506 10.14 − 15.3262 − 29.2573 − 44.5835 − 44.5835 
986 19.74 − 15.4416 − 30.4299 − 45.8715 − 45.8715 
Ligand 65 
Frame Time (ns) Elec VdW Nonbond Total 

0 0 +4.4186 − 30.7731 − 26.3545 − 26.3545 
503 10.08 − 9.6287 − 30.4741 − 40.1028 − 40.1028 
990 19.82 − 15.0934 − 31.3019 − 46.3953 − 46.3953 

Key: Energies are in kcal/mol; ns, nanoseconds; Elec, electrostatic; VdW, Van-
derwall; Nonbond, nonbonded. 
From Table 5, the total energy suggests remdesivir with an initial stronger 
binding energy to the SBD region, however, ligand 65 showed a stronger binding 
energy at the end of the 20 ns simulation. 
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characteristics that result them to score low on indices of drug likeness. 
For example, one of the compounds initially identified as a candidate 
inhibitor of NSP13, ligand 25 CAS #1250937-05-3, showed low drug 
likeness metrics, however, it has been reported as a clinical drug to 
inhibit viral nonstructural protein NS5A [38]. Likewise, drugs with low 
drug likeness scores may exhibit acceptable pharmacokinetic profiles, a 
prerequisite for an effective clinical drug [39]. In regards to toxicity, all 
selected compounds showed low level of toxicity. Although, the present 
work lacks in-vitro and in-vivo investigations to ascertain selected 
compounds toxicity and bioactivity against SARS-CoV-2, we believe our 
initial observations may be used as appropriate guide for the next phases 
of drug discovery to fast track drug development and therapeutics 
against SARS-CoV-2 (COVID-19). 

5. Conclusion 

With the global spread of SARS-CoV-2 and with the roll-out of the 
first approved vaccines, we anticipate prevention and decrease number 
of fatalities due to SARS-CoV-2 transmission. Nonetheless, challenges 
will still remain, mainly emerging variants that are more transmissible. 
Undoubtedly, advances in anti-viral drug development and clinical trials 
will lead to our arsenal of effective therapeutics against SARS-CoV-2. In 
this study, we have proposed use of a machine learning tool along mo-
lecular docking studies and molecular interactions to identify potential 
therapeutics against SARS-CoV-2. Our findings from surface 3-D struc-
tures between SARS-CoV-2 target sites and anti-viral compounds, along 
with molecular interactions and simulations suggests selected com-
pounds may serve as a guide for the next phases of drug discovery to 
treat COVID-19. Though only a selected list of compounds was detailed 
for further docking and molecular interactions, the remaining com-
pounds identified here and their affinity to the active site of viral targets 
suggests these compounds may also be used as a guide for further 
investigation. Lastly, the potential of these compounds (40, 65, 70, 137), 
and mainly ligand 40 and 137 to simultaneously modulate structure and 
non-structure protein in SARS-CoV-2 and target variants may provide 

Table 6 
Contact amino acid residues between ligands and the SBD region at different 
time (nanoseconds).  

Ligand Time Intervals 

Remdesivir  
Time = 0 Time = 10.14 Time = 19.74  
Frame 0 Frame 506 Frame 986  
ARG-403 ARG-403 ARG-403  
ASP-405 GLY-447 GLY-447  
GLU-406 TYR-449 TYR-449  
LYS-417 TYR-453 TYR-453  
ILE-418 SER-494 SER-494  
ASN-422 TYR-495 TYR-495  
TYR-453 GLY-496 GLY-496  
ARG-454 PHE-497 PHE-497  
LEU-455 GLN-498 GLN-498  
GLN-493 THR-500 THR-500  
SER-494 ASN-501 ASN-501  
TYR-495 GLY-502 GLY-502  
GLY-496 GLY-504 TYR-505  
PHE-497 TYR-505 GLN-506  
GLN-498 GLN-506   
ASN-501    
TYR-505   

Ligand 65  
Time = 0 Time = 10.08 Time = 19.82  
Frame 0 Frame 503 Frame 990  
TYR-449 TYR-351 TYR-449  
ASN-450 TYR-449 LEU-452  
LEU-452 ASN-450 LEU-455  
LEU-455 TYR-451 PHE-456  
GLU-484 LEU-452 ILE-472  
TYR-489 THR-470 TYR-473  
PHE-490 GLU-471 GLY-485  
LEU-492 ILE-472 CYS-488  
GLN-493 PHE-490 TYR-489  
SER-494 LEU-492 PHE-490  
TYR-495 GLN-493 LEU-492  
GLY-496 SER-494 GLN-493  
GLN-498  SER-494  

Fig. 10. Spider plot of selected compounds (40, 65, 70, 137) against viral targets using the knowledgebase Virus-CKB. The blue circle with yellow highlights 
represents the predicted targets (Spike, spike binding protein; ACE2, angiotensin converting enzyme-2; MTA SARS2: methyl transferase; PR, Mpro and RDRP, NSP12 
– RNA dependent RNA polymerase; PLP, papain-like protease) of selected compounds and dashed lines represent their interactions. 
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guidance to design and deliver effective therapeutics to treat COVID-19. 
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