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The Caenorhabditis elegans genome possesses homologs of about two-thirds of all

human disease genes. Based on its physiological aging characteristics and superiority,

the use of C. elegans as a model system for studies on aging, age-related diseases,

mechanisms of longevity, and drug screening has been widely acknowledged in recent

decades. Lifespan increasing mutations in C. elegans were found to delay aging by

impinging several signaling pathways and related epigenetic modifications, including

the insulin/IGF-1 signaling (IIS), AMP-activated protein kinase (AMPK), and mechanistic

target of rapamycin (mTOR) pathways. Interestingly, dietary restriction (DR) has been

shown to increase the lifespan of numerous metazoans and protect them from multiple

age-related pathologies. However, the underlying molecular mechanisms are unclear. In

recent decades,C. elegans has been used as a uniquemodel system for high-throughput

drug screening. Here, we review C. elegans mutants exhibiting increased in lifespan

and age-dependent changes under DR, as well as the utility of C. elegans for drug

screening. Thus, we provide evidence for the use of this model organism in research

on the prevention of aging.
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INTRODUCTION

The eukaryotic multicellular organism Caenorhabditis elegans which has completely sequenced
genetic profile, is an established genetic model organism (1), that can be used to study aging.
The use of C. elegans as a model system to recapitulate most human diseases in recent decades
is invaluable for experimental research at both the metabolic and genomic levels in vivo (2, 3).
In addition, research studies on aging using C. elegans have provided desirable outcomes in
identifying molecular signals, transcriptional regulators, and epigenetic modifications associated
with longevity broadening our ability to understand how organisms age. In this review, we aim to
provide an overview of the established and current novel concepts on transcriptional and epigenetic
regulators in the field of research on aging using the model organism C. elegans and elucidate how
dietary restrictions influence these specific regulators, as well as discuss the application of C. elegans
in drug screening studies.

BACKGROUND, ADVANTAGES, AND LIMITATIONS OF
C. ELEGANS FOR STUDIES ON AGING

Basic Features and Age-Dependent Changes of C. elegans
C. elegans is a free-living, harmless nematode that feeds on microorganisms. It is particularly
economical and easy to maintain in laboratory settings. Adult C. elegans are 1mm long
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self-fertilizing hermaphrodites with a 2.5–4 days reproductive
cycle at room temperature, and a mean lifespan of approximately
18–20 days when cultured at 20◦C (4–7). After hatching, C.
elegans can either develop directly to four larval stages (L1–
L4) or proceed with the dauer larval stage after the L2 larval
stage, instead of the L3 larval stage. The dauer larval stage is a
developmentally arrested dispersal stage used to survive adverse
conditions. Once the adverse conditions subside, C. elegans can
recover and molt into the L4 larval stage, continuing normal
development (8). In worms, features associated with aging
could result in less active, uncoordinated movements, torpor,
cessation of reproduction, and accumulation of auto-fluorescent
deposits in cells (7, 9, 10)1. Clear age-dependent humanlike
physiological changes at the tissue, cellular, and molecular
levels make C. elegans a valuable model for research in the
field of aging.

Aged C. elegans display a decline in their anatomical and
functional features, including tissue integrity, motility, learning
and memory, and immunity. The primary age-dependent
changes at the tissue level include changes in the reproductive,
nervous, and muscular systems. The rate of reproduction
marked decreases and the structure of the reproductive system
deteriorates with age. Oocyte size and quality also deteriorate
with advancing age (11). C. elegans displays structural changes
and functional deterioration of neurons during aging. Blebbing
and branching structures can be seen in aged touch receptor
neurons, indicating that the synaptic integrity degenerates with
aging (12, 13). In addition, it has been widely reported that
the loss of muscular integrity, sarcomeres density, and regular
orientations in aged C. elegans result in impaired motility and an
abnormal appearance (14).

At the cellular level, the primary age-dependent changes in
C. elegans generally include diminishing integrity of nuclei and
increased relative size of the nucleoli; however, these changes
may vary depending on the tissue types. Moreover, mitochondria
undergo age-dependent structural and functional changes,
including mitochondrial fusion and increased mitochondrial
fragmentation, which is consistent with changes inmitochondrial
DNA copy numbers and oxygen consumption rates (15). The
capacity of the unfolded protein response of endoplasmic
reticulum (ERUPR) seems to be reduced in aged C. elegans. The
ERUPR is activated and tasked with degrading the misfolded
proteins under various stress conditions (16). Reduced ERUPR

process result in misfolded proteins increasing and leading to
age-related diseases.

The C. elegans genome possesses homologs of about two-
thirds of all human disease genes. In a previous study, Zhao
et al. performed functional analysis of 143 essential genes and
found that 108 of them were human orthologs. Of these, 97
genes were associated with 1,218 different diseases (17). Age-
associated molecular changes provide more information and
serve as valuable biomarkers for aging. Many changes in aging-
associated gene expression, which increase lifespan but decrease
with age, have been identified during C. elegans aging (18). The
quality of RNA control mechanisms, such as non-sense-mediated

1What is C. elegans and Why Work on it? An Introduction for Those Unfamiliar

With the Worm. Available online at: https://cbs.umn.edu/cgc/what-c-elegans.

mRNA decay (NMD) activity in various organs and tissues,
decline with advancing age in C. elegans. Also, the increased
levels of introns and unannotated regions in the mRNAs denote
a decrease of mRNA splicing fidelity in aged worms (19).
Protein homeostasis associated with age-related diseases declines
during aging (20). It has been reported that proteins involved in
nucleosome assembly, ER nuclear signaling, and the response to
unfolded proteins increase, whereas the abundance of proteins
involved in metabolism (fatty acid, carbohydrate, and amino
acid) decreases during aging (21). In addition, the levels of amino
acid metabolites also change with age (22). The effects resulting
from gene expression changes during aging are not yet fully
understood. Further studies will be needed to comprehensively
elucidate the roles of age-dependent changes in the levels of
amino acid in aging and longevity.

Advantages of C. elegans on Aging Study
C. elegans is an excellent model organism used for aging research.
The ease of its maintenance in the laboratory, transparent
body for anatomical observation, high genetic homology (60–
80%) with humans, availability of complete genome sequence,
conserved biological molecular responses, high fertility rates
(∼250 eggs/worm within several days), and the availability of
molecular biology tools (i.e., transgenic, gene knockouts, and
RNAi knockdowns) make C. elegans a useful model for the
study of aging mutations (23). In addition, the short lifespan of
this organism (∼3 weeks) and small size are favorable for the
screening of anti-aging drugs due to the reduced experimental
costs and their usability for a high throughput screening
experiments (24). Moreover, experiments with C. elegans are free
of ethical concerns. Many breakthrough discoveries in the field
of aging research have been achieved using C. elegans because of
these advantages (25).

Limitations of C. elegans on Aging Study
C. elegans shows many desirable features for aging studies,
however, it still has some limitations as a model organism
compared to other mammals. Firstly, C. elegans lack certain
anatomical features of mammals, including a blood transport
system, a blood-brain barrier, a first-pass metabolism process
in the liver, and blood filtration in the kidney, which may be
specific for certain signal pathways or epigenetic effects (26).
As a model system to predict human research outcomes, the
lack of DNA methylation, an epigenetic tag that possibly has
a greater function in mammals than in nematodes, is another
limitation of C. elegans (27). In addition, the lack of long-range
transcriptional regulation makes it inadaptable for studying
the relevant mechanism in other animal species; however, it
is recommended as a simplified model for studies on signal
mapping mechanisms (27).

TRANSCRIPTIONAL REGULATORS AND
EPIGENETIC REGULATION IN C. ELEGANS

AGING

Previous studies have identified several loci that increase the
lifespan of C. elegans when mutated. The molecular genetics of
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FIGURE 1 | Major longevity pathways and longevity-associated transcription factors in C. elegans. The IIS pathway is one of the most studied longevity pathways.

DAF-2, AGE-1, and DAF-16 are its three key genes. Mutations in DAF-2 and AGE-1 and low IIS activity prolong lifespan via DAF-16 and downstream gene

expression. AMPK is another crucial metabolic energy sensor that links nutrient availability to lifespan by binding and phosphorylating a set of transcriptional

(co)activators. The mTOR pathway is another critical pathway that links nutrient availability and metabolism to longevity; however, its mechanism remains to be fully

elucidated (18, 28–49).

this organism is well-established and has been strongly supported
by a fully sequenced genome, which provides insight regarding
the entire 959 somatic cells that constitute it. Thus, far, over
50 genes that control aging in C. elegans have been identified
(50). Of these, many have homologs in other organisms.
Different upstream signals stimulate partially overlapping sets of
downstream mediators and processes that ultimately extended
the lifespan. Meanwhile, epigenetic regulation in cooperation
with transcriptional regulators influence the functions of cells
and the fate of organisms, and could act as markers of
aging (51). Epigenetic regulation involves DNA methylation,
chromatin remodeling, post-translational modifications (PTMs)
of histones, and non-coding RNA transcription (28). Here
we discuss longevity mechanisms related to transcriptional

regulators of metabolic networks and epigenetic regulation
in C. elegans.

The Insulin/IGF-1 Signaling Pathway
The insulin/IGF-1 signaling (IIS) pathway is one of the most
studied longevity pathways (52, 53). This pathway has three
key genes, namely daf-2, age-1, and daf-16. While daf-2 encodes
a homolog of the mammalian insulin/IGF-I receptor (INSR)
(54), age-1 encodes a homolog of the catalytic p110 subunit
of mammalian phosphoinositide 3 kinase (PI3K) (55, 56). In
C. elegans, daf-16 is widely expressed and encodes a homolog
of human forkhead box O (FOXO) transcription factor (54).
The greatest increases in lifespan due to mutations in single
genes have been reported for daf-2 and age-1 (57–59). The
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mean survival of long-lived daf-2 and age-1 mutants was around
15% longer than that of the wild-type (60). Mutations in daf-2
and age-1 resulted in arrested larvae and forced larvae into the
dauer stage, increasing the lifespan of the nematodes, as well
as enhancing stress resistance (61). The prolonged lifespan of
daf-2 and age-1 mutants were dependent on DAF-16(FOXO)
(Figure 1). In worms with the daf-2 mutation, the activity of the
IIS pathway decrease leading to the phosphorylation of DAF-16
by AKT-1/2 and the translocation of DAF-16 into the nucleus
to bind and initiate expression of target genes, Consequently
the lifespan of the worm is prolonged and stress-protective
mechanisms, including the unfolded protein response and
oxidative stress responses, are initiated (29). The transcription
factor DAF-16(FOXO) induces juvenileC. elegans to develop into
dauer larvae, which represents diapause that allows this organism
towithstand harsh conditions. Reactive oxygen species (ROS) can
modulate the import of DAF-16 into the nucleus via disulfide
bond formation with transportin-1 (IMB-2) (62). The main role
of DAF-2(AGE-1) signaling is to antagonize daf-16 (63, 64). It has
been reported that the metabolic, longevity, and developmental
defects caused by daf-2 and age-1 mutations are antagonized
by daf-16 mutations (64–66). DAF-16 may directly regulate the
transcription of the genes necessary for the increased longevity
observed in age-1 and daf-2 mutants (29). As such, one research
direction is to identify genes under the control of DAF-16. The
strong association between FOXO expression and lifespan has
been reported by several studies on humans and is considered
a promising therapeutic target to promote longevity.

Reduced IIS promotes C. elegans longevity through the NF-
E2-related factor (NRF2) ortholog SKN-1, which operates as
a genetically distinct program from the dauer pathway and in
parallel to DAF-16 (30). The transcription factor SKN-1(NRF2) is
considered an important regulator of detoxification and oxidative
stress responses in C. elegans; SKN-1 (NRF2) prominently
increases the expression of collagens and other extracellular
matrix genes when IIS level is decreased (18). The expression of
the skn-1 target gene upon oxidative stress can also be promoted
by SKR-1/2, which is the ortholog of the mammalian SCF-
ubiquitin ligase complex member SKP1. Furthermore, it has
been reported that DAF-16 can regulate SKN-1 transcription
and that daf-16 is a target of SKR-1/2, indicating that SKN-1
mediated stress resistance may not be necessary associated with
longevity (31) (Figure 1).

Epigenetic regulation on specific targets of metabolic signaling
pathways can alter the lifespan. The demethylase UTX-1, which
targets genes such as daf-2 on the IIS pathway, regulates the
lifespan in C. elegans. It reduces DAF-16(FOXO) levels, as
mentioned above, compromising cellular maintenance processes
and weakening the ability to resist stress in C. elegans, thus
inducing an aging-related decline in cellular functions (32).
Besides, LncRNAs with a variable length spanning from 200 base
pairs up to several kilobases are important for cell function,
because it can target classic signal pathways such as IIS.
For example, the LncRNA tts-1 extends lifespan by reducing
ribosome levels in the daf-2mutant C. elegans (28). IIS conserved
in both insects and mammals; the genetic and biological
characteristics of the IIS pathway in aging were successfully
translated to mammals and humans (67).

AMP-Activated Protein Kinase Signaling
Pathway
Different signal pathways could regulate each other by PTMs.
For example, the post-translational modifications of DAF-16
include phosphorylation by AAK-2 (AMPK), which belongs
to another important signal pathway related to metabolic
energy. AMP-activated protein kinase (AMPK) is a crucial
metabolic energy sensor linking nutrient availability with lifespan
(68). The AMPK encoding gene is aak-2 in C. elegans. As
a master regulator of cellular energy homeostasis, AMPK is
required for the metabolic adjustment during the starved,
developmentally quiescent diapause phase of C. elegans (69).
The overexpression of AMPK extends lifespan, as shown in C.
elegans (33). Upon activation, AMPK binds and phosphorylates
a set of transcriptional coactivators, including PGC-1α, FOXO,
and SIRT1, and the actions of AMPK activation at least
partially overlap with sirtuin activation (34). Similar to
the mechanism in the mammalian system, aak-2-mediated
longevity requires the downregulation of the IIS pathway
and the subsequent upregulation and translocation of DAF-
16(FOXO). Post-translational modifications of DAF-16 include
its phosphorylation by AMPK (70). AMPK modulation of
lifespan has been shown to occur also via CREB-regulated
transcriptional coactivators in response to low levels of
energy (35) (Figure 1).

Starvation can induce long-term consequences through
epigenetic change. AMPK is required for metabolic adjustment
by blocking specific chromatin modifications and epigenetic
changes in C. elegans larvae to resist starvation (69). The
recovery of C. elegans after starvation in the early larval stage
would be impaired with the absence of AMPK, and could
become sterile. AMPK might affects heritable aspect including
germline gene expression or genomic integrity, which need
further research.

Recently, another of transgenerational lifespan regulation
paradigm was shown in C. elegans. Lacking DNA methylation
to activate histone modifications such as reduced methylation
of Lys4 of histone H3 (H3K4me) are characters of actively
transcribed genes (71). DNA methylation usually occurs
at 5-methyl cytosine (5 mC) and result in transcriptional
repression (72). In C. elegans, 5 mC methylation is rare,
while methylation on N6 adenine (6mA) is prevalent of
silence DNA repeats (73). NMAD-1 (MT-A70 family) and
DMAD (DNA 6mA demethylase, TET ortholog) are 6mA
demethylases and can regulate 6mA levels in C. elegans
(74). DAMT-1 (AlKB family), a likely 6mA methyltransferase,
can also control the epigenetic inheritance of phenotypes
which associated with the loss of the H3K4me2 demethylase
SPR-5 (CoREST/LSD1 ortholog) (75). Deletion of the SPR-
5, 6mA increases across generations and can lead to a
progressive transgenerational loss of fertility, the worms become
sterile after several generations (76). Longevity can also be
transmitted across generations by this kind non-genetic factors.
Greer et al. demonstrated that deletion of the spr-5 in C.
elegans causes a trans-generational increase in lifespan through
mis-regulation and activation of lifespan-regulating signaling
pathway (77). It is reported that SPR-5 has numerous consensus
AMPK phosphorylation sites (69), but whether SPR-5 is
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yet another functional nuclear target of AMPK remains to
be established.

Mechanistic Target of Rapamycin Signaling
Another critical pathway linking nutrient availability and
metabolism to longevity is the mechanistic target of rapamycin
(mTOR) pathway. This pathway is activated upon the increase
of intracellular amino acids or during growth factor stimulation
and modulates a set of downstream signaling pathways that
manage cell proliferation, cell growth, motility, survival, and
protein synthesis (78). Studies in C. elegans have shown that
the inhibition of mTOR activity prolongs the worm lifespan
(79). Longevity mediated by inhibiting the mTOR pathway is
most likely distinct from the IIS pathway, and an overlapping
mechanism may also occur between these two pathways.

mTOR regulates mitochondrial gene expression and control
energy- and nutrient related mitochondrial respiration by
activating the peroxisome proliferator-activated receptor
coactivator-1 α (PGC-1 α) forming a complex with the
transcription factor Yin-Yang 1 (YY1) to promote the expression
of related genes (36) (Figure 1). One possible downstream
pathway that serves as a shared longevity mechanism between
the IIS and mTOR pathways is autophagy (31). Recent studies
show that the effect of defective mitochondria on cells can be
prevented by mTOR during aging via the mitophagy process,
which is a kind of autophagy, which targets the mitochondria.
Beside PGC-1 α signaling and mitophagy, mTOR may also
influence mitochondria via SKN-1 signaling (37).

The transcription factor EB (TFEB), found in C. elegans as
HLH-30, is an autophagy enhancer that regulate gene expression
related to autophagy and lysosomal (38). In the nucleus, the
localization of HLH-30(TFEB) is modulated via phosphorylation
by mTOR and the function is regulated via competition with
MXL-3/MAX and by its interaction with the Mondo-complex
(Figure 1). Potential nuclear interactions between HLH-30
(TFEB) and DAF-16(FOXO) are perhaps required for longevity
(39). The modulation of HLH-30 (TFEB) nuclear localization
may be a promising strategy to improve somatic maintenance
(32). Simultaneous mutations in the IIS and mTOR pathways
that produce a synergistic effect was reported recently. Using
genome-wide translational state analysis and genetic screening,
Lan et al. identified ribosomal protein genes and cyc-2.1, which
encodes one of the worm cytochrome orthologs, as negative
regulators of longevity (80). Cyc-2.1 knockdown significantly
extended lifespan by activating the intestinal mitochondrial
unfolded protein response (UPRmt), mitochondrial fission, and
AMPK (80). The influence of mitophagy is to extend the lifespan,
thus, the role of mTOR mediated mitophagy in longevity needs
further study.

Recent studies show that mTOR influence on lifespan also
relies on epigenetic cues. Histone modification can regulate
lifespan by acting on mTOR signaling pathways. In C. elegans,
COMPASS H3K4me3 methyltransferase (methylation of
Lys4 of histone H3) deficiency promotes fat accumulation
and extends lifespan by targeting RSKS-1 (S6K) in the
mTOR complex (28). H3K4me3 methyltransferases have
homologs in humans. Mutations in the trithorax group

(TrxG) can reduce the H3K4me3 level and, in turn, extend
lifespan. Moreover, this influence is heritable for three
generations even if the TrxG function is restored in the F1
progeny (81).

DIETARY RESTRICTION EXTENDS
LIFESPAN IN C. ELEGANS

Since the initial discovery in 1935 that animals feeding on less
food lived substantially longer (82), dietary restriction (DR) has
been shown to increase lifespan and delay the onset of multiple
age-related pathologies in a wide variety of metazoans (83). DR
extends lifespan not mediated by a single linear pathway but
by multifactorial processes. There are two hypotheses postulated
in C. elegans: (1) DR reduces insulin/IGF-I signaling, and (2)
DR reduces the metabolic rate (84). In the model of C. elegans,
Pandit elucidated the complexity of gene regulation following
the initiation of DR in EAT-2 and defined the central role of
PHA-4(FOXA) in this process, justifying its position as a robust
genetic regulator of DR-induced longevity (40) (Figure 1). Siler
also found that PHA-4 played a key role in regulating DR-
mediated longevity in adultC. elegans. PHA-4(FOXA) is required
for lifespan extension via DR, but not the extension resulting
from reduced IIS via daf-2(insr) mutants (41), indicating that
PHA-4(FOXA) may be a part of a pathway distinct from IIS
(42). Increasing lifespan by reducing TOR signaling requires
PHA-4(FOXA) and is mediated by the rsks-1 gene, encoding the
homolog of the mammalian SK61. This indicates that FOXA is
a necessary downstream component of a TOR-mediated increase
in lifespan. However, the precise mechanism and intermediates
that control this remain to be determined (43).

Since DR affects both IIS signaling and mTOR signaling, it is
important to delineate the contribution of each to overall lifespan
extension. In worms, a further reduction in TOR activity does
not generate further lifespan extension under some DR regimens,
nor protect from lifespan reduction by dietary enrichment,
suggesting that mTOR may mediate an effect on lifespan
under certain forms of DR (85). Lowering the methionine
levels suppresses mTOR pathway activity and prolongs lifespan,
suggesting that these types of diets can influence the aging
process (86).

The nutrient-sensing pathway is regulated at the lysosomal
membrane by several proteins, and the deficiency of which
triggers widespread aging phenotypes. In response to
environmental conditions, the lysosomal nutrient-sensing
complex controls the autophagy process via several factors,
including the transcription factors TFEB and FOXO, which have
previously been shown to be associated with lifespan extension
(Figure 1). A major regulator of autophagy and lysosomal gene
expression is HLH-30 (TFEB). HLH-30 (TFEB) is required for
innate immunity and lifespan extension in different long-lived
nematode mutants via the autophagic response to starvation.
The nuclear localization of HLH-30 (TFEB) is modulated via
phosphorylation by mTOR (44). This key metabolic pathway
strongly depends on nucleocytoplasmic compartmentalization, a
cellular phenomenon that is gradually lost with aging.
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AAK-2 (AMPK) is another crucial metabolic energy
sensor that links nutrient availability to lifespan (18). AMPK
regulates mTORC1 activity and shares downstream effectors of
lifespan modulation with mTOR (87). AMPK can also regulate
mammalian FOXO3 (88). In worms, the activation of AMPK and
its downstream metabolic targets often relies on the level of DR
and the composition of the restricted diets (68). The response
of AMPK to glucose and oxidants is glycogen-dependent
(89). Moreover, AMPK signaling may provide a link between
glucose toxicity, glycogen accumulation, oxidative stress, and
aging. When activated by a drop in energy status, AMPK
binds to AMP or ADP to promote ATP production. AMPK
can bind and phosphorylate PGC-1α, FOXO, and SIRT1 (33).
Especially, sirtuins as a specific group of histone NAD dependent
deacetylases are associated with longevity (32). Deletion or
inhibition of sirtuin SIR-2.1 (C. elegans ortholog of human
SIRT1) reduces lifespan. DR could stimulate SIR-2.1 (SIRT1) and
upregulates autophagy in C. elegans and human cells to extend
lifespan (45). Moreover, human SIRT1, together with AMPK,
could induce autophagy by upregulating autophagic genes and
inhibiting mTOR signaling (46). These outcomes indicated
that epigenetic regulation of lifespan was closely linked to cell
metabolism and nutritional status in C. elegans.

DRUG SCREENING FOR COMPOUNDS
THAT EXTEND LIFESPAN IN NEMATODES

The C. elegans model provides several advantages when
performing chemical screening for the identification of drug
candidates. This is especially true for primary drug screening,
which involves relatively smaller spaces, lower costs, and
time-consuming assessments. Nematodes can be inexpensively
cultured in large quantities, and the relatively short lifespan
of C. elegans ensures this organism provides high-throughput
screening for anti-aging drug. Also, the effects of drugs can be
tested directly in the whole organism, such that compounds that
are toxic for development can be eliminated immediately. C.
elegans can also be used for genetic analysis and investigations
of chemical interventions for longevity. Moreover, a variety
of assays suitable for high-throughput screening for anti-
aging compounds are currently being developed (6, 90). Based
on mutations in the age-1(PI3K) or daf-2(INSR) genes, and
reduction in the daf-16(foxo) mutant, several compounds have
been identified that significantly increase the lifespan of this
nematode. Kumar demonstrated that C. elegans treated with
25 and 50µM silymarin increased the mean lifespan of this
organism by 10.1 and 24.8%, respectively, as compared to
untreated controls (91). Another study demonstrated that
fullerenol attenuated the endogenous levels of ROS and provided
protection to C. elegans by up-regulating stress-related genes
under stress conditions, which was in a DAF-16-dependent
manner, thus improving lifespan (92).

Many potential chemical candidates for extending lifespan
are currently being investigated, including the following aging
modulating compounds: (1) metformin (biguanide anti-glycemic
agent for AMPK activation), (2) rapamycin (immunosuppressing

agent and mTOR inhibitor), (3) resveratrol (polyphenol and
sirtuin activator), (4) spermidine (polyamine and inductor of
autophagy), (5) aspirin (COX inhibitor, antithrombosis, and
antioxidant), and (6) masoprocol (catechol with antioxidant and
anti-inflammatory properties) (93). Active AMPK downregulates
mTORC1 activity indirectly by phosphorylating the serine sites
on TSC2, and directly by phosphorylating Raptor. The AMPK
activating drug metformin (commonly prescribed to diabetic
patients) was shown to increase lifespan in C. elegans (47).
Similarly, metformin has been shown to act on mTOR signaling
via Redd1, also independently of AMPK (94).

The toxicity ranking screening of C. elegans has been
repeatedly found to be as predictive of rat LD50 ranking
as mouse LD50 ranking. Additionally, many instances of the
conservation of the mode of toxic action have been reported
between mammals. These consistent correlations make a case for
the inclusion of C. elegans assays in early safety testing and as one
component in tiered or integrated toxicity testing strategies (95).
These findings indicate that C. elegans could be a bridge between
in vitro assays and mammalian toxicity testing by combining
established in vitro handling techniques and cost ratios with oral
toxicity test data from an intact organism. Given that nematodes
lack most mammalian organs, it is unrealistic to expect that
any combination of C. elegans assays alone will replace in-depth
descriptive toxicology analyses in mammals. However, although
organismal toxicity endpoints often differ, many pathways of
toxicity and modes of toxic action are conserved between worms
and humans (95).

Besides acting as markers for the genetic regulation during
aging, epigenetic mechanisms may also be targets for drug
screening in aging or age-related diseases (28). Researchers have
confirmed this promising application. For example, resveratrol,
as an activator of SIR2.1 (SIRT1) and AMPK, extends the
lifespan of C. elegans (48). The sir2mutation could obliterate the
effect of resveratrol. Natural compounds, such as curcumin or
alkylresorcinols, enhance SIRT1 activity and have been confirmed
to extend the lifespan (49). These findings indicated that SIR2.1
(SIRT1) could be a promising target for aging interventions.
Overall, epigenetic research will be a powerful way for aging
interventions of drugs. Lifespan extension for humans could be
achieved by powerful genetic tools and further understanding of
aging mechanisms in simple invertebrate models.

CONCLUSION AND FUTURE
CHALLENGES

As a model system, the nematode C. elegans could be used
for studying genetic approaches to understand the aging
process, age-related diseases, mechanisms of longevity, and
drug screening for compounds that increase lifespan. Longevity
studies on this lower organism have helped provide an outline
of the signaling pathways involved in aging and predicting
their behavior in complex organisms. However, which molecular
pathways are causative and which accompany aging need
further research. Also, the mechanisms of epigenetic regulation
associated with aging are still on the way to be elucidated
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in depth. In the future, disease models including nematodes
and C. elegans will definitely provide further insights into the
aging process.
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