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Abstract: Antiphospholipid syndrome (APS) is a leading acquired cause of thrombotic events, with
a notable tendency to promote thrombosis in vascular beds of all sizes, including both arterial and
venous circuits. While pathogenic antiphospholipid antibodies circulate at relatively stable levels
in blood, thrombosis tends to manifest as discrete and acute events, suggesting the requirement for
a “second hit.” While this two-hit model is generally accepted, much remains to be learned about
exactly how antiphospholipid antibodies predispose to thrombosis in vivo and exactly how this
predisposition interacts with the second hit. To this end, investigators have turned to animal models.
Numerous approaches for modeling APS in animals have been described to date, each with potential
advantages and disadvantages. This review will attempt to describe the most common APS models
employed so far while discussing some pros and cons of each. Mechanisms of thrombotic APS that
have thus far been explored in animal models will also be briefly addressed.

Keywords: antiphospholipid syndrome; antiphospholipid antibodies; thrombosis; animal models

1. Introduction

Antiphospholipid syndrome (APS) is an autoimmune thromboinflammatory disease
characterized by vascular thrombosis and obstetric complications in the setting of one
or more antiphospholipid antibodies (aPL). With a prevalence of roughly 1 in 2000, a
defining feature of APS is its ability to promote thrombosis in vascular beds of all sizes,
including both arterial and venous circuits [1,2]. Thrombosis in APS remains insufficiently
understood, and therapies targeting underlying pathophysiology are absent. About 70% of
patients with APS experience peripheral thrombosis, with DVT being the most common
thrombotic event [3]. In a smaller fraction of patients, thrombi form within microcirculatory
vascular beds. In its severest form, microvascular APS can present as catastrophic APS
(CAPS) characterized by multi-organ failure and high mortality.

Beyond thrombosis and pregnancy loss, APS regularly manifests with other morbid
features including thrombocytopenia, cardiac valve destruction, accelerated atheroscle-
rosis, nephropathy, movement disorders, and cognitive decline [4]. This heterogeneity
of potential presentations highlights APS as a truly systemic autoimmune disease and
underscores the need for a better understanding of disease mechanisms that will enable a
personalized approach to management. Indeed, adjustment of antiplatelet, anticoagulant,
and/or immunomodulatory medications is most often based on a reaction to another
morbid event rather than a proactive attempt to prevent that event in the first place.

Despite the name of the syndrome (anti-phospholipid), the best-characterized au-
toantigen in APS is not a phospholipid, but rather a lipid-binding protein that circulates at
high levels in the blood (100–200 µg/mL) known as apolipoprotein H (APOH) or beta-2
glycoprotein I (β2GPI). Autoantibodies to β2GPI activate various cell types in vitro [5–8]
and promote both thrombosis and pregnancy loss when injected into mice [9,10]. Currently,
three assays are used to classify a patient as having APS: (i) measurement of anticardiolipin
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antibodies, (ii) measurement of anti-β2GPI antibodies, and (iii) the lupus anticoagulant
functional assay [11]. The latter detects various species of aPL based on their paradoxical
prolongation of in vitro clotting times, including anti-phosphatidylserine/prothrombin
(anti-PS/PT) antibodies [12].

While aPL circulate at relatively stable levels in the blood, thrombosis tends to manifest
as discrete and acute events. It is assumed that the intravascular space is primed toward a
prothrombotic state by aPL, but then a “second hit” is necessary to trigger the thrombotic
event itself. While this two-hit model is generally accepted, much remains to be learned
about how exactly aPL predispose to thrombosis in vivo, as well as how this predisposition
interacts with the second hit.

In APS thrombosis models, injection of aPL (i.e., passive immunization) is typically
used to induce an APS-like disease state. Antibodies (0.1–2 mg) have been administered
via intraperitoneal (IP), tail vein (intravenous/IV), or retro-orbital (also IV) routes. The
aPL may be administered before or after surgical intervention, and via a single injection
or a series of injections. Both APS patient serum and serum from β2GPI-immunized
rabbits have been used as sources from which to purify aPL; monoclonal antibodies have
also occasionally been used. At this point, there are insufficient data to determine which
antibody preparation or route of administration best replicates the APS disease state, and
choices have been relatively siloed among different research groups.

Numerous approaches for modeling APS in animals have been described to date, each
with potential advantages and disadvantages for characterizing aPL-mediated thrombosis.
These animal models typically focus on a single type of vascular bed: namely venous,
arterial, or microcirculatory. This review will attempt to describe the most common
models employed to date within each category while discussing some advantages and
disadvantages of each (Table 1). Mechanisms of thrombotic APS that have thus far been
explored in animal models will also be briefly addressed.

Table 1. Strengths and limitations of various animal models of APS thrombosis.

Thrombosis Model Strengths Limitations

Venous Models

Femoral Vein Pinch [13,14]

Well suited for the study of thrombus
propagation and resolution; enables
real-time visualization of thrombus

formation.

Thrombus propagates against the
direction of blood flow.

Stenosis IVC [15–19]

Variable thrombus generation enables
study of thrombus initiation in

prothrombotic conditions; thrombi
produced are structurally similar to

humans, thrombus experiences constant
blood flow which supports the study of

therapeutics; induces thrombosis without
endothelial damage.

Variable thrombus size necessitates larger
experimental group sizes; thrombus

propagates against the direction of blood
flow; challenging to observe thrombus

formation in real-time.

Electrolytic IVC [20–22]

Thrombus experiences constant blood
flow; suited for study of antithrombotic
or thrombolytic agents; thrombi form in

the direction of blood flow.

Longer operative time; physical damage
to IVC vein lumen; can cause necrosis in

the female reproductive organs of
C57BL/6 mice; challenging to observe

thrombus formation in real-time.

FeCl3 IVC [17,23]

Acute model suited to study early
timepoints in thrombosis; thrombi form

in direction of blood flow; intravital
microscopy possible.

Smaller thrombus size can limit options
for biochemical assays; transmural vein
injury induced by FeCl3 may not mimic

clinical thrombosis.
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Table 1. Cont.

Thrombosis Model Strengths Limitations

Arterial Models

FeCl3 Carotid [24,25]
Acute model, suited to study early

timepoints in thrombosis; thrombi form
in direction of blood flow.

Requires a challenging surgical
procedure to isolate the carotid artery;
transmural vein injury may not mimic

clinical thrombosis.

Photochemical Carotid [26]

Intravital microscopy enables real-time
observation of thrombosis;
catheterization allows easy

administration of therapeutics;
photochemical injury is highly

standardizable.

Relies on local injury to produce
thrombus; Acute model not suited for

chronic studies.

Microvascular Models

Dorsal Skinfold Chamber [27,28]

DSC device enables observation of the
microcirculation for ≤3 weeks; real-time
visualization of thrombosis initiation and

resolution.

Requires surgery to implant DSC device
and a recovery period before performing

thrombosis experiments.

Laster-Induced Injury in the Cremaster
Muscle [29–32]

Intraviral microscopy allows observation
of thrombosis; easily accessible vascular
bed; allows for the induction of multiple

thrombi in the same mouse.

Can only be performed on male mice.

FeCl3 Mesenteric Microcirculation [24,25]
Easily accessible microvasculature; well
suited for intravital microscopy; suited

for acute study of thrombosis.

Variable vessel size and visceral fat can
influence thrombus size; oxidative injury

induced may limit applicability for
studies of endothelial

inflammation-associated thrombus.

LPS-Priming [33,34]

Consistent thrombus generation;
real-time visualization of thrombosis

with intravital microcopy; using a
non-localized inflammatory stimulus,

LPS, as a prothrombotic trigger might be
more relevant to clinical thrombosis.

Complex surgical procedure; longer
operative time.

Histone-Priming [35]
Has allowed study of anti-PS/PT

antibodies in APS-mediated thrombosis;
does not require surgical procedure.

Not suited for the study of thrombosis in
specific regions; non-surgical procedure

prevents real-time observation of
thrombosis.

2. Venous APS Models
2.1. Femoral Vein Pinch

The femoral vein pinch model, first developed by Pierangeli and colleagues in 1994,
was initially used to establish the relationship between high levels of aPL and clinical
thrombosis [13]. This model applies a standardized pinch pressure to the femoral vein
to generate multiple non-occlusive thrombi within the vein lumen (Figure 1A). Video
taken during the experiment is used to measure the area of generated thrombi and time to
thrombus formation and dissolution.

The surgery begins by excising the skin overlying the right femoral vein to expose a
0.5-cm segment of the vein. Next, a standardized “pinch” with a pressure of 1500 g/mm2

is applied to the vein to induce thrombosis. One minute after the pinch injury, a snapshot
of the vein-thrombus interface is taken. Thrombus area is measured by tracing the outer
margins of the clot in the digitized image. The time to thrombus formation and the time to
thrombus dissolution may also be recorded [14].
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Figure 1. APS models of venous thrombosis. (A) Femoral vein pinch. A pinch injury is applied to
the femoral vein, and rapid clot formation occurs 1–5 min following the injury [14]. (B), Stenosis. A
ligature is placed around the IVC to achieve 90% occlusion, the spacer is removed and a thrombus
forms in opposition to blood flow [15]. (C) Electrolytic IVC. Current is applied to a needle inserted
into the IVC for 15 min. A thrombus grows in the direction of blood flow [20].

The femoral vein pinch model is ideal for investigating thrombus propagation and
dissolution because it enables real time visualization of thrombus progression. Given that
the duration of the pinch injury may affect thrombus generation, laboratories must take
care to have consistent pinch pressure application times to ensure standardized results.

2.2. Stenosis

The stenosis mouse model is well equipped to study the initiation of large-vein
thromboses, such as deep vein thrombosis (DVT) in patients with APS (Figure 1B). In
this model, a partial flow restriction (stenosis) is created in the inferior vena cava (IVC)
to mimic blood flow stagnation in venous valves, a major cause of DVT in humans [15].
The duration of the stenosis model (typically 6, 24, or 48 h) can be adjusted to characterize
different stages of DVT initiation [15]. Generated thrombi primarily form via laminar
(non-turbulent) blood flow.

Under surgical anesthesia, a laparotomy is performed, the small bowel is exteriorized,
and lateral branches of the IVC are ligated using 7-0 Prolene. Next, precise dissections are
made caudal to the IVC and left renal vein junction to separate the IVC from the aorta. A
7-0 Prolene ligature is then fastened around the isolated IVC, using a blunted 30-gauge
needle as a spacer to achieve roughly 90% vessel occlusion [15]. Following ligation, the
spacer is removed, the abdomen is closed, and the mouse is allowed to recover. Mice
are typically euthanized 6 to 48 h following surgery to assess thrombus formation. After
excising the IVC, thrombi can be measured and then snap frozen or formalin-fixed for
further analysis.

The stenosis model generates a thrombus that is structurally and histologically similar
to human thrombi [15]. As the model generates thrombi in the absence of venous endothe-
lial denudation [16], the stenosis model may be more relevant for studying DVT than
mechanisms that induce thrombosis via endothelial damage, such as the ferric chloride
model [16]. The stenosis model’s most significant limitation is variable thrombus size,
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which necessitates more mice per experimental group [17]. The cause of this variability
is unknown, but it likely relates to anatomical differences among mice [18]. There is also
debate regarding the extent to which patency of the infrarenal side branches is a key
determinant of thrombus size [19].

2.3. Electrolytic IVC

The electrolytic IVC model is a venous thrombosis mouse model that produces a
non-occlusive thrombus in the presence of continuous blood flow (Figure 1C). Applying
constant direct current to a copper wire inserted into the IVC generates free radicals, which
then activate endothelial cells and initiate thrombosis [20]. Similar to humans, thrombi
produced in the electrolytic IVC model form in the direction of blood flow (unlike the
stenosis model where the thrombus grows in opposition to flow). Thrombus weight is both
current and time-dependent [21].

To perform the electrolytic IVC model, the IVC is exposed (similar to the stenosis
model), and lateral branches are ligated using 7-0 Prolene suture, leaving any posterior
branches patent. Next, a 25-gauge needle clamped to a 30-gauge silver-coated copper wire is
inserted into the IVC and positioned against the anterior wall of the vessel (anode). Another
needle (cathode) is implanted subcutaneously to complete the circuit. With both wires
inserted, a constant current of 250µA is applied for 15 min via a voltage-to-current converter.
The needle is then carefully removed, pressure-induced hemostasis is achieved, and the
abdomen is closed. Like the stenosis model, thrombi can be analyzed 6–48 h later. Other
studies have investigated thrombus formation at longer time points, from 72 h to 2 weeks,
albeit in a non-APS setting [22]. During thrombus isolation, the IVC is separated from the
adjacent aorta, and the thrombus is trimmed of fat and vein wall. The isolated thrombus
can be snap-frozen for Western blotting or formalin-fixed for immunohistochemistry.

The electrolytic IVC model produces thrombi of relatively consistent size across
a variety of experimental time points [17]. This model may be ideal for investigating
therapeutic agents, which due to the presence of continuous blood flow remain in contact
with the thrombus. Challenges of this model include a longer operative time and damage
to the IVC wall at the needle insertion site. Additionally, this model can lead to necrosis
of the reproductive organs in female C57BL/6 mice [36]. For this reason, male mice are
generally favored for the electrolytic IVC model, which results in sex bias [22].

2.4. Ferric Chloride Injury Model—Femoral Vein

The femoral vein ferric chloride (FeCl3) model is used to mimic venous thrombosis.
Under anesthesia, the femoral vein is exposed and isolated from the femoral artery via a
narrow incision in the upper inner leg of the mouse. Then, a filter paper soaked in FeCl3 is
applied to the vein. After 1–5 min, the paper is removed, and the thrombus is allowed to
develop within the vein lumen. Twenty minutes later, the thrombus is excised, measured,
and processed based on laboratory preference [23].

Advantages of the femoral vein FeCl3 model include a straightforward surgical pro-
cedure and a brief time to thrombosis. A limitation of the model is the production of a
transmural vein wall injury that may not replicate clinical DVT cases [17].

2.5. What Have We Learned about APS-Associated Venous Thrombosis from Animal Models?

Animal models have been central to understanding the role of various mechanistic
factors in the pathogenesis of APS-mediated thrombosis (Table 2). Autoantibodies targeting
domain I of β2GPI (anti-DI) are thought to be especially pathogenic, functioning as a better
predictor of thrombotic risk in APS patients than either anti-β2GPI or anticardiolipin
antibody levels [37,38]. The same seems to hold true in mice where injection with anti-DI-
rich IgG generate larger venous thrombi as compared with mice injected with anti-DI-poor
IgG [39]. Regarding mechanisms of thrombosis, these venous models have suggested
that the exaggerated interplay between leukocytes and the endothelium is critical to APS
pathophysiology. For example, disruption of endothelial adhesion molecules such as
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E-selectin and VCAM-1 (or their counterparts on leukocytes such as PSGL-1) reduces
the size of aPL-mediated venous thrombi [40,41]. More recent work has suggested that
beyond adhesion of neutrophils, the release of neutrophil extracellular traps (NETs) by
activated neutrophils may be another therapeutic target [42]. NETs are prothrombotic
webs of chromatin and microbicidal proteins released by dying neutrophils—a process
that is over-exuberant in APS [43]. Indeed, depletion of neutrophils, dissolution of NETs
by deoxyribonucleases, or prevention of NET release by adenosine receptor agonists and
natural gingerols have all proven effective in mitigating APS-associated venous thrombosis
in mice [44–46]. Other likely synergistic pathways implicated in these models include
NADPH oxidase [47], TLR4-associated signaling [23,47], and the complement cascade [48].

Table 2. Mechanisms of APS-associated thrombosis investigated using animal models.

Pathway/Factor Role

Venous

Anti-domain I Pathogenic aPL bind the N-terminal domain of β2GPI (DI) [39].

Adhesion molecules P-selectin, VCAM-1, PSGL-1, etc., facilitate interactions between leukocytes and
the endothelium [40].

Deoxyribonucleases Degradation of DNA (a key component of NETs) decreases thrombus size and
incidence [44].

Adenosine receptor agonists Adenosine receptor agonists (CGS21680, dipyridamole) suppress NETosis via
stimulation of cAMP production [45].

Natural gingerols Gingerols inhibit phosphodiesterase activity and suppress proinflammatory
cytokine release [46].

NADPH Oxidase NOX2-mediated tissue factor activation induces prothrombotic responses [47].

TLR4 The requirement for TLR4 may depend upon the type of aPL (anti-β2GPI versus
cofactor-independent) [23,47].

Complement cascade C3 in particular has been shown to be necessary for aPL-mediated thrombosis [48].

Arterial

TLR4 TLR4 acts as a trigger of innate immune responses and has been shown to be
necessary for aPL-potentiated thrombosis [49].

Reactive oxygen species (ROS) ROS induce oxidative stress and exposure of subendothelial collagen, which
promotes platelet adherence [50].

anti-β2GPI antibodies Anti-β2GPI antibodies induce platelet activation [29].
Hydroxychloroquine Hydroxychloroquine increases eNOS activity (other roles are also likely) [51].

Microvascular

Platelet-endothelial cell interactions Binding of anti-β2GP1/β2GP1 complexes to the developing thrombus activates
platelets. Platelet-derived products then activate endothelial cells [30].

Complement cascade Inhibition of membrane attack complex assembly protects against the
prothrombotic effects of aPL [33].

Nitric oxide synthase Increased levels of eNOS production potentiate NO production and thereby inhibit
further platelet aggregation [52].

β2GPI/anti-β2GPI interaction Disruption of the interaction between β2GPI and anti-β2GPI antibodies is
protective [31,33].

3. Arterial APS Models
3.1. Ferric Chloride Injury Model—Carotid Artery

The FeCl3 injury model has been implemented in many different vasculature beds,
including carotid arteries, femoral veins, and mesenteric vessels [24,25]. This section will
discuss the arterial application of this model in mice.

After anesthetizing the mouse, a midline incision is created from the manubrium to
the hyoid to expose the right jugular vein. Next, a platelet- or leukocyte-labeling agent
may be administered into the jugular vein. The left sternocleidomastoid muscle is then
retracted to visualize the carotid artery, and a 5-mm section is isolated from the nearby
vagus nerve. A filter paper soaked in FeCl3 is then applied to the exposed artery for 1–5 min.
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Following removal of the FeCl3 paper, the artery is flushed with saline. Real time video,
Doppler flow, and fluorescent intravital microscopy can be used to visualize blood flow,
platelet aggregation, and clot formation from the onset of injury through euthanasia [24,25].
Thrombosis typically occurs within 30 min of the FeCl3 injury [25].

Strengths of the arterial FeCl3 injury model include the ability to visually track clot
formation from onset of injury to full occlusion. As clots in this model are recovered just
30 min after initiation, this model eliminates the risk of death or complication during a
lengthy recovery period, and it presents fewer logistical constraints. Disadvantages include
a relatively difficult surgical procedure to isolate the carotid artery.

3.2. Photochemical Carotid

Photochemically induced carotid thrombosis has been used to simulate APS in ham-
sters [26] (Figure 2). Rose Bengal is a photosensitizing fluorescent dye that produces
reactive oxygen species and focal vascular endothelial damage following exposure to green
light. Beyond hamsters, the photochemical carotid model has been commonly used in
vascular studies of thrombosis in other rodent species, including mice, although not to our
knowledge in the context of APS [53–55].

Figure 2. Photochemical carotid model of arterial thrombosis. aPL are injected into a jugular catheter.
Rose Bengal is injected into the exposed carotid artery. The vessel is irradiated with green light for
two minutes. Thrombosis is recorded over the next 40 min [26].

Hamsters are first anesthetized with sodium pentobarbital [26]. Next, a 2.5 French
venous catheter is inserted into the right jugular vein. The left carotid artery is then
carefully exposed and mounted on a transilluminated stage. At this point, the carotid
artery is injected with Rose-Bengal dye (20 mg/kg) and carefully irradiated for two minutes
with green light (wavelength 540 nm) emitted from a xenon lamp. Thrombosis is visualized
in the transilluminated carotid artery via intravital microscopy and is recorded (typically
for 40 min). Snapshot images of the video may be digitized, and post-experiment analysis
is typically performed by graphing transmitted light intensity versus time. Thrombus size
and formation are assessed by calculating the area under the curve, expressed in arbitrary
light units.
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As described previously, reactive oxygen species contribute to platelet activation
and thrombus formation [50]. Like the aforementioned FeCl3 and electrolytic models, the
photochemical carotid model attempts to replicate endothelial dysfunction mediated by
oxidative stress. A significant advantage to using a photochemical stimulus is the ability to
standardize the degree of microvascular injury, producing highly reproducible results [56].
Catheterization of the animals in this model also allows for prompt intravenous delivery of
experimental agents.

3.3. What Have We Learned about APS-Associated Arterial Thrombosis from Animal Models?

While the study of arterial vascular beds has not been as extensive as for venous,
there are some notable similarities. TLR4 again appears to have an important role in
APS-associated arterial thrombosis [23,49], as does the exaggerated formation of reactive
oxygen species [57]. The pathogenicity of anti-β2GPI antibodies has been confirmed [26],
with evidence that the antimalarial hydroxychloroquine may be an effective strategy for
breaking the thromboinflammatory cycle [51].

4. Microvascular APS Models
4.1. Dorsal Skinfold Chamber

The Dorsal Skinfold Chamber (DSC) mouse model uses an implantable device to
enable the long-term study of subcutaneous microcirculation (Figure 3A). This device
provides visualization of the microcirculation during and after the prothrombotic induction
of a laser injury [27]. The implantable nature of this device enables multi-day experiments.

Figure 3. APS models of microcirculatory thrombosis. (A) Dorsal skinfold chamber model. Subcutaneous vasculature is
visible through DCS window. A 10 Hz pulse laser s directed at the vessel wall for 30 s. Thrombosis is observed over the next
10 min [27,28]. (B) Laser-induced injury of the cremaster arterioles. Cremaster arterioles are exteriorized onto an intravital
microscope tray. A laser is focused through the microscope objective and aimed at a selected vessel wall. Thrombosis is
recorded via intravital fluorescent microscopy [29].

The DSC model starts with shaving and depilating the back of an anesthetized mouse.
The two sides of the chamber are implanted by sandwiching a double layer of cleared
dorsal skin. Using a surgical microscope, a 15-mm diameter circle of dorsal skin is removed,
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and a coverslip is placed over the excised area and fixed to the chamber device. A 5–7-day
recovery period after device implantation is required to reduce the influence of surgical
trauma on the vasculature [27,28]. When ready for the experiment, mice are anesthetized,
and intravital fluorescence microscopy is used to visualize blood flow in small cutaneous
vessels through the dorsal skinfold chamber window. A 10 Hz pulse laser is then used
to irradiate small vessels (50–80 µm in diameter) for 30 s, and the resulting thrombus
formation is recorded for ten minutes. Multiple vessels may be irradiated in a single
mouse [28].

The DSC model can provide data on thrombus size, as well as the time to thrombus
formation and resolution. The chamber implanted in the mouse enables observation of the
microcirculation for up to 3 weeks without adverse effects [27].

4.2. Laser-Induced Injury of Cremaster Arterioles

Thrombosis in the microcirculation is commonly investigated by laser-induced vessel
wall injury of cremaster arterioles (Figure 3B). After anesthetizing the mouse, the scrotum
is incised, and the testicle and surrounding cremaster muscle are exteriorized onto an
intravital microscopy tray [29]. The cremaster is superfused throughout the experiment
with a thermo-controlled and aerated (95% N2, 5% CO2) bicarbonate-buffered saline. Vessel
wall injury is induced by a laser system (for example, Micropoint Laser System) focused
through the microscope objective and aimed at the vessel wall. Intravital fluorescence data
will typically be captured for 3 to 5 min following the injury [29–31]. The model can be
repeated multiple times in a single mouse, inducing new thrombi upstream to avoid the
influence of disrupted flow dynamics created by previously generated thrombi [32].

This model’s strengths include its ability to perform multiple thrombosis experiments
in one mouse before and after treatment. Additionally, intravital fluorescence microscopy
can provide valuable information on the kinetics of thrombus formation and the composi-
tion of resulting thrombi [29,30,32]. Other positive attributes of this model include a simple
surgical protocol and a short procedure time. The model is limited by sex-bias, as female
mice do not have cremaster muscles and cannot be used in these studies [29–32].

4.3. Ferric Chloride Injury Model—Mesenteric Microcirculation

The mesenteric FeCl3 model involves the application of FeCl3 over arterial and venous
microvessels within the mesentery [25,51,52]. After anesthetizing the mouse, a laparotomy
is performed, the intestines are exteriorized, and the mesentery is gently spread on a Petri
dish to expose suitable vessels. Rhodamine 6G, a leukocyte and platelet labeling agent, is
then injected intravenously (tail vein or jugular vein). The Petri dish is placed under an
inverted microscope, and the chosen vessel is visualized. A FeCl3 soaked paper is then
applied to the vessel, and thrombus formation is observed via fluorescence microscopy.
After 1 min, the paper is removed, and the vessel is washed with saline. Dynamic thrombus
formation continues to be monitored via the Rhodamine 6G-labeled platelets and leuko-
cytes. Images are captured to measure the size of the resulting thrombi. Full occlusion of
the vessel typically occurs within 30 min of removing the paper [24]. Several parameters,
such as occlusion time, thrombus formation time, or thrombus size, can be investigated.

Thrombi formed by the FeCl3 model are highly sensitive to both anticoagulant and
antiplatelet drugs, making the model well suited for the preclinical evaluation of new
thrombolytic therapeutics [58,59]. Compared to the carotid artery FeCl3 model, the mesen-
teric model is less surgically intensive and easier to accomplish [24]. The mesenteric vessels
are also easily accessible and are well suited for intravital microscopic observation of
thrombosis. Regarding downsides, the reproducibility of the FeCl3 model can be limited by
variable vessel size and the presence of visceral fat, which may shield the vessel from injury.
Additionally, it is important to note that this model is not well suited for investigating
endothelial inflammation-associated thrombosis, as it causes severe oxidative injury and
endothelial denudation following FeCl3 application [24].
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4.4. LPS-Priming

The murine bacterial lipopolysaccharide (LPS) priming model is used to investigate
APS-associated thrombosis within the mesenteric microcirculation [33] (Figure 4). In this
model, a non-localized inflammatory stimulus, LPS, acts as the prothrombotic trigger rather
than mechanical (pinch, stenosis)- or physicochemical (photochemical, FeCl3)-mediated
endothelial injury.

Figure 4. LPS-priming model of APS-associated thrombosis. (1) Intraperitoneal injection of LPS.
(2) Two and a half hours later, Rhodamine 6G is infused into the femoral vein. (3) After 30 min-
utes, aPL are injected into arterial circulation. (4) Aggregates of fluorescently labeled platelets and
leukocytes are observed in the mesenteric microcirculation via intravital microscopy [33].

Three hours before APS IgG infusion, Wistar rats are injected with an intraperitoneal
dose of LPS or sterile saline as control. Two and a half hours later, the rat is anesthetized,
and the left carotid artery and femoral vein are cannulated with polyethylene catheters
connected to micro-infusion pumps. The carotid artery catheter tip extends to the aortic
arch. A platelet/leukocyte-staining agent (Rhodamine 6G) is then gradually infused into
the femoral vein. After 30 min, APS-IgG is promptly injected into the arterial circulation.
At this point, intravital microscopy can be used to view fluorescent aggregates of leuko-
cytes and platelets within mesenteric microvascular beds. Multiple microvascular areas
that include arterioles, capillaries, and postcapillary venules may be examined to assess
thrombus formation. An overall microvessel occlusion percentage is expressed by a ratio
of total thrombi formed to total number of microvessels examined. Fibrin deposition in
the endothelium can also be assessed with video-microscopy in this model by injecting an
additional fluorescent labeling agent [33]. Finally, the mesenteric tissue can be harvested
during euthanasia to enable immunofluorescent analysis of additional antibodies [33].

The LPS-priming model provides consistent thrombus generation and enables precise
microvascular circulation analysis. Furthermore, because the LPS-priming model does
not rely on a local vascular insult to induce thrombosis, this model might better mimic
clinical thrombosis than models that employ chemical or physical damage [34]. Challenges
of this model include a relatively complex surgical procedure and a prolonged opera-
tive time. Laboratories without the required surgical experience in intravital microscopy
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and catheterization may not find this a suitable model for investigating APS-associated
thrombosis.

4.5. Histone Priming

The histone-priming model has been used to study the role of anti-PS/PT antibodies
in APS [35]. Recent studies have shown that high titers of anti-PS/PT antibodies are a
useful predictor of APS severity, while histones are likely important players in endothelial
priming during inflammatory types of thrombosis [60,61]. Similar to the LPS-priming
model, this model uses a non-localized inflammatory stimulus (i.e., cell-free histones) to
induce thrombosis.

Wistar rats are administered an intravenous injection of calf thymus-derived histone
(12.5 µg/g weight). Two hours later, they receive a second intravenous injection, this
time with a rat anti-PS/PT monoclonal antibody (1.25 mg/g). After three days, rats are
euthanized, and tissue sections of major organs are prepared for histopathology. One
advantage of this model is its relative ease compared to its surgical counterparts; only
two intravenous injections are required. Having said that, the non-surgical nature of the
protocol prevents real time observation of thrombus formation. Additionally, this model
can induce thrombosis in inconsistent locations, and therefore, may not be suited for
studies of thrombosis in specific vascular beds. Furthermore, the relevance of the only
monoclonal antibody studied to date to human APS remains unclear. Due to its relatively
recent conception as an APS-thrombosis model, the capability of this model to explore
other mechanistic features of APS pathogenesis is not yet known.

4.6. What Have We Learned about APS-Associated Microvascular Thrombosis from
Animal Models?

A significant unmet need in clinical practice is the identification of effective approaches
for the treatment of microvascular APS. From animal models, we have seen the potential
for auto-amplifying crosstalk between platelets and endothelial cells when microvascular
beds are bathed with aPL [30]. Dysregulation of the complement cascade [33] and nitric
oxide synthase [52] also have the potential to be contributory in this context. Given
that microvascular thrombosis in mice can be neutralized by therapeutics targeting the
interaction between β2GPI and anti-β2GPI antibodies [31,33], it is perhaps not surprising
that plasmapheresis (i.e., removal of anti-β2GPI antibodies) remains the most time-tested
approach for the treatment of severe microvascular APS in humans [62].

5. Conclusions

In pursuit of targeted therapies for APS patients that may eventually minimize the
need for life-long anticoagulation, animal models hold significant potential to unlock
aspects of APS pathophysiology that could not otherwise be identified. Important opportu-
nities for the future include more strategic attention to biological variables, including age
and sex; confirmation of mechanistic discoveries in different models and across different
vascular beds; and the establishment of synergistic partnerships between research groups
that have complementary expertise. As the phenotyping of APS patients continues to
deepen and new hypotheses are generated, we anticipate that animal models will remain
an essential part of the preclinical exploration that will set the stage for a new era of APS
clinical trials.
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